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Abstract: Climate change risks have triggered the international community to find efficient solutions
to reduce greenhouse gas (GHG) emissions mainly produced by the energy, industrial, and transporta-
tion sectors. The problem can be significantly tackled by promoting electric vehicles (EVs) to be the
dominant technology in the transportation sector. Accordingly, there is a pressing need to increase the
scale of EV penetration, which requires simplifying the manufacturing process, increasing the training
level of maintenance personnel, securing the necessary supply chains, and, importantly, developing
the charging infrastructure. A new modular trend in EV manufacturing is being explored and tested
by several large automotive companies, mainly in the USA, the European Union, and China. This
modular manufacturing platform paves the way for standardised manufacturing and assembly of
EVs when standard scalable units are used to build EVs at different power scales, ranging from small
light-duty vehicles to large electric buses and trucks. In this context, modularising EV electric systems
needs to be considered to prepare for the next EV generation. This paper reviews the main modular
topologies presented in the literature in the context of EV systems. This paper summarises the most
promising topologies in terms of modularised battery connections, propulsion systems focusing on
inverters and rectifiers, modular cascaded EV machines, and modular charging systems.

Keywords: electric vehicles (EVs); on-board battery chargers (OBCs); power factor correction (PFC);
auxiliary power module (APM); propulsion system; traction inverter

1. Introduction

The persistent international desire to reduce harmful emissions resulting from the
energy production process promotes electric vehicles (EV) over conventional internal
combustion engine (IEC) vehicles in the transportation sector [1,2]. It is reported that more
than two-thirds of the petroleum consumption is attributable to the transportation sector [3].
Accordingly, several countries are determined to reduce their dependencies on fossil fuel-
based vehicles to comply with the Paris Climate Agreement clauses. In 2020, the China
Association of Automobile Manufacturers (CAAM) reported that more than 1.2 million
EVs were manufactured and sold [4]. In California, USA, there is an ambitious goal to end
IEC vehicle production and sales by 2035 [5]. To meet this objective, the USA government
has announced a massive investment to increase electric light-duty vehicle sales from 7.83%
in 2023 to 100% in 2035–2040 [5]. European countries such as Germany, France, and the
United Kingdom are establishing similar investments to win this transportation sector race.

The main electrical components of a typical 100% battery EV (BEV) are shown in
Figure 1 including a high-voltage (HV) battery, electric motor, traction inverter, onboard
charger (OBC), and low-voltage (LV) battery [6]. The HV battery system is usually fitted
into the lower chassis of a vehicle to use the largest available planar space. In the present
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common EV structures, the value of the battery’s total voltage varies between 400 V and
800 V according to the number of series/parallel connected battery cells. Increasing the volt-
age of the HV system by adding more battery cells in series can add advantages to the EV
system such as reducing the tractive system’s current, reducing the size of the power cables,
and increasing the operational speed of the motor, which reduces the gearbox/differential
weight and size [7]. However, increasing the operational voltage above 800 V can create
significant hazards to the electrical system as well as customers and maintenance person-
nel [8]. Also, the charging and balancing operation by the battery management system
(BMS) becomes more complicated as the HV system’s voltage increases. There is still debate
about the optimum value of the tractive system’s voltage, which determines the battery
system’s construction [7].
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Figure 1. EV charging system with on-board and off-board chargers.

The electrical (machines) motors are responsible for producing the necessary torque,
and, hence, force, to change the speed of the EV. Four main types of electric motors have
been used in the context of EVs [9] including the following:

i. The permanent magnet brushed DC (PMBDC) motor was employed in earlier EVs
because of its simple construction and control [2]. The PMBDC operates at DC
voltages and currents and, therefore, a simple chopper circuit can be used at the
control stage.

ii. Unlike the PMBDC, the induction motor (IM) does not have carbon brushes and,
therefore, is preferred for robustness and reliability [10]. Additionally, because of
its simple control, several Tesla EV models employ IMs with a conventional voltage
source inverter (VSI) as the traction inverter [9]. More complex control techniques,
such as field-oriented control (FOC), maximise the motor’s torque and reduce the
total harmonic distortion (THD) of the VSI’s voltages and currents [10]. The IM
is preferred for its high torque-to-mass ratio to reduce EV weight, an important
factor in determining efficiency, by reducing the required energy absorbed from
the battery.

iii. The permanent magnet synchronous motor (PMSM) is also employed in the EV
industry because of its high torque and power [11]. The main difference between
the PMSM and the IM is that the former’s rotor is manufactured using a permanent
magnet material that does not need excitation. The PMSM can be controlled by a
traction inverter, such as a VSI, to operate with sinusoidal voltages and currents in
the three phases. In this case, the motor output torque is constant with time, which
improves EV performance and smooths speed. The PMSM can also be controlled by
the traction inverter to push–pull the magnetic rotor according to its initial position
and, hence, the voltages and currents in the phases pulsate [12]. In this mode, the
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PMSM operates as a brushless DC (BLDC) motor, which is used extensively in the
EV industry because it provides simple control without sacrificing efficiency [13].
One drawback of a PMSM-based propulsion system is that the rotor’s position
needs to be measured continuously during operation using sensors, which adds to
system cost and complexity [14].

iv. The switched reluctance motor (SRM) is drawing increased attention in the field
of EVs because its rotor can be manufactured using a soft iron material [15]. This
reduces the weight and cost of the propulsion system, with no dependency on
magnetic materials. SRM suffer from a high ripple torque, which in turn affects
the EV speed profile and increases acoustic noise and vibration [16]. Also, SRM
efficiency is lower than its IM and PMSM counterparts [17]. SRM variations are
the synchronous SRM, with added PMs. Table 1 summarises the features of each
motor type.

