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Abstract

It is of significant interest in many applications to sample from a high-dimensional target
distribution π with the density π(dx) ∝ e−U(x)(dx), based on the temporal discretization
of the Langevin stochastic differential equations (SDEs). In this paper, we propose an ex-
plicit projected Langevin Monte Carlo (PLMC) algorithm with non-convex potential U and
super-linear gradient of U and investigate the non-asymptotic analysis of its sampling er-
ror in total variation distance. Equipped with time-independent regularity estimates for
the corresponding Kolmogorov equation, we derive the non-asymptotic bounds on the total
variation distance between the target distribution of the Langevin SDEs and the law in-
duced by the PLMC scheme with order O(h| ln h|). Moreover, for a given precision ǫ, the
smallest number of iterations of the classical Langevin Monte Carlo (LMC) scheme with the
non-convex potential U and the globally Lipshitz gradient of U can be guaranteed by order

O
(
d3/2

ǫ ·ln(dǫ )·ln(1ǫ )
)
. Numerical experiments are provided to confirm the theoretical findings.

AMS subject classification: 60H35, 65C05, 65C30.

Key Words: Langevin Monte Carlo sampling, total variation distance, non-convex
potential, projected scheme, Kolmogorov equations.

1 Introduction

Sampling from a high-dimensional (d ≫ 1) target distribution π plays a crucial role in various
fields such as Bayesian inference, statistical physics, machine learning and computational biology
and has been a subject of recent intensive research efforts. For example, evaluating the expectation
of some functional φ with respect to π:

π(φ) :=

∫

Rd

φ(x)π(dx), (1.1)
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is of great interests in applications in the area of Bayesian statistics. A typical approach of
sampling is to set the target measure π as the invariant measure of the stochastic differential
equations (SDEs) and undertake an appropriate numerical scheme that discretizes such SDEs in
time. More precisely, we consider a class of sampling methods based on the following overdamped
Langevin stochastic differential equations (SDEs) of Itô type:

dXt = −∇U(Xt) dt+
√

2 dWt, X0 = x0, t > 0, (1.2)

where W· = (W1,·, . . . ,Wd,·)
T : [0,∞)×Ω → R

d denotes the R
d-valued standard Brownian motion

with respect to {Ft}t≥0. and the initial data x0 : Ω → R
d is assumed to be F0-measurable.

Under certain conditions, the dynamics of (1.2) agrees with the distribution π with the density
π(dx) ∝ e−U(x)(dx). To asymptotically sample from π admitted by (1.2), one notable example is
the unadjusted Langevin Monte Carlo (LMC for short) algorithm, which also corresponds to the

well-known Euler-Maruyama scheme of the Langevin SDE (1.2), denoted by {Ỹn}n≥0 as

Ỹn+1 = Ỹn −∇U
(
Ỹn
)
h+

√
2hξn+1, Ỹ0 = x0, (1.3)

where h ∈ (0, 1) represents the uniform timestep and ξk = (ξ1,k, . . . , ξd,k)
T , k ∈ N, are i.i.d standard

d-dimensional Gaussian vectors.
Non-asymptotic analysis focuses on the explicit dependency of the error with respect to the

algorithm parameters, e.g., step size, rather than explaining the asymptotic behavior as the algo-
rithm iterates to infinity or the step size tends to zero. Non-asymptotic convergence analysis for
the LMC algorithm (1.3) is typically investigated with
(i) globally Lipschitz condition: there exists a positive constant L̄ > 0 such that

‖∇U(x) −∇U(y)‖ ≤ L̄‖x− y‖, ∀x, y ∈ R
d, and (1.4)

(ii) strongly-convex condition: there exists a positive constant L̃ > 0 such that

〈x− y,∇U(x) −∇U(y)〉 ≥ L̃‖x− y‖2, ∀x, y ∈ R
d. (1.5)

In recent years, working with condition (i) and (ii), non-asymptotic error analysis between the tar-
get distribution and the law of the LMC algorithm under various metrics, such as the Wasserstein
distance and the total variation distance has been well established (see [8–10]).

Except for a few rare cases, it is extremely tough for the Langvin SDE (1.2) to satisfy either
condition (i) or (ii). A commonly used counterexample in quantum mechanics is the double-well
potential presented in Example 2.5. What if the drift ∇U grows superlinearly? Conventional
LMC algorithm loses its powers when attempting to sample from the target distribution inher-
ited by (1.2). For example, as claimed by [13, 19], for a large class of SDEs with super-linear
growth coefficients, the Euler-Maruyama scheme (1.3) leads to divergent numerical approxima-
tions in both finite and infinite time intervals. Therefore, a convergent numerical algorithm for
the Langevin SDEs (1.2) with non-globally Lipschitz drift is necessary. Recent years have wit-
nessed a considerable growth in construction and analysis of convergent schemes with SDEs in
the non-globally Lipschitz setting (see [1,2,14,16,23–26]). Moreover, to deal with the super-linear
drift of the Langevin SDEs (1.2), authors in [4] used a tamed Langevin algorithm to obtain the
non-asymptotic error bounds on 2-Wasserstein distance and total variation distance.

