A projected Euler Method for Random Periodic Solutions of Semi-linear SDEs with non-globally Lipschitz coefficients ${ }^{\dagger}$

Yujia Guo^{a}, Xiaojie Wang^{a}, and Yue Wu^{b}
${ }^{a}$ School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan, P. R. China
${ }^{b}$ Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

June 28, 2024

Abstract

The present work introduces and investigates an explicit time discretization scheme, called the projected Euler method, to numerically approximate random periodic solutions of semilinear SDEs under non-globally Lipschitz conditions. The existence of the random periodic solution is demonstrated as the limit of the pull-back of the discretized SDE. Without relying on a priori high-order moment bounds of the numerical approximations, the mean square convergence rate is proved to be order 0.5 for SDEs with multiplicative noise and order 1 for SDEs with additive noise. Numerical examples are also provided to validate our theoretical findings.

Keywords: Projected Euler method, Random periodic solution, Stochastic differential equations, Pull-back, mean square convergence order.

AMS subject classification: 37H99, 60H10, 60H35, 65C30.

1 Introduction

Periodic occurrences abound throughout nature. Since the pioneering works of Poincaré [14], periodicity has consistently remained a focal point in the examination of dynamical systems. It has garnered significant interest in various fields including thermodynamics [15], porous media [1], quantum time crystals [12], Thomas-Fermi plasma [16], and numerous other domains. Nonetheless, many real-world issues are prone to random fluctuations induced by uncertainty and unknown variables. Hence, the exploration of random periodicity emerges as a fundamentally crucial area of study.

[^0]As the stochastic counterpart to periodic solutions, the definition of random periodic solutions for a C^{1}-cocycle was initially proposed by Zhao and Feng [19], while Feng, Zhao, and Zhou [9] subsequently expanded upon this concept for semiflows. Their work has catalyzed further advancements in the exploration of various issues within autonomous and non-autonomous stochastic differential equations. This includes investigations into the existence of random solutions generated by non-autonomous SPDEs with additive noise [7], the anticipation of random solutions of SDEs with multiplicative linear noise [6], periodic measures and ergodicity [8], among others.

Given $W: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{d}$ a standard two-sided Wiener process on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where the filtration is defined as $\mathcal{F}_{s}^{t}:=\sigma\left\{W_{u}-W_{v}: s \leq v \leq u \leq t\right\}$ and $\mathcal{F}^{t}=\mathcal{F}_{-\infty}^{t}=\bigvee_{s \leq t} \mathcal{F}_{s}^{t}$. We consider the following semi-linear SDEs with multiplicative noise:

$$
\left\{\begin{align*}
\mathrm{d} X_{t}^{t_{0}} & =\left(A X_{t}^{t_{0}}+f\left(t, X_{t}^{t_{0}}\right)\right) \mathrm{d} t+g\left(t, X_{t}^{t_{0}}\right) \mathrm{d} W_{t}, \quad t \in\left(t_{0}, T\right], \tag{1.1}\\
X_{t_{0}}^{t_{0}} & =\xi
\end{align*}\right.
$$

where $A \in \mathbb{R}^{d \times d}$ is a negative-definite matrix, $f: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, g: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times m}$ are continuous functions. We use $X_{t_{1}}^{t_{0}}$ to emphasise a process X evaluated at t_{1} which starts from t_{0}. The random initial value ξ is assumed to be $\mathcal{F}^{t_{0}}$-measurable. Note that by the variation of constant formula, the solution of (1.1) can be written as

$$
\begin{equation*}
X_{t}^{t_{0}}(\xi)=e^{A\left(t-t_{0}\right)} \xi+\int_{t_{0}}^{t} e^{A(t-s)} f\left(s, X_{s}^{t_{0}}\right) \mathrm{d} s+\int_{t_{0}}^{t} e^{A(t-s)} g\left(s, X_{s}^{t_{0}}\right) \mathrm{d} W_{s} . \tag{1.2}
\end{equation*}
$$

In general, the explicit computation of random periodic solutions is often unattainable, necessitating the utilization of numerical approximations, which play a pivotal role in this domain. The initial study by Feng et al. 5 employed classical numerical methods, such as the Euler-Maruyama method and a modified Milstein method, to approximate random periodic solutions for a dissipative system with global Lipschitz conditions. Wei and Chen [17] subsequently extended the applicability of the Euler-Maruyama method to the stochastic theta method, demonstrating convergence to the exact solution at an order of $1 / 4$. Moradi et al. [11] further explored this topic by simulating random periodic solutions using θ-Maruyama and θ-Milstein methods with weaker conditions on the drift term.

Wu [18] delved into the study of the existence and uniqueness of random periodic solutions for an additive SDE with a one-sided Lipschitz condition and provided an analysis indicating an order-half convergence of its numerical approximation using the backward Euler method. Later, Guo, Wang, and Wu [10] lifted the convergence order from half to one under a relaxed condition compared to [18]. Recently, Chen et al. [4] turned to stochastic theta methods and showed that the mean square convergence order is 0.5 for SDEs with multiplicative noise and 1 for SDEs with additive noise under non-globally Lipschitz conditions.

Different from works mentioned above, in this article we consider explicit time-stepping schemes for the numerical approximation to random periodic solution of semi-linear SDEs under nonglobally Lipschitz conditions. The conditions are weaker compared to literature [10, 18]. This applies the projected technique, previously used in [2, 3] for SDEs in finite time interval, to derive convergence results for random periodic solutions in infinite time intervals. The projected Euler method involves the standard Euler method combined with a projection onto a ball that expands in radius with a negative power of the step size. This approach helps prevent the nonlinear drift and diffusion from causing excessively large values, even in infinite time horizon.

The main focus of this paper is to analyze the strong convergence rate of the projected Euler method applied to the random periodic solution of semi-linear SDEs under non-global conditions. Without relying on a priori high-order moment bounds of the numerical approximations, we determine that the mean square convergence order is 0.5 for SDEs with multiplicative noise and 1 for SDEs with additive noise.

The paper is structured as follows: Section 2 outlines the standard notation and assumptions utilized in our proofs, and establishes the existence and uniqueness of the random periodic solution. In Section 3, we detail the well-posedness and the existence of a unique random periodic solution using the projected Euler method. Section 4 is dedicated to the error analysis concerning random periodic solutions derived from the projected Euler method. Finally, Section 5 presents several numerical experiments aimed at illustrating the theoretical findings.

2 Random Periodic Solutions of SDEs

Recalling the definition of the random periodic solution for stochastic semi-flows given in [19]. Let X be a separable Banach space. Denote by $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\theta_{s}\right)_{s \in \mathbb{R}}\right)$ a metric dynamical system and $\theta_{s}: \Omega \rightarrow \Omega$ is assumed to be a measurably invertible for all $s \in \mathbb{R}$. Denote $\Delta:=\left\{(t, s) \in \mathbb{R}^{2}, s \leq t\right\}$. Consider a stochastic periodic semi-flow $u: \Delta \times \Omega \times X \rightarrow X$ of period τ, which satisfies the following standard condition

$$
\begin{equation*}
u(t, r, \omega)=u(t, s, \omega) \circ u(s, r, \omega) \tag{2.1}
\end{equation*}
$$

and the periodic property

$$
\begin{equation*}
u(t+\tau, s+\tau, \omega)=u\left(t, s, \theta_{\tau} \omega\right) \tag{2.2}
\end{equation*}
$$

for all $r \leq s \leq t, r, s, \in \mathbb{R}$, for a.e. $\omega \in \Omega$.
Definition 2.1. A random periodic solution of period $\tau>0$ of a semi-flow $u: \Delta \times \Omega \times X \rightarrow X$ is an \mathcal{F}-measurable map $Y: \mathbb{R} \times \Omega \rightarrow X$ such that

$$
\begin{equation*}
u(t+\tau, t, Y(t, \omega), \omega)=Y(t+\tau, \omega)=Y\left(t, \theta_{\tau} \omega\right) \tag{2.3}
\end{equation*}
$$

for any $(t, s) \in \Delta, \omega \in \Omega$.
Throughout this paper the following notation is frequently used. For simplicity, we denote $[d]:=\{1, \ldots, d\}$ and the letter C is used to denote a generic positive constant independent of time step size and may vary for each appearance. Let $|\cdot|,\|\cdot\|$ and $\langle\cdot, \cdot\rangle$ be the absolute value of a scalar, the Euclidean norm and the inner product of vectors in \mathbb{R}^{d}, respectively. By A^{T} we denote the transpose of vector or matrix. Given a matrix A, we use $\|A\|:=\sqrt{\operatorname{trace}\left(A^{T} A\right)}$ to denote the trace norm of A. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we use \mathbb{E} to denote the mean expectation and $L^{p}\left(\Omega ; \mathbb{R}^{d}\right), d \in \mathbb{N}$, to denote the family of \mathbb{R}^{d}-valued variables with the norm defined by $\|\xi\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)}=\left(\mathbb{E}\left[\|\xi\|^{p}\right]\right)^{\frac{1}{p}}<\infty$.

We present the following assumptions required to establish our main results.
Assumption 2.2. Suppose the following conditions are satisfied.
(i) A is self-adjoint and negative definite and there exists a non-decreasing sequence $\left(\lambda_{i}\right)_{i \in[d]} \subset$ \mathbb{R} of positive real numbers and an orthonormal basis $\left(e_{i}\right)_{i \in[d]}$, such that $A e_{i}=\lambda_{i} e_{i}, i \in[d]$. Moreover, one also obtains

$$
\begin{equation*}
\langle x, A x\rangle \leq-\lambda_{1}\|x\|^{2}, \quad \forall x \in \mathbb{R}^{d} \tag{2.4}
\end{equation*}
$$

(ii) The drift coefficient functions f and diffusion coefficient functions g are continuous and periodic in time with period $\tau>0$, i.e.,

$$
\begin{equation*}
f(t+\tau, x)=f(t, x), \quad g(t+\tau, x)=g(t, x), \quad x \in \mathbb{R}^{d}, t \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

(iii) For some $p_{1} \in(1, \infty)$, there exists a constant $\alpha_{1}<\lambda_{1}$ such that for and $x, y \in \mathbb{R}^{d}$ and $t \in[0, \tau)$

$$
\begin{equation*}
\langle x-y, f(t, x)-f(t, y)\rangle+\frac{2 p_{1}-1}{2}\|g(t, x)-g(t, y)\|^{2} \leq \alpha_{1}\|x-y\|^{2} . \tag{2.6}
\end{equation*}
$$

(iv) There exists some positive constant $\gamma \in\left[1, \frac{p_{1}+1}{2}\right)$, for $C_{1}, C>0$ such that

$$
\begin{align*}
& \|f(t, x)-f(t, y)\| \vee\|g(t, x)-g(t, y)\| \leq C_{1}\left(1+\|x\|^{\gamma-1}+\|y\|^{\gamma-1}\right)\|x-y\|, \quad \forall x, y \in \mathbb{R}^{d}, \tag{2.7}\\
& \|f(t, x)-f(s, x)\| \vee\|g(t, x)-g(s, x)\| \leq C\left(1+\|x\|^{\gamma}\right)|t-s|, \quad \forall x \in \mathbb{R}^{d}, s, t \in[0, \tau) \tag{2.8}
\end{align*}
$$

(v) For any $p \geq 1$, there exists a constant $C^{*}>0$ depending on p such that $\mathbb{E}\left[\|\xi\|^{2 p}\right] \leq C^{*}$.