Table 1. Comparison of EV traction machines.

Motor Advantages Disadvantages Example

DC

■ Torque–speed curve is suitable for
EV traction.

■ Simple speed control typically with an
H-bridge motor controller.

■ Bulky construction and low efficiency
(≈85%).

■ Low reliability and high maintenance due
to commutating brushes.

■ Relatively low power in EV applications
because of space and drive.

■ Relatively old EV technology.
■ Low speed (<4000 rpm).

■ Model: 2005 Citroën Berlingo électrique.
Technology: Separately exciter.
Max. Power: 15.5 kW.
Voltage: 400 V dc.
Peak torque: 180 Nm.
Max. Speed: 1600 rpm.

IM

■ High reliability and low maintenance.
■ Light because of the absence of

magnetic materials.
■ Higher efficiency than DC motors (>92%).
■ High critical speed.
■ Low cost.
■ High power-to-weight ratio.

■ Efficiency deteriorates at high speeds,
beyond critical speed because of rotor
copper losses.

■ Power factor lower than PMSM.
■ Control is more complex than

PMBDC motors.

■ Model: 2012–present Tesla Model S.
Technology: 3-phase AC squirrel cage.
Max. Power: 300 kW.
Voltage: 400 V.
Peak torque: 650 Nm.
Max. Speed: 6000 rpm.

PMSM

■ The most common motor technology in
the EV sector.

■ High effeiciency at all speeds, which can
exceed 95%.

■ Good power-to-weigh ratio.
■ High power factor.
■ Excellent torque control.

■ Expensive because of the cost of the
rotor’s magnetic material.

■ Risk of rotor demagnitisation at very
high speeds.

■ Complex control in comparison with
PMBDC motors.

■ Depends on magnetic materials that are
subject to supply chain issues.

■ Model: 2017–present Tesla Model 3.
Technology: PMSM.
Max. Power: 208 kW.
Voltage: 400 V.
Peak torque: 420 Nm.
Max. Speed: 9000 rpm.

SRM

■ Cheap, simple, and rugged construction.
■ Rotor is composed of iron material.
■ Excellent torque–speed characteristics,

which simplify control.
■ Fault-tolerant operation.

■ Increased weight compared with IMs
and PMSMs.

■ High acoustic noise due to the high
torque ripple.

■ High electro-magnetic interference (EMI).
■ Power is lower than PMSM and IM.

■ Model: 2013 Land Rover 110 Defender.
Technology: SRM.
Max. Power: 70 kW.
Voltage: 300 V.
Peak torque: 110 Nm.
Max. Speed: 5400 rpm.

The power electronics topology of the EV traction inverter is determined by the
selected electric motor technology. For EVs based on PMBDC motors, the speed of the
vehicle is controlled by regulating the torque delivered to the wheels, which is directly
proportional to the DC motor’s armature current [18]. An example of this EV type is the
small light-duty Kewet Buddy produced between 2007 and 2013 in Norway [19]. The
Kewet Buddy EV is operated by a 72 V/13 kW separately excited DC motor, which is
controlled by an H-bridge circuit that enables four-quadrant operation (forward/reverse
and motor/generator). The Kewet Buddy H-bridge motor controller supports regenerative
braking by reversing the armature current during operation to recover the braking energy
back to the 10 kWh battery.

For IM-, PMSM-, and BLDC-based EVs, the three-phase VSI is the most commonly
used topology, which can provide either sinusoidal or pulsating voltages and currents [20].
SRM-based EVs usually employ asymmetrical half-bridge (AHB) converters [21]. The OBC
is another power electronic converter fitted within the EV to ease the battery charging
process, which plays a crucial role in promoting EV sales by reducing the customer’s



Energies 2024, 17, 3474 4 of 29

anxiety about the charging time. If the EV power electronic converter is designed to
support bidirectional power flow, it can enable several desired functions such as vehicle-to-
grid (V2G), vehicle-to-home (V2H), vehicle-to-load (V2L), or vehicle-to-vehicle (V2L), if a
proper control system is deployed [6].