Beside the challenge of the super-linear drift, relaxing the strongly-convex potential, i.e. con-
dition (ii), may lead to possible collapse of the classical method in the non-asymptotic error
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analysis [18], where the contractivity condition can be replaced by a contractivity at infinity con-
dition (see Assumption 2.2). Recently, working on such a relaxed condition and demonstrating the
non-asymptotic error analysis of the corresponding Langevin SDEs (1.2) have indeed gained appre-
ciable attention (see [18,20,21] for example). Nevertheless, it is worth mentioning that a majority
of existing works investigate this topic via the Wasserstein distance error bounds. In [18], authors
obtained the non-asymptotic upper bound on 1-Wasserstein distance and 2-Wasserstein distance
of order 1/2 and 1/4, respectively, under globally Lipschitz condition. If the Lipschitz condition
is weakened by a polynomial growth condition, authors in [20] improved the 1-Wasserstein error
bound and the 2-Wasserstein error bound with respective convergence order of 1 and 1/2.

In this paper, we investigate the non-asymptotic convergence of the target distribution ad-
mitted by (1.2) in total variation distance (2.7)-(2.10) in non-convex and non-globally Lipschitz
setting (see Assumptions 2.1, 2.2 and 2.4 below). The setting of total variation distance allows us
to consider bounded and measurable function φ ∈ Bb(R

d) in (1.1). Classical examples include the
indicator function and the step function (see (6.2)). As far as we know, the investigation of approx-
imation errors in weak approximations of (1.1) without fulfilling conditions (i) and (ii) is still in its
initial phases. To recover the convergence for the Langevin SDEs (1.2) with super-linear growing
nonlinearities, we propose a projected Langevin Monte Carlo (PLMC) algorithm (cf. (2.17)) with
a uniform timestep, which reduces to the classical LMC algorithm (1.3) for the Langevin SDEs
(1.2) with a Lipschitz continuous drift. This fact paves the way to analyzing the smallest number
of iterations of the LMC scheme (1.3) required to approach the target distribution inherited by
(1.2) on the total variation distance with given precision, also known as the mixing time, under
Lipschitz condition, which has been remaining an active field [6, 15] in recent years.

Non-asymptotic bounds on the total variation distance between the law of the PLMC algorithm
and the target distribution boil down to the weak error analysis of the PLMC scheme and the
Langevin SDEs (1.2) for some test functions φ ∈ Bb(R

d), which can be derived based on the
corresponding Kolmogorov equation (4.2) of SDEs (1.2). However, one may encounter two major
obstacles. The first one is to get a couple of a priori estimates that are independent of time
and stepsize, including the uniform moment bounds of the PLMC scheme (2.17) and the time-
independent regularity estimates of the Kolmogorov equation, which is very challenging due to
the loss of condition (ii) and the non-smooth test function. Another one is the discontinuity of
the proposed PLMC algorithm (2.17), which results in further difficulties in handling the weak
error via the Kolmogorov equation. Different techniques are used to circumvent these difficulties.
Discrete arguments are adopted to obtain the uniform moment bounds of the PLMC algorithm
(2.17) (see the proof of Lemma 3.4). Moreover, the Bismut-Elworthy-Li formula (see Lemma 4.3)
combined with the Markov property of the transition semigroup u(·, ·) (4.1) are used to derive the
time-independent regularity estimates of the Kolmogorov equation (see Section 4). To handle the
discontinuity of the PLMC algorithm (3.8), we introduce the continuous-time version (see (5.2))
at each step to fully exploit the Kolmogorov equation (see (4.2)).