The spatial regularity in (2.7) of Assumption 2.2 immediately implies, there exists an $C_{2}>0$,

$$
\begin{align*}
& \|f(t, x)\| \leq C_{2}\left(1+\|x\|^{\gamma}\right), \quad \forall x \in \mathbb{R}^{d}, \tag{2.9}\\
& \|g(t, x)\| \leq C\left(1+\|x\|^{\gamma}\right), \quad \forall x \in \mathbb{R}^{d} . \tag{2.10}
\end{align*}
$$

It can be verified that Assumption 2.2 leads to the following estimates.
Lemma 2.3. Let Assumption 2.2 be fulfilled, for any $p_{2} \in\left[1, p_{1}\right)$, there exist a small positive constant ϵ such that

$$
\begin{equation*}
\langle x, f(t, x)\rangle+\frac{2 p_{2}-1}{2}\|g(t, x)\|^{2} \leq \alpha_{2}\|x\|^{2}+c_{0} \tag{2.11}
\end{equation*}
$$

where $\alpha_{2}=\alpha_{1}+\epsilon<\lambda_{1}, c_{0}=\frac{\|f(t, 0)\|^{2}}{2 \epsilon}+\frac{\left(2 p_{1}-1\right)^{2}}{4\left(p_{1}-p_{2}\right)}\|g(t, 0)\|^{2}+\frac{2 p_{1}-1}{2}\|g(t, 0)\|^{2}$.
The proof of Lemma 2.3 can be found in Appendix A.
The following assumption ensures the existence and uniqueness of a random periodic solution of (1.1) under non-globally Lipschitz conditions.

Assumption 2.4. Assume that there exists a unique random periodic solution $X_{t}^{*}(\cdot) \in L^{2}(\Omega)$ with the form

$$
\begin{equation*}
X_{t}^{*}=\int_{-\infty}^{t} e^{A(t-s)} f\left(s, X_{s}^{*}\right) d s+\int_{-\infty}^{t} e^{A(t-s)} g\left(s, X_{s}^{*}\right) d W_{s} \tag{2.12}
\end{equation*}
$$

such that X^{*} is a limit of the pull-back $X_{t}^{-k \tau}(\xi)$ of (1.1) when $k \rightarrow \infty$, ie,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathbb{E}\left[\left\|X_{t}^{-k \tau}(\xi)-X_{t}^{*}\right\|^{2}\right]=0 \tag{2.13}
\end{equation*}
$$

Before moving on, we introduce a useful lemma for later use.

Lemma 2.5. Let u, v, m be real-valued continuous functions defined on $[a, b], m(t) \geq 0$ for $t \in$ $[a, b]$. If u satisfies the following inequality

$$
\begin{equation*}
u(t) \leq v(t)+\int_{s}^{t} m(s) u(s) \mathrm{d} s \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
u(t) \leq v(t)+\int_{a}^{t} m(s) v(s) \exp \left(\int_{s}^{t} m(r) \mathrm{d} r\right) \mathrm{d} s \tag{2.15}
\end{equation*}
$$

If in addition, the function v is constant, then from

$$
\begin{equation*}
u(t) \leq v+\int_{s}^{t} m(s) u(s) \mathrm{d} s \tag{2.16}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
u(t) \leq v \exp \left(\int_{a}^{t} m(r) \mathrm{d} r\right) \tag{2.17}
\end{equation*}
$$

We first analyze the boundedness of the uniform moment of its solution under above assumptions.

Lemma 2.6. Let Assumption 2.2 be hold, consider the solution $X_{t}^{-k \tau}$ of $S D E$ (1.1). If the initial value $X_{-k \tau}^{-k \tau}=\xi$, then for any $p \in\left[1, p_{1}\right)$, there exists a positive constant C depends on p such that

$$
\begin{equation*}
\sup _{t \geq-k \tau} \mathbb{E}\left[\left\|X_{t}^{-k \tau}\right\|^{2 p}\right] \leq C<\infty \tag{2.18}
\end{equation*}
$$

Proof of Lemma 2.6. Applying the Itô formula to the following quantity for some constant $\epsilon_{1}>0$,

$$
\begin{align*}
e^{2 \lambda_{1} p(t+k \tau)}\left(\epsilon_{1}+\left\|X_{t}^{-k \tau}\right\|^{2}\right)^{p}= & \left(\epsilon_{1}+\|\xi\|^{2}\right)^{p}+2 \lambda_{1} p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p} \mathrm{~d} s \\
& +2 p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\langle X_{s}^{-k \tau}, A X_{s}^{-k \tau}\right\rangle \mathrm{d} s \\
& +2 p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\langle X_{s}^{-k \tau}, f\left(s, X_{s}^{-k \tau}\right)\right\rangle \mathrm{d} s \\
& +2 p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\langle X_{s}^{-k \tau}, g\left(s, X_{s}^{-k \tau}\right) \mathrm{d} W_{s}\right\rangle \\
& +p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\|g\left(s, X_{s}^{-k \tau}\right)\right\|^{2} \mathrm{~d} s \\
& +2 p(p-1) \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-2}\left\|\left(X_{s}^{-k \tau}\right)^{T} g\left(s, X_{s}^{-k \tau}\right)\right\|^{2} \mathrm{~d} s \tag{2.19}
\end{align*}
$$

Combining the last two terms on the right-hand-side gives

$$
\begin{align*}
e^{2 \lambda_{1} p(t+k \tau)}\left(\epsilon_{1}+\left\|X_{t}^{-k \tau}\right\|^{2}\right)^{p} \leq & \left(\epsilon_{1}+\|\xi\|^{2}\right)^{p}+2 \lambda_{1} p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p} \mathrm{~d} s \\
& +2 p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\langle X_{s}^{-k \tau}, A X_{s}^{-k \tau}\right\rangle \mathrm{d} s \\
& +2 p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\langle X_{s}^{-k \tau}, f\left(s, X_{s}^{-k \tau}\right)\right\rangle \mathrm{d} s \\
& +2 p \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\langle X_{s}^{-k \tau}, g\left(s, X_{s}^{-k \tau}\right) \mathrm{d} W_{s}\right\rangle \\
& +p(2 p-1) \int_{-k \tau}^{t} e^{2 \lambda_{1} p(s+k \tau)}\left(\epsilon_{1}+\left\|X_{s}^{-k \tau}\right\|^{2}\right)^{p-1}\left\|g\left(s, X_{s}^{-k \tau}\right)\right\|^{2} \mathrm{~d} s \tag{2.20}
\end{align*}
$$

For every integers $n \geq 1$, define the stopping time

$$
\begin{equation*}
\tau_{n}:=\inf \left\{s \in[-k \tau, \infty):\left\|X_{s}^{-k \tau}\right\| \geq n\right\} \tag{2.21}
\end{equation*}
$$

Taking expectations on both sides of (2.20), using (2.4) and (2.11) of Assumption 2.2 and letting $\epsilon_{1} \rightarrow 0^{+}$yield

$$
\begin{align*}
& \mathbb{E} {\left[e^{2 \lambda_{1} p\left(t \wedge \tau_{n}+k \tau\right)}\left\|X_{t \wedge \tau_{n}}^{-k \tau}\right\|^{2 p}\right] } \\
& \leq \mathbb{E}\left[\|\xi\|^{2 p}\right]+\underbrace{2 p \mathbb{E}\left[\int_{-k \tau}^{t \wedge \tau_{n}} e^{2 \lambda_{1} p(s+k \tau)}\left\|X_{s}^{-k \tau}\right\|^{2 p-2}\left(\lambda_{1}\left\|X_{s}^{-k \tau}\right\|^{2}+\left\langle X_{s}^{-k \tau}, A X_{s}^{-k \tau}\right\rangle\right) \mathrm{d} s\right]}_{\leq 0} \tag{2.22}\\
&+2 p \mathbb{E}\left[\int_{-k \tau}^{t \wedge \tau_{n}} e^{2 \lambda_{1} p(s+k \tau)}\left\|X_{s}^{-k \tau}\right\|^{2 p-2}\left(\left\langle X_{s}^{-k \tau}, f\left(s, X_{s}^{-k \tau}\right)\right\rangle+\frac{2 p-1}{2}\left\|g\left(s, X_{s}^{-k \tau}\right)\right\|^{2}\right) \mathrm{d} s\right] \\
& \leq \mathbb{E}\left[\|\xi\|^{2 p}\right]+2 p \mathbb{E}\left[\int_{-k \tau}^{t \wedge \tau_{n}} e^{2 \lambda_{1} p(s+k \tau)}\left[\alpha_{2}\left\|X_{s}^{-k \tau}\right\|^{2 p}+c_{0}\left\|X_{s}^{-k \tau}\right\|^{2 p-2}\right] \mathrm{d} s\right] .
\end{align*}
$$

Using the Young inequality

$$
\begin{equation*}
a^{2 p-2} b \leq \frac{p-1}{p} a^{2 p}+\frac{1}{p} b^{p}, \tag{2.23}
\end{equation*}
$$

for some positive constant $\epsilon_{2}<\lambda_{1}-\alpha_{2}$, it can see that

$$
\begin{align*}
c_{0}\left\|X_{s}^{-k \tau}\right\|^{2 p-2} & =\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)\left[\left\|X_{s}^{-k \tau}\right\|^{2 p-2} \times \frac{c_{o}}{\lambda_{1}-\alpha_{2}-\epsilon_{2}}\right] \\
& \leq\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right) \times \frac{p-1}{p}\left\|X_{s}^{-k \tau}\right\|^{2 p}+\frac{1}{p}\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p} \tag{2.24}\\
& \leq\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)\left\|X_{s}^{-k \tau}\right\|^{2 p}+\frac{1}{p}\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p} .
\end{align*}
$$

Then one achieves that

$$
\begin{align*}
\mathbb{E}\left[e^{2 \lambda_{1} p\left(t \wedge \tau_{n}+k \tau\right)}\left\|X_{t \wedge \tau_{n}}^{-k \tau}\right\|^{2 p}\right] \leq & \mathbb{E}\left[\|\xi\|^{2 p}\right]+\mathbb{E}\left[\int_{-k \tau}^{t \wedge \tau_{n}} 2\left(\lambda_{1}-\epsilon_{2}\right) p e^{2 \lambda_{1} p(s+k \tau)}\left\|X_{s}^{-k \tau}\right\|^{2 p} \mathrm{~d} s\right] \\
& +\mathbb{E}\left[\int_{-k \tau}^{t \wedge \tau_{n}} 2 e^{2 \lambda_{1} p(s+k \tau)}\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p} \mathrm{~d} s\right] \tag{2.25}\\
\leq & \mathbb{E}\left[\|\xi\|^{2 p}\right]+\frac{\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p}}{\lambda_{1} p} e^{2 \lambda_{1} p(t+k \tau)} \\
& +\mathbb{E}\left[\int_{-k \tau}^{t \wedge \tau_{n}} 2 p\left(\lambda_{1}-\epsilon_{2}\right) e^{2 \lambda_{1} p(s+k \tau)}\left\|X_{s}^{-k \tau}\right\|^{2 p} \mathrm{~d} s\right]
\end{align*}
$$