The aforementioned EV structures depend on a specific design for each EV, which
is difficult to scale up or down. For example, increasing the power level of an EV model
requires changing significant components in the mechanical and electrical systems to match
the new power level, which increases the design effort. Several EV companies such as Kia,
Hyundai, and Volkswagen, are working on modularising their future EVs by providing
the so-called Global Modular Platform (GMP) for BEVs [22–24]. The GMP will enable EV
companies to develop standard units that can be used to customise the EV design based
on power level. This means that the units used for building small light-duty EVs can be
used to build large electric buses, depending on the number and the connection of these
units. This game-changer concept can reduce vehicle costs by sharing the same components
among different models. Also, it can reduce the time required for designing and testing the
new models and simplify production processes. Importantly, supply chain problems can
be minimised and the time to release EVs to market can be reduced. On the downside, it is
expected that the GMP will produce less optimised designs for specific applications and
conventional non-standardised concepts will still be needed [22–24].

Despite the debate about aspects of the future of the GMP in the EV industry, modular
power electronic converters and propulsion systems are required for future EVs replacing
conventional VSI architectures. The modular systems employ several smaller electrical
components connected and controlled together in a decentralised structure rather than
depending on a centralised system [25]. An example is the modular multilevel converter
(MMC), which replaced the VSI in several applications in either drive or renewable energy
systems [26]. Modular systems provide advantages such as standard design, scalability,
fault-ride-through capability, improved power quality, and better controllability. Adversely,
modular structures increase the complexity of both hardware connection and software
control systems [27].

To provide an insightful overview for researchers and engineers working on the GMP
of EVs, this paper reviews the most important emerging modular topologies that can shape
the future of the next EV generation. This paper reviews these modular topologies from the
following four aspects: battery architectures, propulsion systems, charging infrastructure,
and electric machines.

In the remainder of this paper, Section 2 the modular converter topologies used in
battery systems will be discussed. In Section 3, the modular propulsion systems will be
presented and discussed. The power converter architectures used in OBC, fast chargers,
and V2G modes will be presented in Section 4. The promising topologies for modular
cascaded machines applied within EVs will be discussed in Section 5. Some important
points obtained from this review will be presented and discussed in Section 6, while the
conclusions and findings drawn from the discussions will be presented in Section 7.

2. EV Modular Battery Systems

The first attempt to modularise the battery system of a hybrid EV (HEV) was published
in [28], where the cascaded H-bridge (CHB) converter is employed to connect 48 V battery
modules to the electric motor of the propulsion system, as shown in Figure 2. The CHB is
operated as a multilevel converter to generate near-sinusoidal waveforms at relatively low
switching frequencies. An advantage of this system is that the battery packs are clustered in
relatively low voltage groups to provide safer operation and wiring. The main drawback of
this configuration is that the half-bridge (HB) modules draw discontinuous currents from
the source, which is battery packs. Discontinuous current can adversely affect battery cell
performance and reduce their lifetime. To deal with this issue, large electrolytic capacitors
are used to filter input currents, which increase the size and reduce the system’s reliability,
contradicting the intended goal.
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In [29], a modular architecture is proposed by connecting bypassing isolating DC/DC
converters in parallel with battery strings. DC/DC converters are used to balance the
battery strings together at the input sides and supply the LV auxiliary battery and loads at
the output sides. Thus, the mismatch charge and energy between the battery strings is not
wasted but instead is used to supply the auxiliary loads, as shown in Figure 3.
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Dual active bridge converters are employed as an isolated DC/DC converter to sup-
port bidirectional power flow and also reduce the high-frequency isolating transformer
size. Figure 4 shows the DAB structure with switch gate signals and main waveforms.
As an advantage, DAB converters operate independently without the necessity for inter-
communication. The research provided the control design for each isolated DC/DC con-
verter but did not provide overall system control details needed to balance the battery
strings’ state of charge (SoC).
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The MMC in [30] is proposed to operate EVs with an SRM as the propulsion motor.
The decentralised battery segments are connected to individual asymmetrical half-bridge
converters, as shown in Figure 5. The first modular stage in Figure 5a is responsible for
a series that adds the battery packs’ voltages to form the dc-link voltage. The second
stage in Figure 5b generates the required voltages and currents for the SRM. The two-
stage configuration provides an additional system degree of freedom, controlling both the
battery’s as well as the machine’s sides. The proposed asymmetrical MMC improves EV
fault-ride-through capability, provides flexible DC bus voltages, and improves the THD of
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the motor’s voltages and currents. On the downside, the research did not provide details
regarding the battery SoC balance. Also, the machine side stage in Figure 4b is not modular,
which reduces the intended degree of scalability.
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Reference [31] attempts to present an accurate model of the CHB modular architecture
presented in [28] with a focus on the low-order current harmonics drawn by the battery
segments. The paper applied the model to a seven-level CHB modular converter and
compared the results during different driving cycles. The research concluded that the
conventional pure resistive model overestimates the power losses by around 20%. So,
the paper presented a dynamic three-time constant model using several RC-links, which
were implemented and applied online to provide an accurate measure of battery power
losses. The simulation model is based on numerical computer tools including the MAT-
LAB/SIMULINK and MATLAB curve-fitting toolbox.