Moving on to the error analysis, given any terminal time T ∈ (0,∞) such that Nh = T ,
N ∈ N, we separate the error

∣∣E [φ(Y x0
N )]−E [φ(Xx0

T )]
∣∣, i.e.,

∣∣E [u(T, x0)]−E [u(0, Y x0
N )]

∣∣ based on
the associated Kolmogorov equation (see (4.2)) into two parts as J1 and J2 in (5.8). The first part
J1 is of order 1, which can be considered as a direct consequence of the time-independent regularity
of u(t, ·) (see Theorem 4.4) and the convergence of the projected operator P(·) (see Lemma 5.2).
Depending on the continuous version of the PLMC algorithm (5.2), the Kolmogorov equation and
the Itô formula, the second error term J2 can be proved to be O(h| lnh|) (see Theorem 5.3 and
its proof for more details). Directly from Theorem 2.6, one can show that, the smallest number
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of iterations of the LMC scheme (1.3) is of order O
(
d3/2

ǫ
· ln(d

ǫ
) · ln(1

ǫ
)
)
, for the drift f being

contractivity at infinity and the globally Lipshitz continuity (see Remark 2.8).
We summarize our main contributions as follows:

• A projected Langevin Monte Carlo algorithm, capable of dealing with super-linear systems
and covering the classical Langevin Monte Carlo algorithm, is presented.

• Non-asymptotic bounds on the total variation distance between the law of the PLMC algo-
rithm and the target distribution, inherited by (1.2), is established for non-convex potential.

• The smallest number of iterations of the Langevin Monte Carlo scheme required to approach
the target distribution, admitted by (1.2), in the total variation distance with given precision
is shown in Lipschitz but non-convex setting.

The rest of this article is organized as follows. The next section formulates the primary setting
and shows the main result of this paper. In Section 3, we present some a priori estimates of both
SDE and the PLMC algorithm. Section 4 reveals the Kolmogorov equation and its regularity
estimates. In Section 5, the time-independent weak error analysis between SDE and the PLMC
scheme is given. Some numerical tests are shown to illustrate our theoretical findings in Section
6. Finally, the Appendix contains the detailed proof of several auxiliary lemmas.

2 Settings and main result

Throughout this paper, we use N to denote the set of all positive integers and let d,m ∈ N,
T ∈ (0,∞) be given. Let ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and the inner product of
vectors in R

d, respectively. Adopting the same notation as the vector norm, we denote ‖A‖ :=√
trace(ATA) as the trace norm of a matrix A ∈ R

d×m. We use max{a, b} and min{a, b} for
the maximum and minimum values of between a and b respectively. Given a filtered probability
space

(
Ω,F , {Ft}t∈[0,T ],P

)
, we use E to mean the expectation and Lr(Ω,Rd), r ≥ 1, to denote

the family of R
d-valued random variables ξ satisfying E[‖ξ‖r] < ∞. Moreover, we introduce a

new notation Xx
t for t ∈ [0,∞) denoting the solution of SDE (1.2) satisfying the initial condition

Xx
0 = X0 = x. In addition, denote by Cb(R

d) (resp. Bb(R
d) ) the Banach space of all uniformly

continuous and bounded mappings (resp. Borel bounded mappings) ϕ : Rd → R endowed with
the norm ‖ϕ‖0 = supx∈Rd |ϕ(x)|.

For the vector-valued function u : Rd → R
ℓ, u = (u(1), . . . , u(ℓ)), its first order partial derivative

is considered as the Jacobian matrix as

Du =




∂u(1)

∂x1
· · · ∂u(1)

∂xd
...

. . .
...

∂u(ℓ)

∂x1
· · · ∂u(ℓ)

∂xd




ℓ×d

. (2.1)

For any v1 ∈ R
d, one knows D(u)v1 ∈ R

ℓ and one can define D2u(v1, v2) as

D2u(v1, v2) := D
(
D(u)v1

)
v2, ∀v1, v2 ∈ R

d. (2.2)

In the same manner, one can define

D3u(v1, v2, v3) := D
(
D
(
D(u)v1

)
v2

)
v3, ∀v1, v2, v3 ∈ R

d, (2.3)
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and for any integer k ≥ 3 the k-th order partial derivatives of the function u can be defined
recursively. Given the Banach spaces X and Y , we denote by L(X ,Y) the Banach space of
bounded linear operators from X into Y . Then the partial derivatives of the function u can also
be regarded as the operators

Du(·)(·) : Rd → L(Rd,Rℓ), (2.4)

D2u(·)(·, ·) : Rd → L(Rd, L(Rd,Rd)) ∼= L(Rd ⊗ R
d,Rℓ) (2.5)

and
D3u(·)(·, ·, ·) : Rd → L(Rd, L(Rd, L(Rd,Rd))) ∼= L((Rd)⊗3,Rℓ). (2.6)

We remark that the partial derivatives of the scalar valued function can be covered by the special
case ℓ = 1.

For any k ∈ N, let Ck
b (Rd) be the subspace of Cb(R

d) consisting of all functions with bounded
partial derivatives Diϕ(x), 1 ≤ i ≤ k. In what follows, we use the letter C to denote generic
constants, independent of both the step size h ∈ (0, 1) and the dimension d. Also, let 1H be the
indicator function of a set H .