By the Grönwall inequality (2.15), we have that

$$
\begin{align*}
& \mathbb{E}\left[e^{2 \lambda_{1} p\left(t \wedge \tau_{n}+k \tau\right)}\left\|X_{t}^{-k \tau}\right\|^{2 p}\right] \\
& \quad \leq \mathbb{E}\left[\|\xi\|^{2 p}\right]+\frac{\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p}}{\lambda_{1} p} e^{2 \lambda_{1} p(t+k \tau)} \\
& \quad+\mathbb{E}\left[\int_{-k \tau}^{t \wedge \tau_{n}} 2 p\left(\lambda_{1}-\epsilon_{2}\right)\left(\|\xi\|^{2 p}+\frac{\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p}}{\lambda_{1} p} e^{2 \lambda_{1} p(s+k \tau)}\right) e^{\int_{s}^{t} 2 p\left(\lambda_{1}-\epsilon_{2}\right) \mathrm{d} r} \mathrm{~d} s\right] \tag{2.26}\\
& = \\
& \quad e^{2\left(\lambda_{1}-\epsilon_{2}\right) p(t+k \tau)} \mathbb{E}\left[\|\xi\|^{2 p}\right]+\frac{\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p}}{\lambda_{1} p} e^{2 \lambda_{1} p(t+k \tau)} \\
& \quad+\frac{\left(\lambda_{1}-\epsilon_{2}\right)\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p}}{\lambda_{1} \epsilon_{2} p} e^{2 \lambda_{1} p(t+k \tau)}\left(1-e^{-2 \epsilon_{2} p(t+k \tau)}\right),
\end{align*}
$$

resulting in by letting $n \rightarrow \infty$

$$
\begin{align*}
\mathbb{E}\left[\left\|X_{t}^{-k \tau}\right\|^{2 p}\right] & \leq \mathbb{E}\left[\|\xi\|^{2 p}\right]+\frac{\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p}}{\lambda_{1} p}\left(1+\frac{\lambda_{1}-\epsilon_{2}}{\epsilon_{2}}\right) \tag{2.27}\\
& =\mathbb{E}\left[\|\xi\|^{2 p}\right]+\frac{\left(\lambda_{1}-\alpha_{2}-\epsilon_{2}\right)^{1-p} c_{0}^{p}}{\epsilon_{2} p} .
\end{align*}
$$

The proof is completed.
We state the following result on the Hölder continuity of the exact solution of (1.1) with respect to the norm in $L^{p}\left(\Omega ; \mathbb{R}^{d}\right)$.

Lemma 2.7. Let Assumption 2.2 be hold. Then there exists a positive constant C which depends on γ, d, A, f, g only, such that

$$
\begin{align*}
\left\|X_{t_{1}}^{-k \tau}-X_{t_{2}}^{-k \tau}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)} \leq & C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{p \gamma}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right)\left|t_{2}-t_{1}\right| \\
& +C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{p \gamma}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right)\left|t_{2}-t_{1}\right|^{\frac{1}{2}} \tag{2.28}
\end{align*}
$$

for all $t_{1}, t_{2} \geq-k \tau$ and $p \in\left[2, \frac{2 p_{1}}{\gamma}\right)$, where $X_{t}^{-k \tau}$ denotes the exact solution to the $S D E$ (1.1).

Proof of Lemma 2.7. Without loss of generality we set $t_{1} \leq t_{2}$ and get

$$
\begin{align*}
\left\|X_{t_{1}}^{-k \tau}-X_{t_{2}}^{-k \tau}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)}= & \| \int_{t_{1}}^{t_{2}}\left(A X_{r}^{k \tau}+f\left(r, X_{r}^{-k \tau}\right) \mathrm{d} r+\int_{t_{1}}^{t_{2}} g\left(r, X_{r}^{-k \tau}\right) \mathrm{d} W_{r} \|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)}\right. \\
\leq & \left\|\int_{t_{1}}^{t_{2}}\left(A X_{r}^{-k \tau}+f\left(r, X_{r}^{-k \tau}\right)\right) \mathrm{d} r\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)} \tag{2.29}\\
& +\left\|\int_{t_{1}}^{t_{2}} g\left(r, X_{r}^{-k \tau}\right) \mathrm{d} W_{r}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)}
\end{align*}
$$

For the first term, it follows from the Hölder inequality and (2.9), one can obtain

$$
\begin{align*}
& \left\|\int_{t_{1}}^{t_{2}} A X_{r}^{-k \tau}+f\left(r, X_{r}^{-k \tau}\right) \mathrm{d} r\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)} \\
& \quad \leq \int_{t_{1}}^{t_{2}}\left\|A X_{r}^{-k \tau}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)} \mathrm{d} r+\int_{t_{1}}^{t_{2}}\left\|f\left(r, X_{r}^{-k \tau}\right)\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)} \mathrm{d} r \tag{2.30}\\
& \quad \leq C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{p \gamma}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right)\left|t_{2}-t_{1}\right|
\end{align*}
$$

where we make use of Lemma 2.6 to get the last line. Applying the Burkholder-Davis-Gundy inequality to the last term of (2.29) and (2.10) to show

$$
\begin{align*}
\left\|\int_{t_{1}}^{t_{2}} g\left(r, X_{r}^{-k \tau}\right) \mathrm{d} W_{r}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)} & \leq C\left(\int_{t_{1}}^{t_{2}}\left\|g\left(r, X_{r}^{-k \tau}\right)\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{d}\right)}^{2} \mathrm{~d} r\right)^{\frac{1}{2}} \tag{2.31}\\
& \leq C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{p \gamma}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right)\left|t_{2}-t_{1}\right|^{\frac{1}{2}}
\end{align*}
$$

This completes proof.

3 Numerical Approximation of Random Periodic Solution

This section is devoted to the introduction of the projected Euler method for approximating the solution of (1.1) on an infinite horizon. To do this, consider an equidistant partition $\mathcal{T}^{h}:=$ $j h, j \in \mathbb{Z}$, such that $h \in(0,1)$. In addition, for $x \in \mathbb{R}^{d}$, we define the following function

$$
\begin{equation*}
\Phi(x):=x \wedge\left(h^{-\frac{1}{2 \gamma}} \frac{x}{\|x\|}\right) \tag{3.1}
\end{equation*}
$$

where $x \wedge y:=\min \{x, y\}, \gamma$ is determined in Assumption [2.2.
Next we propose our explicit numerical method to approximate the exact solution of the SDEs (1.1) starting at $-k \tau$,

$$
\begin{align*}
\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}= & \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)+A h \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)+h f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right) \\
& +g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right) \Delta W_{-k \tau+j h}, \tag{3.2}
\end{align*}
$$

for all $j \in \mathbb{N}$, where $\Delta W_{-k \tau+j h}:=W_{-k \tau+(j+1) h}-W_{-k \tau+j h}$, and the initial value $\tilde{X}_{-k \tau}^{-k \tau}=\xi$. Because of the periodicity of f and g, we have that $f\left(-k \tau+j h, \tilde{X}_{-k \tau+j h}^{-k \tau}\right)=f\left(j h, \tilde{X}_{-k \tau+j h}^{-k \tau}\right)$, $g\left(-k \tau+j h, \tilde{X}_{-k \tau+j h}^{-k \tau}\right)=g\left(j h, \tilde{X}_{-k \tau+j h}^{-k \tau}\right)$.

Before proceeding further, we collect some preliminary estimates, which have been established in [13, Lemma 4.2].

Lemma 3.1. Let Assumption 2.2 be hold, then for any $x \in \mathbb{R}^{d}$, the following estimates

$$
\begin{equation*}
\|\Phi(x)\| \leq h^{-\frac{1}{2 \gamma}}, \quad\|f(t, \Phi(x))\| \leq L_{1} h^{-\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

hold true, where $L_{1}:=2 C_{2}$, and C_{2} is from (2.9). Moreover, for any $x, y \in \mathbb{R}^{d}$, the following estimates hold true

$$
\begin{align*}
\|\Phi(x)-\Phi(y)\| & \leq\|x-y\| \tag{3.4}\\
\|f(t, \Phi(x))-f(t, \Phi(y))\| & \leq L_{2} h^{-\frac{\gamma-1}{2 \gamma}}\|x-y\| \tag{3.5}
\end{align*}
$$

where $L_{2}:=3 C_{1}$, and C_{1} is from (2.7). Especially, for $y=0$, we have for $x \in \mathbb{R}^{d}$

$$
\begin{equation*}
\|\Phi(x)\| \leq\|x\| . \tag{3.6}
\end{equation*}
$$

The next lemma shows there is a uniform bound for the second moment of the numerical solution under necessary assumptions.

Lemma 3.2. Let Assumption 2.2 be hold. Then there exists a positive constant C such that

$$
\begin{equation*}
\sup _{k, j \in \mathbb{N}} \mathbb{E}\left[\left\|\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}\right\|^{2}\right] \leq C \mathbb{E}\left[1+\|\xi\|^{2}\right] \tag{3.7}
\end{equation*}
$$

where $\left\{\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}\right\}_{k, j \in \mathbb{N}}$ is given by (3.2).
Proof of Lemma 3.2. From the explicit numerical scheme (3.2), we have

$$
\begin{align*}
&\left\|\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}\right\|^{2} \\
&=\left\|\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)+A h \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)+h f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)+g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right) \Delta W_{-k \tau+j h}\right\|^{2} \\
&=\left\|\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}+h^{2}\left\|A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}+h^{2}\left\|f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\|^{2} \\
&+\left\|g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right) \Delta W_{-k \tau+j h}\right\|^{2}+2 h\left\langle\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\rangle \\
&+2 h\left\langle\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\rangle+2 h^{2}\left\langle A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\rangle \\
&+2\left\langle\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)+A h \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)+h f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right) \Delta W_{-k \tau+j h}\right\rangle .\right. \tag{3.8}
\end{align*}
$$

Taking expectations on both sides and noticing $\mathbb{E}\left[\Delta W_{-k \tau+j h} \mid \mathcal{F}_{-k \tau+j h}\right]=0$, one can deduce

$$
\begin{align*}
\mathbb{E}\left[\left\|\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}\right\|^{2}\right]= & \mathbb{E}\left[\left\|\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}\right]+h^{2} \mathbb{E}\left[\left\|A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}\right]+h^{2}\left[\left\|f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\|^{2}\right] \\
& +h \mathbb{E}\left[\left\|g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\|^{2}\right]+2 h \mathbb{E}\left[\left\langle\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\rangle\right] \\
& +2 h \mathbb{E}\left[\left\langle\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\rangle\right] \\
& +2 h^{2} \mathbb{E}\left[\left\langle A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\rangle\right] . \tag{3.9}
\end{align*}
$$

Using the Young inequality yields

$$
\begin{equation*}
2 h^{2}\left\langle A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\rangle \leq h^{2}\left\|A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}+h^{2} \| f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right) \|^{2}\right. \tag{3.10}
\end{equation*}
$$