The modular converter in [32] employs two-stage submodules (SMs) with each battery
segment as shown in Figure 6. The first stage is based on an isolated Sepic converter,
which can draw a continuous current from the battery packs and provide galvanic isolation
between the battery and the dc-link. The second stage is based on a full-bridge two-level
converter to shape the output voltage and current based on the mode of operation. The
modular architecture can provide decentralised control of the battery segments according
to SoC and temperature. The proposed MLI is designed to operate in normal driving,
regenerative braking, and charging modes. The good controllability of the proposed system
comes at the expense of a complicated control scheme.
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Table 2 summarises the reviewed EV modular battery systems.

Table 2. Summary of the reviewed EV modular battery systems.

Refs. Topology Machine Power Switching Freq. Year Remarks

[28] CHB — 1.5 kW 300 Hz 2002 Needs large capacitors

[29] DAB — 2 kW 200 kHz 2016 HV battery balancing
Complicated control design

[30] MMC/AHB SRM 0.75 kW — 2019 Online balancing of battery packs

[31] CHB — — — 2020 Accurate model for low-order
harmonics in battery currents

[32] Sepic/FB PMSM 3 kW 20 kHz 2024 Driving modes are studied with
respect to battery temperature
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SIMULINK/MATLAB 2024a models are used to show the key CHB system wave-
forms in [28], the decentralised EV battery system for SRMs in [30], and the SEPIC-based
integrated OBC system in [32]. The three models employ the same MOSFET and diode
devices, while the passive inductors are selected so the current ripple gives an output THD
below 5%. Figure 7 shows the total output voltage, total output current, and one battery
current in the first SM of each system. These sample waveforms are taken at an SM battery
voltage of 50 V and a switching frequency of 5 kHz. Figure 8 shows the efficiency plots of
each modular battery system where the single-stage CHB has the highest, followed by the
SEPIC-based system in [32] with the lowest efficiency for the SRM-based system in [30]. 
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Figure 7. Modular battery system waveforms: (a) the modular CHB system in [29], (b) the modular
SRM-based system in [30], and (c) the SEPIC-based integrated charger in [32]. (Top: output voltage,
middle: output current, and bottom: battery current in a single SM).
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3. Modular Propulsion Systems

Modularising the power electronic converter in the EV propulsion system was pro-
posed first in [33] with a cascaded DC/AC H-bridge MMC. As shown in Figure 9, the DC
source is connected to the H-bridge cells through a VSI. This boosts the DC voltage, which
provides better control without the need for bulky inductors. However, the operation and
dynamic response of the proposed MMC with the machine were not presented.
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Figure 9. The DC–AC cascaded H-bridge multilevel boost inverter in [33].

In [33], traction inverter operation was examined using SIMULINK/MATLAB computer
simulation during acceleration, constant-speed operation, and deceleration. Figure 10a shows
the velocity profile tracked over a duration of 20 s, while Figure 10b shows the actual speed
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and motor torque. Figure 10c shows the motor phase voltage with the input current from the
battery during the acceleration period. The simulation component parameters are listed in
Table 3.
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Figure 10. MATLAB simulation waveforms of the modular traction inverter in [33]: (a) reference
velocity profile, (b) motor speed and torque, and (c) acceleration phase voltage and battery current.

Table 3. System parameter values in the MATLAB simulations.

Parameter Value

Switching frequency 5 kHz
Battery voltage 400 V

Motor PMSM
No. of poles 10
No. of levels 4

Motor inductance Ld = Lq = 0.28 mH
Phase resistance Rs = 0.2 Ω

EV mass 300 kg
Differential ratio 1:4

Wheel radius 30 cm

The research in [34] studied the feasibility of using an asymmetrical CHB inverter
when SMs do not necessarily have the same size and volume. The isolated converter shown
in Figure 11 can minimise the size of the isolating high-frequency transformers (HFTs) and
operate some of the SMs as active filters with small cores. In this way, the number of DC
supplies needed to operate the system is reduced and the greatest portion of power is
transferred through the larger H-bridge SMs. The operation of the 27-level converter was
tested using an 18 kW EV prototype.
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Figure 11. Topology for one phase of the asymmetrical CHB with HFT in [34].

Figure 12a shows the actual speed and motor torque when simulated using MATLAB
at the same conditions listed in Table 3 and the velocity profile in Figure 10a. Figure 12b
shows the motor phase voltage with the auxiliary stage current.
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Figure 12. MATLAB simulation waveforms of the modular traction inverter in [34]: (a) motor speed
and torque, and (b) acceleration phase voltage, auxiliary current, and battery current.

The proposed converter in [35] is an extension to the MMC-based drive for SRMs
by modifying the front-end circuit to provide flexible energy conversion and BMS. As
shown in Figure 13, the cascaded multiport converter integrates the battery packs into the
asymmetric half-bridge converter. The battery packs are split into three phases to provide
fault-tolerance and regenerative braking capabilities. The current regulator is based on
hysteresis control, which can increase the noise in the system especially when the SRM has
low inductance and inertia.
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Figure 13. Cascaded multiport converter for a three-phase SRM [35].

Power and signal multiplex transmission (P&SMT) is proposed in [36] to provide
both power transfer and communication signal transmission in the same converter. As
shown in Figure 14, the converter can transmit the measurements and control signals
without the need for a controller area network (CAN), aiming to reduce the wiring in the
EV. Also, the converter aims to adjust the motor speed and battery balance during the EV’s
normal operation.
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A model predictive control (MPC) system for the MMC in the context of EV is proposed
in [37] with different SM cells to track the current motor error while reducing the switching
frequency of the devices. The proposed controller aims to provide a better integration
of the decentralised cells into the EV drivetrain. The speed controller in Figure 15 still
uses a conventional proportional-integral-derivative (PID) controller, which generates the
reference torque to the maximum torque per ampere (MTPA) block, which in turn generates
the reference three-phase current. The MPC algorithm then uses the information about the
current, voltage, and battery SoC to generate the gate signals required to operate the MMC.
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In [38], a five-level modular boost inverter based on a T-type converter is presented
and tested experimentally to reduce the imbalance across T-type converters. Accordingly,
small capacitors can be employed rather than large electrolytics to reduce the size and
weight of the total system. The proposed system in Figure 16 is a DC/DC boost stage to
boost the battery’s voltage, followed by a modular DC/AC stage to shape the motor’s
voltage and current. During boosting, the voltage stresses across the devices in the first
stage might be high, thus needing a special design.
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Figure 16. Modular bidirectional boost DC-DC converter with a T-type inverter [38].

Figure 17a shows the simulation results for the T-type inverter when used as a traction
inverter to a PMSM with parameters listed in Table 3 and the velocity profile in Figure 10a.
The actual speed and motor torque are shown in Figure 17a, while the input current of
the boost stage, the middle stage voltages, and the output phase voltage are shown in
Figure 17b.
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Figure 17. MATLAB simulation waveforms of the T-type traction inverter in [38]: (a) motor speed
and torque, and (b) acceleration input current, middle capacitor voltages, and battery input current.

The efficiency of the propulsion inverters with PMSMs in [33,34,38] are simulated
using the same method and conditions as in Section 2. The efficiency plots in Figure 18 show
that the CHB-based modular inverter in [33] has the best efficiency at the same conditions
regardless of the power range. Second, the efficiency of the T-type modular inverter in [38]
is better than that of the isolated asymmetrical CHB modular traction inverter in [34].
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Figure 18. Efficiency comparison of modular traction inverters (red: [33], black: [34], and green: [38]).

An isolated modular multilevel bidirectional DC/DC converter is presented in [39]
to boost a battery’s LV to match the level of the HV propulsion inverter. As shown in
Figure 19, the modified two-split capacitor half-bridge (HB) circuits are connected in a
series/parallel configuration to increase the voltage at the DC side of the inverter. As
the proposed converter is bidirectional, it can reverse the power flow during regenerative
braking to charge the batteries using the full-bridge (FB) converter. The system benefits
from the zero voltage switching (ZVS) capability to reduce the semiconductor power losses
and improve the total efficiency to above 95%. The operation of the proposed high-gain
converter is tested in the DC/DC mode at 1.5 kW but not with a specific inverter or motor
during driving and braking modes.
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Figure 19. Bidirectional modular DC-DC converter in [39].

A summary of the reviewed traction inverters is shown in Table 4.

Table 4. Summary of the reviewed EV modular propulsion systems.

Refs. Topology Machine Power Switching Freq. Year Remarks

[33] CHB — 5 kW — 2009 Needs a central VSI at the DC source

[34] ACHB BLDC 18 kW 5–20 kHz 2012 Complicated HFT design

[35] AHB SRM 1 kW 5 kHz 2019 Driving/braking modes are presented

[36] P&SMT PMSM — 2 kHz 2020 Simulation-based

[37] MMC IPM 3.5 kW — 2022 MPC control

[38] T-type — 1 kW 5 kHz 2019 Challenging design of the input boost
converter at high power

[39] FB/isolated — 1.5 kW 50 Hz 2022 Provides a high DC/DC voltage
boosting ratio

4. Modular Charging Systems

Figure 20 shows the main EV charging systems including OBCs, wireless charging,
and off-board charging. OBCs are classified into Level 1 and Level 2 chargers. Level 1
provides slow charging at 3.7 kW with a single-phase 120–230 VAC input voltage. Level 2
usually operates with three phases, where the power level can reach 22 kW. Level 3 fast
chargers usually operate at a three-phase AC input voltage where the charging power can
exceed 50 kW and reach 300 kW.

The two-stage converter is a common OBC topology in modern EVs, where the first
stage rectifies the input AC voltage using an AC/DC rectifier and the second stage regulates
and controls the HV battery current using a DC/DC converter [32].