Combing (3.10) into (3.9) and making use of Assumption 2.2 (2.11) and Lemma 3.1 give

$$
\begin{align*}
\mathbb{E}\left[\left\|\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}\right\|^{2}\right] \leq & \mathbb{E}\left[\left\|\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}\right]+2 h^{2} \mathbb{E}\left[\left\|A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}+2 h^{2} \| f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right) \|^{2}\right.\right. \\
& +2 h \mathbb{E}\left[\left\langle\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), A \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\rangle\right] \\
& +2 h \mathbb{E}\left[\left\langle\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\rangle+\frac{1}{2}\left\|g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right\|^{2}\right] \\
\leq & {\left[1-2\left(\lambda_{1}-\alpha_{2}\right) h\right] \mathbb{E}\left[\left\|\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right\|^{2}\right]+2 \lambda_{d}^{2} h^{2-\frac{1}{\gamma}}+2 L_{1}^{2} h+2 c_{0} h } \\
\leq & {\left[1-2\left(\lambda_{1}-\alpha_{2}\right) h\right] \mathbb{E}\left[\left\|\tilde{X}_{-k \tau+j h}^{-k \tau}\right\|^{2}\right]+2 \lambda_{d}^{2} h^{2-\frac{1}{\gamma}}+2 L_{1}^{2} h+2 c_{0} h . } \tag{3.11}
\end{align*}
$$

Noting that $\gamma \in\left[1, \frac{p_{1}+1}{2}\right), 2 \lambda_{d}^{2} h^{2-\frac{1}{\gamma}}<2 \lambda_{d}^{2} h$. Combining with Assumption 2.2 with $\lambda_{1}>\alpha_{2}$ for some positive $\tilde{C}:=C\left(\lambda_{d}, L_{1}, c_{0}\right)$, such that

$$
\begin{align*}
\mathbb{E}\left[\left\|\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}\right\|^{2}\right] & \leq\left[1-2\left(\lambda_{1}-\alpha_{2}\right) h\right] \mathbb{E}\left[\left\|\tilde{X}_{-k \tau+j h}^{-k \tau}\right\|^{2}\right]+\tilde{C} h \\
& \leq\left[1-2\left(\lambda_{1}-\alpha_{2}\right) h\right]^{j+1} \mathbb{E}\left[\left\|\tilde{X}_{-k \tau}^{-k \tau}\right\|^{2}\right]+\sum_{i=0}^{j}\left[1-2\left(\lambda_{1}-\alpha_{2}\right) h\right]^{i} \tilde{C} h \tag{3.12}\\
& =\left[1-2\left(\lambda_{1}-\alpha_{2}\right) h\right]^{j+1} \mathbb{E}\left[\|\xi\|^{2}\right]+\frac{1-\left[1-2\left(\lambda_{1}-\alpha_{2}\right) h\right]^{j+1}}{2\left(\lambda_{1}-\alpha_{2}\right) h} \tilde{C} h \\
& \leq C \mathbb{E}\left[1+\|\xi\|^{2}\right] .
\end{align*}
$$

Then the assertion follows.
The following lemma indicates that any two numerical solutions starting from different initial conditions can be arbitrarily close after sufficiently many iterations.

Lemma 3.3. Let Assumption 2.2 be hold and recall L_{2} defined in Lemma 3.1. Let $\tilde{X}_{-k \tau+j h}^{-k \tau}$ and $\tilde{Y}_{-k \tau+j h}^{-k \tau}$ be two solutions of the projected Euler scheme (3.2) with initial values ξ and η. Assume Assumption 2.2 for both initial values, such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}-\tilde{Y}_{-k \tau+(j+1) h}^{-k \tau}\right\|^{2}\right] \leq e^{-\left(\lambda_{1}-\alpha_{1}\right)(j+1) h} \mathbb{E}\left[\|\xi-\eta\|^{2}\right] \tag{3.13}
\end{equation*}
$$

where h is the timestep satisfying

$$
\begin{equation*}
h \in\left(0, \min \left\{\frac{\left(\lambda_{1}-\alpha_{1}\right)^{\frac{p_{1}+1}{2}}}{\left(\lambda_{d}+L_{2}\right)^{p_{1}+1}}, \frac{1}{\lambda_{1}-\alpha_{1}}, 1\right\}\right) \tag{3.14}
\end{equation*}
$$

Proof of Lemma 3.3. Subtracting (3.2) yields

$$
\begin{align*}
\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}-\tilde{Y}_{-k \tau+(j+1) h}^{-k \tau}= & \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)-\Phi\left(\tilde{Y}_{-k \tau+j h}^{-k \tau}\right)+A h\left(\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)-\Phi\left(\tilde{Y}_{-k \tau+j h}^{-k \tau}\right)\right) \\
& +h\left(f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(\tilde{Y}_{-k \tau+j h}^{-k \tau}\right)\right)\right) \tag{3.15}\\
& +\left(g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(\tilde{Y}_{-k \tau+j h}^{-k \tau}\right)\right)\right) \Delta W_{-k \tau+j h}
\end{align*}
$$

Shortly, we denote

$$
\begin{align*}
\tilde{\zeta}_{j} & :=\tilde{X}_{-k \tau+j h}^{-k \tau}-\tilde{Y}_{-k \tau+j h}^{-k \tau}, \tag{3.16}\\
\Delta \tilde{\Phi}_{j} & :=\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)-\Phi\left(\tilde{Y}_{-k \tau+j h}^{-k \tau}\right), \tag{3.17}\\
\Delta \tilde{f}_{j} & :=f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(\tilde{Y}_{-k \tau+j h}^{-k \tau}\right)\right), \tag{3.18}\\
\Delta \tilde{g}_{j} & :=g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(\tilde{Y}_{-k \tau+j h}^{-k \tau}\right)\right) . \tag{3.19}
\end{align*}
$$

With (3.16) to (3.19), it is not hard to show that

$$
\begin{equation*}
\tilde{\zeta}_{j+1}=\Delta \tilde{\Phi}_{j}+A h \Delta \tilde{\Phi}_{j}+h \Delta \tilde{f}_{j}+\Delta \tilde{g}_{j} \Delta W_{-k \tau+j h} \tag{3.20}
\end{equation*}
$$

Taking the expectation of the second moment on both sides gives

$$
\begin{align*}
\mathbb{E}\left[\left\|\tilde{\zeta}_{j+1}\right\|^{2}\right]= & \mathbb{E}\left[\left\|\Delta \tilde{\Phi}_{j}+A h \Delta \tilde{\Phi}_{j}+h \Delta \tilde{f}_{j}+\Delta \tilde{g}_{j} \Delta W_{-k \tau+j h}\right\|^{2}\right] \\
= & \mathbb{E}\left[\left\|\Delta \tilde{\Phi}_{j}\right\|^{2}\right]+h^{2} \mathbb{E}\left[\left\|A \Delta \tilde{\Phi}_{j}\right\|^{2}\right]+h^{2} \mathbb{E}\left[\left\|\Delta \tilde{f}_{j}\right\|^{2}\right]+h \mathbb{E}\left[\left\|\Delta \tilde{g}_{j}\right\|^{2}\right] \tag{3.21}\\
& +2 h \mathbb{E}\left[\left\langle\Delta \tilde{\Phi}_{j}, A \Delta \tilde{\Phi}_{j}\right\rangle\right]+2 h \mathbb{E}\left[\left\langle\Delta \tilde{\Phi}_{j}, \Delta \tilde{f}_{j}\right\rangle\right]+2 h^{2} \mathbb{E}\left[\left\langle A \Delta \tilde{\Phi}_{j}, \Delta \tilde{f}_{j}\right\rangle\right]
\end{align*}
$$

Using the Cauchy-Schwarz inequality $\|\langle a, b\rangle\| \leq\|a\|\|b\|$ leads to

$$
\begin{equation*}
2 h^{2} \mathbb{E}\left[\left\langle A \Delta \tilde{\Phi}_{j}, \Delta \tilde{f}_{j}\right\rangle\right] \leq 2 h^{2} \mathbb{E}\left[\left\|A \Delta \tilde{\Phi}_{j}\right\| \cdot\left\|\Delta \tilde{f}_{j}\right\|\right] \tag{3.22}
\end{equation*}
$$

Regarding the terms $\left\|\Delta \tilde{f}_{j}\right\|$, we use Lemma 3.1 (3.5) to estimate, and recalling Assumption 2.2 and Lemma 3.1, one can obtain that

$$
\begin{align*}
\mathbb{E}\left[\left\|\tilde{\zeta}_{j+1}\right\|^{2}\right] \leq & \mathbb{E}\left[\left\|\Delta \tilde{\Phi}_{j}\right\|^{2}\right]+2 h\left\{\mathbb{E}\left[\left\langle\Delta \tilde{\Phi}_{j}, A \Delta \tilde{\Phi}_{j}\right\rangle\right]+\mathbb{E}\left[\left\langle\Delta \tilde{\Phi}_{j}, \Delta \tilde{f}_{j}\right\rangle\right]+\frac{2 p_{1}-1}{2} \mathbb{E}\left\|\Delta \tilde{g}_{j}\right\|^{2}\right\} \\
& +\lambda_{d}^{2} h^{2} \mathbb{E}\left[\left\|\Delta \tilde{\Phi}_{j}\right\|^{2}\right]+2 \lambda_{d} L_{2} h^{1+\frac{\gamma+1}{2 \gamma}} \mathbb{E}\left[\left\|\Delta \tilde{\Phi}_{j}\right\|^{2}\right]+L_{2}^{2} h^{1+\frac{1}{\gamma}} \mathbb{E}\left[\left\|\Delta \tilde{\Phi}_{j}\right\|^{2}\right] \tag{3.23}\\
\leq & \left(1-2\left(\lambda_{1}-\alpha_{1}\right) h\right) \mathbb{E}\left[\left\|\Delta \tilde{\zeta}_{j}\right\|^{2}\right]+\left(\lambda_{d}^{2} h+2 \lambda_{d} L_{2} h^{\frac{\gamma+1}{2 \gamma}}+L_{2}^{2} h^{\frac{1}{\gamma}}\right) h \mathbb{E}\left[\left\|\Delta \tilde{\zeta}_{j}\right\|^{2}\right] .
\end{align*}
$$

According to $\gamma \in\left[1, \frac{p_{1}+1}{2}\right)$, one can get

$$
\begin{equation*}
\lambda_{d}^{2} h+2 \lambda_{d} L_{2} h^{\frac{\gamma+1}{2 \gamma}}+L_{2}^{2} h^{\frac{1}{\gamma}} \leq\left(\lambda_{d}+L_{2}\right)^{2} h^{\frac{2}{p_{1}+1}} . \tag{3.24}
\end{equation*}
$$

Here we select an appropriate h such that

$$
\begin{equation*}
\left(\lambda_{d}+L_{2}\right)^{2} h^{\frac{2}{p_{1}+1}} \leq \lambda_{1}-\alpha_{1} \tag{3.25}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
h \in\left(0, \min \left\{\frac{\left(\lambda_{1}-\alpha_{1}\right)^{\frac{p_{1}+1}{2}}}{\left(\lambda_{d}+L_{2}\right)^{p_{1}+1}}, \frac{1}{\lambda_{1}-\alpha_{1}}, 1\right\}\right) \tag{3.26}
\end{equation*}
$$

Combining (3.24) and (3.25) into (3.23), we can have

$$
\begin{equation*}
\mathbb{E}\left[\left\|\tilde{\zeta}_{j+1}\right\|^{2}\right] \leq\left(1-\left(\lambda_{1}-\alpha_{1}\right) h\right) \mathbb{E}\left[\left\|\Delta \tilde{\zeta}_{j}\right\|^{2}\right] \tag{3.27}
\end{equation*}
$$

As a result,

$$
\begin{equation*}
\mathbb{E}\left[\left\|\tilde{\zeta}_{j+1}\right\|\right] \leq\left(1-\left(\lambda_{1}-\alpha_{1}\right) h\right) \mathbb{E}\left[\left\|\tilde{\zeta}_{j}\right\|\right] \leq e^{-\left(\lambda_{1}-\alpha_{1}\right)(j+1) h} \mathbb{E}\left[\|\xi-\eta\|^{2}\right] \tag{3.28}
\end{equation*}
$$

Thus we complete the proof.
Under the framework of Theorem 3.4 in [5], we can derive the existence and uniqueness of random periodic solution to the projected Euler method (3.2).