The same types of topologies at different power and voltage levels are designed for
DC fast chargers, wireless charging, and V2G converters. To increase the power level
and improve charging system reliability, modular and multiport topologies have been
proposed in the literature for medium-voltage AC (MVAC) and medium-voltage direct
current (MVDC) charging stations and off-board fast DC chargers.
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[39] FB/isolated — 1.5 kW 50 Hz 2022 
Provides a high DC/DC voltage boosting 
ratio 
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4.1. MV Charging Stations

The conventional power distribution system for a large-scale charging infrastructure
is shown in Figure 21, where MV/LV transformers are used to integrate the charging units
into the MV AC grid. In such systems, the internal LVAC buses with transformers are used
to supply groups of chargers. These LVAC buses usually carry high currents and hence, the
cables have a large cross-section area resulting in increased weight and size.
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MMC structures in the literature aim to reduce the footprint of MVAC charging sta-
tions [40–42]. As shown in Figure 22, the MMC-based topologies in [40,41] allow for
charging station connection to the MVAC without the necessity for a large MV transformer,
benefiting from internal high-frequency transformers (HFTs) in the SMs. Also, the system
provides a high degree of freedom during charging as the SMs can be controlled individu-
ally. The main challenge in this configuration is to control the circulating currents in the
three phases, especially with heavy unbalanced charging and unequal loading.
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The concept of a multiple active bridge (MAB) converter is studied in [42], where the
DC/DC conversion part is modularised using dual active bridge (DAB) ports, as shown in
Figure 23. The MAB system can deliver high charging power to EV batteries by providing
a sort of galvanic isolation to comply with grid standards.
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Note that although the MAB converter can share the charging power among the DAB
SMs, the total input power delivered by the grid flows through the AC/DC rectifier and,
therefore, it should be designed for a high power level.

With increased MVDC-based grid penetration, direct DC/DC charging stations have
gained attention, especially with the availability of distributed energy sources and storage
systems [43]. A multiple-output DC/DC MMC for EV fast chargers is proposed in [44].
As shown in Figure 24, the input terminals of the proposed converters are connected to
the MVDC grid where the voltage is shared by HB cells. The modular output sides are
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connected to the EV batteries through FB converters, with a voltage range of 400 V to
800 V. The medium-frequency modular transformer (MFMT) isolates the input and output
and provides additional voltage ratio control when required. Because of the FB cells at
the output sides, the modular converter has inherent DC fault-blocking capability, which
is necessary for this application. The design and manufacturing of the MFMT is simple
because of the HV level of the DC grid.
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4.2. Fast Interleaved Chargers

The term ‘fast charging’ is usually defined as chargers that can charge the EV battery
from 20% to 80% in around 10 min, which can be achieved when the charger has a power
rating of at least 50 kW [45]. Power converters can be connected in parallel, series, or
parallel–series combinations to increase the EV charger power level. Interleaved configura-
tions for DC/DC boost converters are employed to reduce the current and voltage ripple,
especially when non-linear quasi-saturated inductors are used [46,47]. An example is the in-
terleaved fast charger based on modular converters shown in Figure 25 [48]. In this system,
several active interleaved rectifiers are connected to the three-phase AC mains, where their
output terminals are connected in parallel to the dc-link capacitor. Then, parallel-connected
DC/DC converters are used to regulate the battery charging process at high power. In
this way, the converter output power can reach 150 kW with a possible increase to 300 kW
if SiC MOSFETs are used. The interleaved connection enables reduced current ripple at
the input and output sides, which can reduce the filtering inductor size and, therefore,
the total weight of the charger. The converters can be controlled to allow for bidirectional
power flow when the EV battery is required to support AC loads in V2G operation [49]. It
is necessary to design a fast control system for the interleaved charger to avoid circulating
currents among the parallel connected converters when the output voltages are not equal.
The modular structure of interleaved fast chargers provides a beneficial redundancy during
partial failure in any of the converters, as the charger can continue operating at lower power
using suitable detection and control systems.
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Figure 25. The EV fast charger based on three-phase interleaved converters in [48].

4.3. OBCs

The published modular OBC systems centre on the DAB converter as a building
block. One reason is the galvanic isolation capability provided by the HFT between the
input and output, which enables the OBC to comply with regulating standards such as
IEC61851 and SAEJ1772. A benefit of galvanic isolation is that failures during charging can
be detected by the isolation monitoring system (IMS); hence, the controller can use this
information to initiate safe action [50]. Also, the DAB converter is capable of providing
voltage buck–boost operation, which gives the system additional control if increasing the
battery voltage is required.

A 22 kW modular OBC based on the DAB converter is presented in [51], as shown in
Figure 26. The input of the DAB units (switches 1 to 4) converts the 50/60 Hz AC mains
voltage to a high/medium frequency square wave voltage at tens of kHz. The output
side (diodes 5 to 8) rectifies the square wave HF voltage into DC voltage to charge the HV
battery. The efficiency of the DAB units is around 94.5% and does not fall significantly with
increasing system voltage. The research recommends operation when the number of DAB
units is increased to extend the power from 3.6 kW to 22 kW, but the effect on the grid
current waveforms was not considered.

The OBC in [52] extends the previous converter to a three-phase operation where the
output side of the DAB units incorporates anti-parallel switches with the diodes to enable
bidirectional power flow. Reversing the power flow is needed when the OBC operates in
V2G mode where the EVs can support the grid off-peak [53]. As shown in Figure 27, the
large input electrolytic capacitors are eliminated by the introduction of input inductors.
The three-phase operation and connection remove the second-order harmonics from the
battery currents. Adversely, the OBC is not suitable for single-phase applications, which is
not favoured by EV owners [53]. The zero voltage switching (ZVS) technique implemented
for the OBC increases the efficiency to above 95%, which is crucial for the application.