Theorem 3.4. Let Assumption 2.2 be hold. For $h \in\left(0, \min \left\{\frac{\left(\lambda_{1}-\alpha_{1} \frac{p_{1}+1}{2}\right.}{\left(\lambda_{d}+L_{2}\right)^{p_{1}+\mathrm{T}}}, \frac{1}{\lambda_{1}-\alpha_{1}}, 1\right\}\right)$, the projected Euler method (3.2) admits a random period solution $\tilde{X}^{*} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathbb{E}\left[\left\|\tilde{X}_{-k \tau+j h}^{-k \tau}(\xi)-\tilde{X}^{*}\right\|^{2}\right]=0 \tag{3.29}
\end{equation*}
$$

4 Mean square convergence order of Projected Euler Method

We consider the difference between the exact solution and the numerical solution and give a comprehensive error analysis with convergence rate.

The exact solution at time $-k \tau+(j+1) h$ is as follows

$$
\begin{align*}
X_{-k \tau+(j+1) h}^{-k \tau}= & \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)+\int_{-k \tau+j h}^{-k \tau+(j+1) h} A \Phi\left(X_{s}^{-k \tau}\right) \mathrm{d} s \\
& +\int_{-k \tau+j h}^{-k \tau+(j+1) h} f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right) \mathrm{d} s+\int_{-k \tau+j h}^{-k \tau+(j+1) h} g\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right) \mathrm{d} W_{s} \tag{4.1}\\
= & \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)+A h \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)+h f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \\
& +g\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \Delta W_{-k \tau+j h}+\mathcal{R}_{-k \tau+(j+1) h},
\end{align*}
$$

where,

$$
\begin{align*}
\mathcal{R}_{-k \tau+(j+1) h}= & \int_{-k \tau+j h}^{-k \tau+(j+1) h} A\left(\Phi\left(X_{s}^{-k \tau}\right)-\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s \\
& +\int_{-k \tau+j h}^{-k \tau+(j+1) h} f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s \tag{4.2}\\
& +\int_{-k \tau+j h}^{-k \tau+(j+1) h} g\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} W_{s} .
\end{align*}
$$

4.1 Convergence rates for SDEs with multiplicative noise

The following lemma provides uniform bounded estimates for the second moment of $\mathcal{R}_{-k \tau+(j+1) h}$ and its conditional expectation $\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]$.

Lemma 4.1. Let Assumption 2.2 be hold. Then for $k, j \in \mathbb{N}$, there exists some positive constant C, independent of k, j and h, such that

$$
\begin{equation*}
\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq C h, \quad\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq C h^{\frac{3}{2}} \tag{4.3}
\end{equation*}
$$

Proof of Lemma 4.1. Recalling the definition of $\mathcal{R}_{-k \tau+(j+1) h}$ given by (4.2) and using an triangle inequality yield

$$
\begin{align*}
\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq & \left\|\int_{-k \tau+j h}^{-k \tau+(j+1) h} A\left(\Phi\left(X_{s}^{-k \tau}\right)-\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \\
& +\left\|\int_{-k \tau+j h}^{-k \tau+(j+1) h} f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \tag{4.4}\\
& +\left\|\int_{-k \tau+j h}^{-k \tau+(j+1) h} g\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} W_{s}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \\
:= & I_{1}+I_{2}+I_{3} .
\end{align*}
$$

For the term I_{1}, if follows the Hölder inequality, (3.4) and (2.28) to give

$$
\begin{align*}
I_{1} & \leq \int_{-k \tau+j h}^{-k \tau+(j+1) h}\left\|A\left(\Phi\left(X_{s}^{-k \tau}\right)-\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \mathrm{d} s \\
& \leq \int_{-k \tau+j h}^{-k \tau+(j+1) h}\left\|A\left(X_{s}^{-k \tau}-X_{-k \tau+j h}^{-k \tau}\right)\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \mathrm{d} s \tag{4.5}\\
& \leq C h^{\frac{3}{2}}\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{2 \gamma}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right) .
\end{align*}
$$

Applying the Hölder inequality yields

$$
\begin{equation*}
I_{2} \leq \int_{-k \tau+j h}^{-k \tau+(j+1) h}\left\|f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \mathrm{d} s \tag{4.6}
\end{equation*}
$$

for any $s \in[-k \tau+j h,-k \tau+(j+1) h]$, it follows from (2.7), (2.8) and (3.4) that

$$
\begin{align*}
&\left\|f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\| \\
& \leq\left\|f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(s, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\| \\
& \quad+\left\|f\left(s, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\| \\
& \leq C\left(1+\left\|\Phi\left(X_{s}^{-k \tau}\right)\right\|^{\gamma-1}+\left\|\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right\|^{\gamma-1}\right)\left\|\Phi\left(X_{s}^{-k \tau}\right)-\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right\| \tag{4.7}\\
&+C\left(1+\left\|\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right\|^{\gamma}\right)|s-(-k \tau+j h)| \\
& \leq C\left(1+\left\|X_{s}^{-k \tau}\right\|^{\gamma-1}+\left\|X_{-k \tau+j h}^{-k \tau}\right\|^{\gamma-1}\right)\left\|X_{s}^{-k \tau}-X_{-k \tau+j h}^{-k \tau}\right\| \\
&+C\left(1+\left\|X_{-k \tau+j h}^{-k \tau}\right\|^{\gamma}\right)|s-(-k \tau+j h)| .
\end{align*}
$$

Taking the expectation on both sides and using the Hölder inequality

$$
\left\|v^{\gamma-1} u\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq\|v\|_{L^{2 \rho_{1}(\gamma-1)}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma-1} \times\|u\|_{L^{2 \rho_{2}\left(\Omega ; \mathbb{R}^{d}\right)}}
$$

for $\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}=1$ with exponents $\rho_{1}:=\frac{2 \gamma-1}{\gamma-1}$ and $\rho_{2}:=\frac{2 \gamma-1}{\gamma}$ yield that

$$
\begin{align*}
&\left\|f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \\
& \leq C\left\|\left(1+\left\|X_{s}^{-k \tau}\right\|^{\gamma-1}+\left\|X_{-k \tau+j h}^{-k \tau}\right\|^{\gamma-1}\right)\right\| X_{s}^{-k \tau}-X_{-k \tau+j h}^{-k \tau}\| \|_{L^{2}(\Omega ; \mathbb{R})} \\
& \quad+C\left\|\left(1+\left\|X_{-k \tau+j h}^{-k \tau}\right\|^{\gamma}\right)|s-(-k \tau+j h)|\right\|_{L^{2}(\Omega ; \mathbb{R})} \tag{4.8}\\
& \leq C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{2 \rho_{1}(\gamma-1)}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma-1}\right)\left\|X_{s}^{-k \tau}-X_{-k \tau+j h}^{-k \tau}\right\|_{L^{2 \rho_{2}\left(\Omega ; \mathbb{R}^{d}\right)}} \\
&+C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{2 \gamma}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right)|s-(-k \tau+j h)| .
\end{align*}
$$

Moreover, through (2.28) with $p=2 \rho_{2}$ we have that

$$
\begin{align*}
\left\|X_{s}^{-k \tau}-X_{-k \tau+j h}^{-k \tau}\right\|_{L^{2 \rho_{2}\left(\Omega ; \mathbb{R}^{d}\right)}} \leq & C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right)|s-(-k \tau+j h)| \tag{4.9}\\
& +C\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{\gamma}\right)|s-(-k \tau+j h)|^{\frac{1}{2}}
\end{align*}
$$

Note that $2 \rho_{1}(\gamma-1)=4 \gamma-2$. Altogether, it follows that for $s \in[-k \tau+j h,-k \tau+(j+1) h]$

$$
\begin{align*}
&\left\|f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \\
& \leq C h\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2 \gamma-1}\right) \tag{4.10}\\
&+C h^{\frac{1}{2}}\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2 \gamma-1}\right)
\end{align*}
$$

Above all,

$$
\begin{equation*}
I_{2} \leq C h^{\frac{3}{2}}\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2 \gamma-1}\right) \tag{4.11}
\end{equation*}
$$

For the term I_{3}, in view of the Itô isomery, we get

$$
\begin{equation*}
I_{3}=\left(\int_{-k \tau+j h}^{-k \tau+(j+1) h}\left\|g\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2} \mathrm{~d} s\right)^{\frac{1}{2}} \tag{4.12}
\end{equation*}
$$

Similarly, one also obtains

$$
\begin{equation*}
I_{3} \leq C h\left(1+\sup _{k \in \mathbb{N}} \sup _{t \geq-k \tau}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2 \gamma-1}\right) \tag{4.13}
\end{equation*}
$$

Putting all the above estimates together we derive from (4.4) that

$$
\begin{equation*}
\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq C h\left(1+\sup _{k \in \mathbb{N} t \geq-k \tau} \sup _{t \geq}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2 \gamma-1}\right) \tag{4.14}
\end{equation*}
$$

Note that $\mathbb{E}\left[\int_{-k \tau+j h}^{-k \tau+(j+1) h} g\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} W_{s} \mid \mathcal{F}_{-k \tau+j h}\right]=0$. Using the Jensen inequality for conditional expectation to get

$$
\begin{align*}
\| \mathbb{E} & {\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right] \|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} } \\
\leq & \left\|\mathbb{E}\left[\int_{-k \tau+j h}^{-k \tau+(j+1) h} A\left(\Phi\left(X_{s}^{-k \tau}\right)-\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s \mid \mathcal{F}_{-k \tau+j h}\right]\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \\
& +\left\|\mathbb{E}\left[\int_{-k \tau+j h}^{-k \tau+(j+1) h} f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s \mid \mathcal{F}_{-k \tau+j h}\right]\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \tag{4.15}\\
\leq & \left\|\int_{-k \tau+j h}^{-k \tau+(j+1) h} A\left(\Phi\left(X_{s}^{-k \tau}\right)-\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \\
& +\left\|\int_{-k \tau+j h}^{-k \tau+(j+1) h} f\left(s, \Phi\left(X_{s}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right) \mathrm{d} s\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} .
\end{align*}
$$

Recalling (4.5) and (4.11), it immediately follows that

$$
\begin{equation*}
\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq C h^{\frac{3}{2}}\left(1+\sup _{k \in \mathbb{N} t \geq-k \tau} \sup _{t \geq 1}\left\|X_{t}^{-k \tau}\right\|_{L^{4 \gamma-2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2 \gamma-1}\right) . \tag{4.16}
\end{equation*}
$$

We are now ready to give the main result of this section that reveals the convergence of the projected Euler scheme to the SDE (1.1) in the long run.

Theorem 4.2. Let Assumptions 2.2 be hold and recall L_{2} defined in Lemma 3.1. If $X_{-k \tau+j h}^{-k \tau}$ and $\tilde{X}_{-k \tau+j h}^{-k \tau}$ are the exact and the numerical solutions given by (1.1) and (3.2), respectively. For an arbitrary pair $\left(\delta_{1}, \delta_{2}\right)$ s.t. $\delta_{1} \in\left(0, \lambda_{1}-\alpha_{1}\right)$ and $\delta_{2}>0$, then there exists a positive constant C, independent of k, j and h, such that

$$
\begin{equation*}
\sup _{k, j \in \mathbb{N}} \mathbb{E}\left[\left\|X_{-k \tau+(j+1) h}^{-k \tau}-\tilde{X}_{-k \tau+(j+1) h}^{-k \tau}\right\|^{2}\right] \leq C h \tag{4.17}
\end{equation*}
$$

where the timestep h satisfies

$$
\begin{equation*}
h \in\left(0, \min \left\{\frac{\left(\lambda_{1}-\alpha_{1}\right)^{\frac{p_{1}+1}{2}}}{\left(\lambda_{d}+L_{2}\right)^{p_{1}+1}}, \frac{1}{\lambda_{1}-\alpha_{1}-\delta_{1}}, 1\right\}\right) . \tag{4.18}
\end{equation*}
$$

Proof of Theorem 4.2. Recalling (3.2) and (4.1) yields

$$
\begin{align*}
& X_{-k \tau+(j+1) h}^{-k \tau}-\tilde{X}_{-k \tau+(j+1) h}^{-k \tau} \\
& =\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)-\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)+A h\left(\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)-\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right) \\
& \quad+h\left[f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right] \tag{4.19}\\
& \quad+\left[g\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right)\right] \Delta W_{-k \tau+j h}+\mathcal{R}_{-k \tau+(j+1) h} .
\end{align*}
$$

For brevity, we denote

$$
\begin{align*}
e_{-k \tau+j h} & :=X_{-k \tau+j h}^{-k \tau}-\tilde{X}_{-k \tau+j h}^{-k \tau}, \\
\Delta \Phi_{-k \tau+j h}^{x} & :=\Phi\left(X_{-k \tau+j h}^{-k \tau}\right)-\Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right), \\
\Delta \Phi_{-k \tau+j h}^{f} & :=f\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)-f\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right), \tag{4.20}\\
\Delta \Phi_{-k \tau+j h}^{g} & :=g\left(j h, \Phi\left(X_{-k \tau+j h}^{-k \tau}\right)\right)-g\left(j h, \Phi\left(\tilde{X}_{-k \tau+j h}^{-k \tau}\right)\right),
\end{align*}
$$

we emphasize that $\Delta \Phi_{-k \tau+j h}^{x}, \Delta \Phi_{-k \tau+j h}^{f}$, and $\Delta \Phi_{-k \tau+j h}^{g}$ are $\mathcal{F}_{-k \tau+j h-m e a s u r a b l e . ~ U s i n g ~(4.20), ~}^{\text {, }}$ (4.19) can be rewritten as

$$
\begin{equation*}
e_{-k \tau+(j+1) h}=\Delta \Phi_{-k \tau+j h}^{x}+h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right)+\Delta \Phi_{-k \tau+j h}^{g} \Delta W_{-k \tau+j h}+\mathcal{R}_{-k \tau+(j+1) h} . \tag{4.21}
\end{equation*}
$$

This leads to

$$
\begin{align*}
\left\|e_{-k \tau+(j+1) h}\right\|^{2}= & \left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}+h^{2}\left\|A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\|^{2} \\
& +\left\|\Delta \Phi_{-k \tau+j h}^{g} \Delta W_{-k \tau+j h}\right\|^{2}+\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2} \\
& +2 h\left\langle\Delta \Phi_{-k \tau+j h}^{x}, A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\rangle+2\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \Delta \Phi_{-k \tau+j h}^{g} \Delta W_{-k \tau+j h}\right\rangle \\
& +2\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle+2 h\left\langle A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}, \Delta \Phi_{-k \tau+j h}^{g} \Delta W_{-k \tau+j h}\right\rangle \\
& +2 h\left\langle A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle+2\left\langle\Delta \Phi_{-k \tau+j h}^{g} \Delta W_{-k \tau+j h}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle . \tag{4.22}
\end{align*}
$$

Taking expectations on both sides gives

$$
\begin{align*}
\mathbb{E} & {\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] } \\
= & \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}\right]+h^{2} \mathbb{E}\left[\left\|A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\|^{2}\right]+h \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{g}\right\|^{2}\right]+\mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] \\
& +2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right)\right\rangle\right]+2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] \\
& +2 \mathbb{E}\left[\left\langle h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right), \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right]+2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{g} \Delta W_{-k \tau+j h}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] . \tag{4.23}
\end{align*}
$$

 $\frac{1}{\delta_{1} h} b^{2}$ with $0<\delta_{1}<\lambda_{1}-\alpha_{1}$ for arbitrary positive h, we deduce

$$
\begin{align*}
2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] & \left.=2 \mathbb{E}\left[\mathbb{E}\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle \mid \mathcal{F}_{-k \tau+j h}\right]\right] \\
& =2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\rangle\right] \tag{4.24}\\
& \leq \delta_{1} h \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}\right]+\frac{1}{\delta_{1} h} \mathbb{E}\left[\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|^{2}\right] .
\end{align*}
$$

Regarding the seventh term of (4.23), for a positive δ_{2}, using the Young inequality leads to

$$
\begin{align*}
& 2 \mathbb{E}\left[\left\langle h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right), \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] \\
& \quad \leq \delta_{2} h^{2} \mathbb{E}\left[\left\|A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\|^{2}\right]+\frac{1}{\delta_{2}} \mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] . \tag{4.25}
\end{align*}
$$

Similarly, one also obtains

$$
\begin{equation*}
2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{g} \Delta W_{-k \tau+j h}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] \leq\left(2 p_{1}-2\right) h \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{g}\right\|^{2}\right]+\frac{1}{2 p_{1}-2} \mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] . \tag{4.26}
\end{equation*}
$$

Substituting (4.24), (4.25) and (4.26) into (4.23) and using (2.4), (2.11) yield

$$
\begin{align*}
\mathbb{E} & {\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] } \\
\leq & \left(1+\delta_{1} h\right) \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}\right]+\left(1+\delta_{2}\right) h^{2} \mathbb{E}\left[\left\|A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\|^{2}\right] \\
& +2 h \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\rangle\right]+\left(2 p_{1}-1\right) h \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{g}\right\|^{2}\right] \\
& +\left(1+\frac{1}{\delta_{2}}+\frac{1}{2 p_{1}-2}\right) \mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right]+\frac{1}{\delta_{1} h} \mathbb{E}\left[\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|^{2}\right] \tag{4.27}\\
\leq & {\left[1-\left(2 \lambda_{1}-2 \alpha_{1}-\delta_{1}\right) h\right] \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}\right]+\left(1+\delta_{2}\right) h^{2} \mathbb{E}\left[\mid A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f} \|^{2}\right] } \\
& +\left(1+\frac{1}{\delta_{2}}+\frac{1}{2 p_{1}-2}\right) \mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right]+\frac{1}{\delta_{1} h} \mathbb{E}\left[\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|^{2}\right] .
\end{align*}
$$

Note that, applying Assumption 2.2 and Lemma 3.1 and using the same technique in (3.24) to get

$$
\begin{align*}
& h^{2}\left\|A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\|^{2} \\
& \quad \leq \lambda_{d}^{2} h^{2}\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}+2 \lambda_{d} L_{2} h^{1+\frac{\gamma+1}{2 \gamma}}\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}+L_{2}^{2} h^{1+\frac{1}{\gamma}}\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2} \tag{4.28}\\
& \quad \leq\left(\left(\lambda_{d}+L_{2}\right)^{2} h^{\frac{2}{p_{1}+1}}\right) h\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2} .
\end{align*}
$$

Here we select an appropriate h leads to

$$
\begin{equation*}
h \in\left(0, \min \left\{\frac{\left(\lambda_{1}-\alpha_{1}\right)^{\frac{p_{1}+1}{2}}}{\left(\lambda_{d}+L_{2}\right)^{p_{1}+1}}, \frac{1}{\lambda_{1}-\alpha_{1}-\delta_{1}}, 1\right\}\right), \tag{4.29}
\end{equation*}
$$

to ensure

$$
\begin{equation*}
\left(\lambda_{d}+L_{2}\right)^{2} h^{\frac{2}{p_{1}+1}}<\lambda_{1}-\alpha_{1}, \quad 1-\left(\lambda_{1}-\alpha_{1}-\delta_{1}\right) h>0 . \tag{4.30}
\end{equation*}
$$

Above all,

$$
\begin{align*}
\mathbb{E}\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] \leq & \left\{1-\left(\lambda_{1}-\alpha_{1}-\delta_{1}\right) h\right\} \mathbb{E}\left[\left\|e_{-k \tau+j h}\right\|^{2}\right]+\left(1+\frac{1}{\delta_{2}}+\frac{1}{2 p_{1}-2}\right) \mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] \\
& +\frac{1}{\delta_{1} h} \mathbb{E}\left[\mathbb{E}\left[\| \mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right] \|^{2}\right] . \tag{4.31}
\end{align*}
$$

Denote $c:=\lambda_{1}-\alpha_{1}-\delta_{1}$, and recall that $\mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] \leq C h^{2}$ and $\mathbb{E}\left[\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|^{2}\right] \leq$ $C h^{3}$ from Lemma 4.1, we have that

$$
\begin{align*}
\mathbb{E}\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] & \leq(1-c h) \mathbb{E}\left[\left\|e_{-k \tau+j h}\right\|^{2}\right]+C h^{2} \\
& \leq(1-c h)^{j+1} \mathbb{E}\left[\left\|e_{-k \tau}\right\|^{2}\right]+\sum_{i=0}^{j}(1-c h)^{i} C h^{2} \tag{4.32}\\
& =(1-c h)^{j+1} \mathbb{E}\left[\left\|e_{-k \tau}\right\|^{2}\right]+\frac{1-(1-c h)^{j+1}}{c h} C h^{2} .
\end{align*}
$$

By observing $e_{-k \tau}=X_{-k \tau}^{-k \tau}-\tilde{X}_{-k \tau}^{-k \tau}=0$, one can deduce

$$
\begin{equation*}
\mathbb{E}\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] \leq C h, \tag{4.33}
\end{equation*}
$$

then the assertion follows.