The modular OBC shown in Figure 28 is suitable for single-phase operation where
the input side incorporates an additional bridge [54]. The converter is modified to this
configuration to decouple the second-order component from the battery current and hence
avoids the generation of third-order harmonics in the grid current, which can negatively
affect operation. An efficiency of 91.4% during normal charging and 90.1% during the V2G
mode was reported. Table 5 summarises the reviewed modular charging systems.
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Table 5. Summary of the reviewed EV modular charging systems.

Refs. Topology Power Grid Switching Freq. Year Remarks

[40] MMC/FB — MVAC — 2021 High circulating current during
unbalanced charging

[41] MMC/FB — MVAC — 2021 Control system to solve arm
current imbalance

[42] MAB — MVAC 50 kHz 2024 The input rectifier is not modular

[44] MMC/FB 320 kW MVDC 400 Hz 2023 Complicated MFMT design

[48] VSI/VDS 320 kW LVAC 16 kHz 2019 Circulating currents need consideration

[49] DAB 75 kW MVAC 20 kHz 2022 High-output DC voltage

[51] DAB 22 kW LVAC 5 kHz 2014 Unidirectional power flow; no
V2G capability

[52] DAB 7.4 kW LVAC 150 kHz 2021 Three-phase bidirectional power

[54] DAB 600 W LVAC 25 kHz 2018 Single-phase/bidirectional power

5. Cascaded Modular Machines

Traction electrical machines are a critical element in EVs that determine efficiency;
therefore, they are required to have high torque, power density, and reliability [55]. The
machines are also required to provide this high efficiency and torque over the majority of
the speed range [56]. Although conventional machines such as PMSM and IM can provide
good efficiency at medium speeds, they suffer from lowered efficiency at low and high
speeds as well as an inability to fault ride-through [57]. Thus, extensive research efforts
have attempted to explore multi-phase machines and multi-machine systems to enhance
the machine’s performance and reliability [58,59].

Modular cascaded machines (MCMs) have been proposed, in which conventional
machines are still used but with a different connection architecture. For example, multiple
machines can be connected end-to-end through shafts to make their torque independent
while having the same rotational speeds. Also, multiple machines can be connected in
parallel with specially designed gears and mechanical couplings, so they have different
torques and speeds. The main goals of MCM architectures are to improve the propulsion
system characteristics by increasing the available power and torque, extend system effi-
ciency by adjusting the number and the connection of the modular machines, and improve
propulsion system reliability when a machine breaks down [60]. Also, as diverse types
of electrical machines have their own merits and advantages; combining more than one
type in the same EV propulsion system can improve performance when benefiting from
the advantages of each type. The provided flexibility, additional degrees of freedom, and
increased controllability add to the modular system’s complexity in comparison with the
single electric drive system; therefore, smart energy management systems (EMSs) will
be required.
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In [61], an interior permanent magnet machine (IPM) and PM-assisted synchronous
reluctance motor (PMa-SynRM) are integrated to take advantage of each machine type.
The PMa-SynRM is a recent technology that can achieve high efficiency over a wide speed
range without using rare earth magnets; therefore, it is viewed as a candidate to replace
PMSMs [61]. The combination of IPM and PMa-SynRM in the EV traction system, as shown
in Figure 29, aims to improve performance, increase energy efficiency, and reduce cost.
Three configurations were compared including (1) a rear-wheel drive train with an IPM,
single-battery, and a mechanical differential; (2) all-wheel drive (AWD) with an IPM at the
front shaft and a PMa-SynRM at the rear shaft; and (3) AWD with a combination of IPM
and PMa-SynRM with individual batteries and inverters.
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Figure 29. MCM drivetrain configurations: (a) rear-wheel drive and (b) all-wheel drive with different
motors [61].

The simulation results reveal that the third configuration is able to improve efficiency
by more than 2% with a further improvement in energy harvesting using flexible control
strategies. The authors suggest that using PMa-SynRM at the front shaft and using the IPM
at the rear shaft improves energy efficiency as the former has high efficiency at high speed
while the latter provides its best efficiency at medium and low speeds. On the downside,
the AWD configuration with two different motors leads to an increase in total system
weight by a few kilograms.

In [62], PMSM and IM are combined in series on the same main shaft, which is con-
nected to the back wheels through a reduction gearbox, as shown in Figure 30. Each motor
has an individual DC/AC inverter supplied by a common HV battery. The experiments
show a 5% saving in the delivered energy to the motors. The optimal machine sizes are
selected and simulated using the finite element method (FEM), and the results suggest
that 53% of the permanent magnet usage can be saved in comparison with a single PMSM.
However, the paper did not test the real-time operation of the proposed MCM system in
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normal driving and braking, and it may be necessary to explore the hybrid motor com-
bination effect on the EV total torque and speed and hence, on the traction inverters and
battery systems.
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The idea of cascading machines at different power levels is explored in [63]. The
system in Figure 31 shows the EV propulsion system configuration when two electric
machines at 14 kW and 21 kW are connected in series to the rear wheel shaft. Accordingly,
the two machines have the same speeds, but their torques can be independent. The EV total
torque is the summation of the two motor torques. The study is carried out with different
driving cycles and reveals that the propulsion system based on the MCM configuration
consumes less energy than the single-drive EV at the same total power, which is 35 kW. The
authors estimate the system energy saving to be in the range of 6% to 10%, which can have
a significant impact on battery size and the cooling system.
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6. Discussion