4.2 Convergence rates for SDEs with additive noise

In the present subsection, If SDEs (1.1) driven by additive noise, taking the form of

$$
\left\{\begin{align*}
\mathrm{d} X_{t}^{t_{0}} & =\left(A X_{t}^{t_{0}}+f\left(t,, X_{t}^{t_{0}}\right)\right) \mathrm{d} t+g(t) \mathrm{d} W_{t}, \quad t \in\left(t_{0}, T\right] \tag{4.34}\\
X_{t_{0}}^{t_{0}} & =\xi
\end{align*}\right.
$$

Now we revisit a necessary assumption in [10].
Assumption 4.3. Suppose the diffusion coefficient functions $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and periodic in time with period $\tau>0$, i.e., $g(t+\tau)=g(t)$ for all $t \in \mathbb{R}$. Besides, there exists a constant $c_{g}>0$ such that $\sup _{t \in[0, \tau)}\|g(t)\| \leq c_{g}$ and

$$
\begin{equation*}
\left\|g\left(t_{1}\right)-g\left(t_{2}\right)\right\| \leq c_{g}\left|t_{2}-t_{1}\right|, \quad \forall t_{1}, t_{2} \in[0, \tau) \tag{4.35}
\end{equation*}
$$

Moreover, assume the drift coefficient functions $f: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are continuously differentiable, and there exists a constant $\gamma \in\left[1, \frac{p_{1}+1}{2}\right)$ and $c_{f}<\lambda_{1}$ such that

$$
\begin{align*}
\langle x-y, f(x)-f(y)\rangle & \leq c_{f}\|x-y\|^{2}, \quad \forall x, y \in \mathbb{R}^{d}, \tag{4.36}\\
\left\|\left(\frac{\partial f}{\partial x}(t, x)-\frac{\partial f}{\partial y}(t, y)\right) z\right\| & \leq C(1+\|x\|+\|y\|)^{\gamma-2}\|x-y\|\|z\|, \quad \forall x, y, z \in \mathbb{R}^{d}, t \in[0, \tau), \tag{4.37}
\end{align*}
$$

where $\frac{\partial f}{\partial x}$ denotes the partial derivative of f with respect to the state variable x.
Based on the above assumption, we can improve the estimates in Lemma 4.1 by the following lemma given in [10, Theorem 4.6]. The proof of the following lemma is thus omitted.

Lemma 4.4. Let Assumptions 2.2 and 4.3 be hold. Then for $k, j \in \mathbb{N}$, there exists some positive constant C, independent of k, j and h, such that

$$
\begin{equation*}
\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq C h^{\frac{3}{2}}, \quad\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leq C h^{2} \tag{4.38}
\end{equation*}
$$

Theorem 4.5. Let Assumptions 2.2 and 4.3 be hold. If $X_{-k \tau+j h}^{-k \tau}$ and $\tilde{X}_{-k \tau+j h}^{-k \tau}$ are the exact and the numerical solutions given by (4.34) and (3.2), respectively. For an arbitrary pair $\left(\mu_{1}, \mu_{2}\right)$ s.t. $\mu_{1} \in\left(0, \lambda_{1}-c_{f}\right)$ and $\mu_{2}>0$, then there exists a constant $C>0$, independent of k, j and h, such that

$$
\begin{equation*}
\sup _{k, j \in \mathbb{N}} \mathbb{E}\left[\left\|X_{-k \tau+j h}^{-k \tau}-\tilde{X}_{-k \tau+j h}^{-k \tau}\right\|^{2}\right] \leq C h^{2} \tag{4.39}
\end{equation*}
$$

where the timestep h satisfies

$$
\begin{equation*}
h \in\left(0, \min \left\{\frac{\left(\lambda_{1}-c_{f}\right)^{\frac{p_{1}+1}{2}}}{\left(\lambda_{d}+L_{2}\right)^{p_{1}+1}}, \frac{1}{\lambda_{1}-c_{f}-\mu_{1}}, 1\right\}\right) . \tag{4.40}
\end{equation*}
$$

Proof of Theorem 4.5. Repeating (4.19) used in Theorem4.2, the term $\Delta \Phi_{-k \tau+j h}^{g}$ disappears, one can get

$$
\begin{equation*}
e_{-k \tau+(j+1) h}=\Delta \Phi_{-k \tau+j h}^{x}+h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right)+\mathcal{R}_{-k \tau+(j+1) h} \tag{4.41}
\end{equation*}
$$

We emphasize that $\Delta \Phi_{-k \tau+j h}^{x}$ and $\Delta \Phi_{-k \tau+j h}^{f}$ are $\mathcal{F}_{-k \tau+j h^{-}}$measurable. Taking the expectation of the second moment on both sides gives

$$
\begin{align*}
& \mathbb{E}\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}\right]+h^{2} \mathbb{E}\left[\left\|A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\|^{2}\right]+\mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] \\
& \quad+2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right)\right\rangle\right]+2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] \tag{4.42}\\
& \quad+2 \mathbb{E}\left[\left\langle h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right), \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] .
\end{align*}
$$

Recall that $\Delta \Phi_{-k \tau+j h}^{x}$ is $\mathcal{F}_{-k \tau+j h}$-measurable and note that $2 a b \leq \mu_{1} h a^{2}+\frac{1}{\mu_{1} h} b^{2}$ for arbitrary $h>0, \mu_{1} \in\left(0, \lambda_{1}-c_{f}\right)$, we obtain

$$
\begin{align*}
2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] & \left.=2 \mathbb{E}\left[\mathbb{E}\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathcal{R}_{-k \tau+(j+1) h}\right\rangle \mid \mathcal{F}_{-k \tau+j h}\right]\right] \\
& =2 \mathbb{E}\left[\left\langle\Delta \Phi_{-k \tau+j h}^{x}, \mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\rangle\right] \tag{4.43}\\
& \leq \mu_{1} h \mathbb{E}\left[\left\|\Delta \Phi_{-k \tau+j h}^{x}\right\|^{2}\right]+\frac{1}{\mu_{1} h} \mathbb{E}\left[\left\|\mathbb{E}\left[\mathcal{R}_{-k \tau+(j+1) h} \mid \mathcal{F}_{-k \tau+j h}\right]\right\|^{2}\right] .
\end{align*}
$$

For a positive μ_{2}, applying the Young inequality yields

$$
\begin{align*}
& 2 \mathbb{E}\left[\left\langle h\left(A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right), \mathcal{R}_{-k \tau+(j+1) h}\right\rangle\right] \\
& \quad \leq \mu_{2} h^{2} \mathbb{E}\left[\left\|A \Delta \Phi_{-k \tau+j h}^{x}+\Delta \Phi_{-k \tau+j h}^{f}\right\|^{2}\right]+\frac{1}{\mu_{2}} \mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] \tag{4.44}
\end{align*}
$$

Due to (4.28), applying Assumptions 2.2, 4.3 and Lemma 3.1, one can get

$$
\begin{align*}
\mathbb{E}\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] \leq & \left\{1-\left(\lambda_{1}-c_{f}-\mu_{1}\right) h\right\} \mathbb{E}\left[\left\|e_{-k \tau+j h}\right\|^{2}\right]+\left(1+\frac{1}{\mu_{2}}\right) \mathbb{E}\left[\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\|^{2}\right] \tag{4.45}\\
& +\frac{1}{\mu_{1} h} \mathbb{E}\left[\mathbb{E}\left(\left\|\mathcal{R}_{-k \tau+(j+1) h}\right\| \mathcal{F}_{-k \tau+j h}\right) \|^{2}\right]
\end{align*}
$$

Denoting $\tilde{c}:=\lambda_{1}-c_{f}-\mu_{1}$, and taking lemma 4.4, result in

$$
\begin{equation*}
\mathbb{E}\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] \leq(1-\tilde{c} h) \mathbb{E}\left[\left\|e_{-k \tau+j h}\right\|^{2}\right]+C h^{3}, \tag{4.46}
\end{equation*}
$$

Now using a similar argument as the proof of Theorem 4.2 we can deduce that

$$
\begin{equation*}
\mathbb{E}\left[\left\|e_{-k \tau+(j+1) h}\right\|^{2}\right] \leq C h^{2} \tag{4.47}
\end{equation*}
$$

which completes the proof.

Corollary 4.6. Let Assumption 2.2 be hold, let X_{t}^{*} be the random periodic solution of SDE (1.1) and \tilde{X}_{t}^{*} be the random periodic solution of the projected Euler numerical approximation. Then there exists a constant C independent of t and h, such that

$$
\begin{equation*}
\sup _{t \in \mathcal{T}^{h}} \mathbb{E}\left(\left[\left\|X_{t}^{*}-\tilde{X}_{t}^{*}\right\|^{2}\right]\right)^{1 / 2} \leq C h^{\frac{1}{2}} \tag{4.48}
\end{equation*}
$$

If in addition Assumption 4.3 be hold, then there exists $C>0$, independent of t and h, such that

$$
\begin{equation*}
\sup _{t \in \mathcal{T}^{h}} \mathbb{E}\left(\left[\left\|X_{t}^{*}-\tilde{X}_{t}^{*}\right\|^{2}\right]\right)^{1 / 2} \leq C h \tag{4.49}
\end{equation*}
$$

Proof of Corollary 4.6. Due to

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{t}^{*}-\tilde{X}_{t}^{*}\right\|^{2}\right] \leq \underset{k}{\limsup }\left[\mathbb{E}\left[\left\|X_{t}^{*}-X_{t}^{-k \tau}\right\|^{2}\right]+\mathbb{E}\left[\left\|X_{t}^{-k \tau}-\tilde{X}_{t}^{-k \tau}\right\|^{2}\right]+\mathbb{E}\left[\left\|\tilde{X}_{t}^{-k \tau}-\tilde{X}_{t}^{*}\right\|^{2}\right]\right] \tag{4.50}
\end{equation*}
$$

thus the conclusion can be obtained by Theorem [2.4. Theorem 3.4. Theorem 4.2 and Theorem 4.5 .

5 Numerical experiments

Some numerical experiments will be performed to illustrate the previous theoretical results in this section. To accomplish this, we consider two examples of SDEs with multiplicative noise and additive noise.

5.1 Example 1

In the first example, we test the performance of the projected Euler method (3.2) with multiplicative noise as follows:

$$
\begin{equation*}
\mathrm{d} X_{t}^{t_{0}}=\left(-2 \pi X_{t}^{t_{0}}+X_{t}^{t_{0}}-\left(X_{t}^{t_{0}}\right)^{3}+\cos (\pi t)\right) \mathrm{d} t+\left(1+\left(X_{t}^{t_{0}}\right)^{2}+\cos (\pi t)\right) \mathrm{d} W_{t} \tag{5.1}
\end{equation*}
$$

It's easy to verify that (5.1) satisfies Assumptions 2.2. Building upon this, Theorem 3.4 states its projected Euler simulation also displays a random periodic path. To further validate this claim, we conduct numerical experiment where we observe two processes starting from $t_{0}=-10$ and $T=0$, with the stepsize of 0.01 and initial values of 0.8 and -0.5 . Figure $\mathbb{1}$ illustrates that two paths converge quickly, demonstrating that the random periodic solution of the projected Euler methods is independent of the initial values.