The modular electrical structures in the literature can provide the required scalability
for promoting the GMP, which can support the EV sector in different ways. Modular EV
battery systems increase the degree of flexibility in the design process for different sizes and
power ratings and allow for employing different battery technologies and electrochemical
materials. Modular propulsion systems can split the dc-link voltage of the motor from the
battery module voltages and hence, decouple motor performance and its traction inverter
from the battery system. Modular chargers can provide scalability and redundancy for
the EV sector as power module units can be employed for different EV sizes as well as
the charging infrastructure itself. Similarly, MCM systems can support the GMP concept
by increasing the level of scalability, redundancy, and fault tolerance of EVs during the
design process and operation. In general, modularising EV electrical systems can reduce
semiconductor device voltage and current stresses in the modular units. This facilitates
employing wide-bandgap (WBG) semiconductor devices that can reduce power losses and
size dramatically.

According to the conducted review in the previous sections, the following points can
be observed:

• Although computer simulations showed that the efficiency of the single-stage CHB-
based modular EV system [29] is higher than the converters in [30,32], as shown
in Figure 8, it has lower controllability as it is difficult to control the input and
output simultaneously.

• Although the efficiency of the SEPIC-based converter in [32] is lower than the CHB-
based converter in [29], the former has continuous constant current, as shown in
Figure 7c, which is favoured for extending battery cell lifetime. Also, the SEPIC mod-
ules allow for galvanic isolation, which is necessary for complying with grid standards.

• The numerical findings are obtained from computer simulations at a specific number
of SMs (four in this case); therefore, further studies are needed to explore and compare
the performances of modular EV systems when the number of SMs is varied.

• A visual representation of a comparison among modular EV battery systems is shown
in the spider-web diagram in Figure 32.
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• Based on the efficiency comparison for modular traction inverters in Figure 18, the
asymmetrical CHB inverter efficiency in [34] is the lowest when compared with the
CHB inverter in [33] and the T-type inverter in [38]. However, this is affected by the
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losses in the auxiliary stage’s semiconductor devices as well as the isolation HFTs that
are missing from the other two systems.

• Thanks to the additional auxiliary stage, the asymmetrical CHB in [34] has the lowest
torque ripple compared with the other two systems.

• The efficiency comparisons in Figure 18 are not necessarily the same if the systems are
extended and tested under variable power levels and SM numbers.

• A visual representation comparing modular EV traction inverters is shown in the
spider-web diagram in Figure 33.
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• Because of its simple construction and control system, the DAB converter dominates
the publications on modular charging systems, and there is a gap in exploring other
isolated power converters that can be alternatives to reduce HFT size and provide
better THD for input and output currents.

• The work conducted on MCM systems is limited to two research groups, and more
research effort needs to be conducted in this area so the modularisation of the EV
electric systems can progress at the same level.

7. Conclusions

This paper explored the attractiveness of modular power converters and machine
structures in the context of EVs by providing an overview of the research literature. Several
EV manufacturers, including Volkswagen, GE, Tesla, and Hyundai are exploring the
feasibility of modular platform concepts in the future of the EV sector. The modular
platform provides EV manufacturers with more flexibility in designing and testing several
combinations of motors, chargers, power converters, and drives.

Starting from the battery system, this paper reviewed the main modular topologies
that can be useful in splitting an HV battery into smaller and lighter segments. A modular
battery system can add several advantages to the EV system such as better controllability,
energy management, and a flexible dc-link. However, this comes at the expense of more
complicated control, wiring, and communication. The CHB is the most common power
electronic topology in modular battery systems because of its cascaded connection. Modular
traction inverters can add a significant improvement to the performance of tractive systems
during normal driving and faulty conditions. However, the modular inverter power
density needs to be improved significantly to be able to compete with conventional systems.
Battery chargers, whether OBCs or DC fast chargers, can benefit from the increased possible
power limits provided by modular structures with several units that can deliver higher
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charging currents to battery segments. Inspired by the recent advancement in modular
HVDC systems, most of the publications on modular EV chargers focused on modularising
the DC/DC converters in battery chargers while a few considered an AC/DC rectifier
stage. Examining publications on cascaded modular machine systems combining different
machine types such as PMSM, IMs, and PM-SynRA can provide advantages to EVs in terms
of increased torque, reduced size, and less dependability on rare earth magnetic materials.

Author Contributions: Conceptualisation, A.D. and M.A.E.; analysis, A.D.; methodology, A.D.,
M.A.E. and B.W.W.; software, A.D.; writing—review and editing, A.D., M.A.E. and B.W.W. All
authors have read and agreed to the published version of the manuscript.
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