Figure 1: Two paths generated by projected Euler methods from differential initial conditions

Next, we verify the periodicity by examining and dynamics under the same realisation ω : $\tilde{X}_{t}^{-10}(\omega, 0.3)$ over $-10 \leq t \leq 6$ and $\tilde{X}_{t}^{-10}\left(\theta_{-2} \omega, 0.3\right)$ over $-10 \leq t \leq 8$, where 0.3 is the initial condition of both processes. Due to Theorem [3.4, it is expected that $\tilde{X}_{t}^{-10}(\omega, 0.3) \approx \tilde{X}_{t}^{*}(\omega)$ and $\tilde{X}_{t}^{-10}\left(\theta_{-2} \omega, 0.3\right) \approx \tilde{X}_{t}^{*}\left(\theta_{-2} \omega\right)$ after a sufficiently long time, and we may then observe that $\tilde{X}_{t-2}^{-10}(\omega, 0.3) \approx \tilde{X}_{t}^{-10}\left(\theta_{-2} \omega, 0.3\right)$ due to the fact $\tilde{X}_{t-2}^{*}(\omega)=\tilde{X}_{t}^{*}\left(\theta_{-2} \omega\right)$ in Definition 2.1. Figure 2 demonstrates both process resemble each other with a stable time gap 2, that is, $\tilde{X}_{t-2}^{*}(\omega)=$ $\tilde{X}_{t}^{*}\left(\theta_{-2} \omega\right)$ over $4 \leq t \leq 8$.

Figure 2: Simulations of the process $\tilde{X}_{t}^{-10}(\omega, 0.3), 2 \leq t \leq 6$ and $\tilde{X}_{t}^{-10}\left(\theta_{-2} \omega, 0.3\right), 4 \leq t \leq 8$
Theorem 4.2 suggests that the random periodic solution converges to the solution of (5.1) with order 0.5 in the mean square sense. To achieve this, a fine stepsize $h_{\text {ecact }}=2^{-15} \times 20$ is chosen to obtain a reference solution on the time interval $[-10,10]$. The reference solution is obtained via the same numerical method with a fine stepsize $h_{\text {exact }}=2^{-15} \times 20$. We plot mean-square approximation errors e_{h} against five different stepsizes $h=2^{-i} \times 20, i=8,9, \ldots, 12$ on a log-log scale.

Figure 3 clearly demonstrates that the mean-square error is at a slope greater than 0.5 , but less than 1. Suppose that the approximation error e_{h} obeys a power law relation $e_{h}=C h^{\kappa}$ for $C, \kappa>0$, so that $\log e_{h}=\log C+\kappa \log h$. Then we do a least squares power law fit for κ and get
the value 0.8544 for the rate κ with residual of 0.1112 , which is beyond the theoretical order of convergence in Theorem 4.2.

Figure 3: The mean-square error plot of the projected Euler method (3.2) for simulating the solution of (5.1).

5.2 Example 2

In the second example, we test the performance of the projected Euler method (3.2) with additive noise as follows:

$$
\begin{equation*}
\mathrm{d} X_{t}^{t_{0}}=\left(-\pi X_{t}^{t_{0}}-\left(X_{t}^{t_{0}}\right)^{3}+\sin (2 \pi t)\right) \mathrm{d} t+\mathrm{d} W_{t} \tag{5.2}
\end{equation*}
$$

One can check that the associated period is 1 and Assumption 2.2 and 4.3 are fulfilled. We conduct a similar experiment to verify the periodicity, as described in Section 5.1. The patterns of $\tilde{X}_{t-1}^{-5}(\omega, 0.5)$ over $10 \leq t \leq 13$ and $\tilde{X}_{t}^{-5}\left(\theta_{-1} \omega, 0.5\right)$ over $11 \leq t \leq 14$ show identical results under the same realisation ω in Figure (4.

Figure 4: Simulations of the processes $\tilde{X}_{t}^{-5}(\omega, 0.5), 10 \leq t \leq 13$ and $\tilde{X}_{t}^{-5}\left(\theta_{-1} \omega, 0.5\right), 11 \leq t \leq 14$.
The performance of the projected Euler method is also evaluated in terms of mean-square error for simulating SDE (5.2) over $[-5,15]$. The comparison between the error line and the reference
line in the figure 5 indicates a close match in slopes, supporting an order-one convergence. A least squares fit yields a rate of 1.0751 with a residual of 0.0195 for (5.2). Therefore, the numerical result is in agreement with a strong order of convergence equal to one, as previously indicated in Theorem 4.5.

Figure 5: The mean-square error plot of the projected Euler method (3.2) for simulating the solution of (5.2).

References

[1] Pierre M Adler and Vladimir V Mityushev. Resurgence flows in three-dimensional periodic porous media. Physical Review E, 82(1):016317, 2010.
[2] Wolf-Jürgen Beyn, Elena Isaak, and Raphael Kruse. Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes. Journal of Scientific Computing, 67:955-987, 2016.
[3] Wolf-Jürgen Beyn, Elena Isaak, and Raphael Kruse. Stochastic C-stability and B-consistency of explicit and implicit Milstein-type schemes. Journal of Scientific Computing, 70:1042-1077, 2017.
[4] Ziheng Chen, Liangmin Cao, and Lin Chen. Stochastic theta methods for random periodic solution of stochastic differential equations under non-globally Lipschitz conditions. arXiv preprint arXiv:2401.09747, 2024.
[5] Chunrong Feng, Yu Liu, and Huaizhong Zhao. Numerical approximation of random periodic solutions of stochastic differential equations. Zeitschrift für angewandte Mathematik und Physik, 68(5):119, 2017.
[6] Chunrong Feng, Yue Wu, and Huaizhong Zhao. Anticipating random periodic solutions-i. SDEs with multiplicative linear noise. Journal of Functional Analysis, 271(2):365-417, 2016.
[7] Chunrong Feng and Huaizhong Zhao. Random periodic solutions of SPDEs via integral equations and Wiener-Sobolev compact embedding. Journal of Functional Analysis, 262(10):43774422, 2012.
[8] Chunrong Feng and Huaizhong Zhao. Random periodic processes, periodic measures and ergodicity. Journal of Differential Equations, 269(9):7382-7428, 2020.
[9] Chunrong Feng, Huaizhong Zhao, and Bo Zhou. Pathwise random periodic solutions of stochastic differential equations. Journal of Differential Equations, 251(1):119-149, 2011.
[10] Yujia Guo, Xiaojie Wang, and Yue Wu. Order-one convergence of the Backward Euler Method for Random Periodic Solutions of Semilinear SDEs. arXiv preprint arXiv:2306.06689, 2023.
[11] Afsaneh Moradi and Raffaele D'Ambrosio. Random periodic solutions of SDEs: Existence, uniqueness and numerical issues. Communications in Nonlinear Science and Numerical Simulation, 128:107586, 2024.
[12] Keiji Nakatsugawa, Toshiyuki Fujii, Avadh Saxena, and Satoshi Tanda. Time operators and time crystals: self-adjointness by topology change. Journal of Physics A: Mathematical and Theoretical, 53(2):025301, 2019.
[13] Chenxu Pang, Xiaojie Wang, and Yue Wu. Linear implicit approximations of invariant measures of semi-linear SDEs with non-globally lipschitz coefficients. Journal of Complexity, page 101842, 2024.
[14] Henri Poincaré. Les méthodes nouvelles de la mécanique céleste, volume 2. Gauthier-Villars et fils, imprimeurs-libraires, 1893.
[15] E Prodan and P Nordlander. On the Kohn-Sham equations with periodic background potentials. Journal of Statistical Physics, 111:967-992, 2003.
[16] Ata ur Rahman, Muhammad Khalid, SN Naeem, EA Elghmaz, SA El-Tantawy, and LS ElSherif. Periodic and localized structures in a degenerate Thomas-Fermi plasma. Physics Letters A, 384(13):126257, 2020.
[17] Rong Wei and Chuanzhong Chen. Numerical Approximation of Stochastic Theta Method for Random Periodic Solution of Stochastic Differential Equations. Acta Mathematicae Applicatae Sinica, English Series, 36(3):689-701, 2020.
[18] Yue Wu. Backward Euler-Maruyama method for the random periodic solution of a stochastic differential equation with a monotone drift. Journal of Theoretical Probability, 36(1):605-622, 2023.
[19] Huaizhong Zhao and Zuohuan Zheng. Random periodic solutions of random dynamical systems. Journal of Differential Equations, 246(5):2020-2038, 2009.

A Proof of Lemma 2.3

Proof of Lemma 2.3. Setting $y=0$ in (2.6), according to (2.11), we can have,

$$
\langle x, f(t, x)\rangle+\frac{2 p_{1}-1}{2}\|g(t, x)-g(t, 0)\|^{2} \leq \alpha_{1}\|x\|^{2}+\langle x, f(t, 0)\rangle
$$

then,

$$
\begin{aligned}
& \langle x, f(t, x)\rangle+\frac{2 p_{1}-1}{2}\|g(t, x)\|^{2} \\
& \quad \leq \alpha_{1}\|x\|^{2}+\langle x, f(t, 0)\rangle,+\frac{2 p_{1}-1}{2}\langle 2 g(t, x), g(t, 0)\rangle+\frac{2 p_{1}-1}{2}\|g(t, 0)\|^{2} .
\end{aligned}
$$

Using $2 a b \leq \epsilon a^{2}+\frac{b^{2}}{\epsilon}$,

$$
\langle x, f(t, 0)\rangle \leq \frac{\epsilon}{2}\|x\|^{2}+\frac{\|f(t, 0)\|^{2}}{2 \epsilon},
$$

similarly,

$$
\begin{aligned}
\frac{2 p_{1}-1}{2}\langle 2 g(t, x), g(t, 0)\rangle & \leq \frac{2 p_{1}-1}{2} \times \frac{2\left(p_{1}-p_{2}\right)}{2 p_{1}-1}\|g(t, x)\|^{2}+\frac{\left(2 p_{1}-1\right)}{2} \times \frac{2 p_{1}-1}{2\left(p_{1}-p_{2}\right)}\|g(t, 0)\|^{2} \\
& =\frac{2\left(p_{1}-p_{2}\right)}{2}\|g(t, x)\|^{2}+\frac{\left(2 p_{1}-1\right)^{2}}{4\left(p_{1}-p_{2}\right)}\|g(t, 0)\|^{2} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \langle x, f(t, x)\rangle+\frac{2 p_{2}-1}{2}\|g(t, x)\|^{2} \\
& \quad \leq\left(\alpha_{1}+\epsilon\right)\|x\|^{2}+\frac{\|f(t, 0)\|^{2}}{2 \epsilon}+\frac{\left(2 p_{1}-1\right)^{2}}{4\left(p_{1}-p_{2}\right)}\|g(t, 0)\|^{2}+\frac{2 p_{1}-1}{2}\|g(t, 0)\|^{2} .
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ This work was supported by Natural Science Foundation of China (12071488, 12371417, 11971488). YW would like to acknowledge the support of the Royal Society through the International Exchanges scheme IES $\backslash \mathrm{R} 3 \backslash 233115$. E-mail addresses: y.j.guo@csu.edu.cn, x.j.wang7@csu.edu.cn, yue.wu@strath.ac.uk.