Further, the total variation distance between two Borel probability distributions µ1 and µ2 is
defined by

‖µ1 − µ2‖TV := sup
ϕ∈Bb(Rd), ϕ 6=0

∣∣∫
Rd ϕ(x)µ1(dx) −

∫
Rd ϕ(x)µ2(dx)

∣∣
‖ϕ‖0

. (2.7)

Consequently, if X is a R
d-valued random variable, the probability distribution of X is denoted

by Π(X). Then, the total variation distance between Π(X) and any Borel probability distribution
µ is given as,

‖Π(X) − µ‖TV := sup
ϕ∈Bb(Rd), ‖ϕ‖0≤1

∣∣∣∣E [ϕ(X)] −
∫

Rd

ϕ(x)µ(dx)

∣∣∣∣ . (2.8)

Recalling that for any ϕ ∈ Bb(R
d), there exists a sequence ϕk ∈ Cb(R

d), k ∈ N satisfying
limk→∞ ϕk(x) → ϕ(x), for all x ∈ R

d. Therefore, the total variation distance between two Borel
probability distributions µ1 and µ2 has the representation as follows,

‖µ1 − µ2‖TV = sup
ϕ∈Cb(Rd), ϕ 6=0

∣∣∫
Rd ϕ(x)µ1(dx) −

∫
Rd ϕ(x)µ2(dx)

∣∣
‖ϕ‖0

= sup
ϕ∈Cb(Rd), ‖ϕ‖≤1

∣∣∣∣
∫

Rd

ϕ(x)µ1(dx) −
∫

Rd

ϕ(x)µ2(dx)

∣∣∣∣ .
(2.9)

Moreover, for the probability distribution of X and any Borel probability distribution µ, one also
has

‖Π(X) − µ‖TV = sup
ϕ∈Cb(Rd), ϕ 6=0

∣∣E [ϕ(X)] −
∫
Rd ϕ(x)µ(dx)

∣∣
‖ϕ‖0

= sup
ϕ∈Cb(Rd), ‖ϕ‖0≤1

∣∣∣∣E [ϕ(X)] −
∫

Rd

ϕ(x)µ(dx)

∣∣∣∣ .
(2.10)

In the sequel, denote f(x) := −∇U(x), ∀x ∈ R
d, as the negative gradient of the potential U for

convenience.
Subsequently, we set up a non-convex framework by stating some assumptions in order to

establish the main result.
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Assumption 2.1. (Globally polynomial growth condition.) Assume the drift coefficient f : Rd →
R

d of SDE (1.2) is twice continuously differentiable in R
d, and there exists some constant γ ∈

[1,∞) such that,

∥∥D2f(x)(v1, v2)
∥∥ ≤ C(1 + ‖x‖)γ−2‖v1‖ · ‖v2‖, ∀x, v1, v2 ∈ R

d. (2.11)

Note that Assumption 2.1 immediately implies

‖Df(x)v1 −Df(x̃)v1‖ ≤ C(1 + ‖x‖ + ‖x̃‖)γ−2‖x− x̃‖ · ‖v1‖, ∀x, x̃, v1 ∈ R
d,

‖Df(x)v1‖ ≤ C(1 + ‖x‖)γ−1‖v1‖, ∀x, v1 ∈ R
d,

(2.12)

which in turn yields

‖f(x) − f(x̃)‖ ≤ C(1 + ‖x‖ + ‖x̃‖)γ−1‖x− x̃‖, ∀x, x̃ ∈ R
d,

‖f(x)‖ ≤ C(1 + ‖x‖)γ , ∀x ∈ R
d.

(2.13)

In what follows, we formulate the contractivity at infinity condition as shown in [18].

Assumption 2.2. (Contractivity at infinity condition.) For the drift coefficient f : Rd → R
d of

SDE (1.2), there exist some positive constants ã1 > ã2 > 0, R > 0 such that,

〈x− y, f(x) − f(y)〉 ≤
(
ã11‖x−y‖≤R − ã2

)
‖x− y‖2, ∀x, y ∈ R

d. (2.14)

Remark 2.3. It is noteworthy that Assumption 2.2 implies a one-side Lipschitz condition of the
drfit f : Rd → R

d as follows: there exists some positive constant L > 0 such that

〈x− y, f(x) − f(y)〉 ≤ L‖x− y‖2, ∀x, y ∈ R
d. (2.15)

Further, we would like to present the dissipativity conditions for f .

Assumption 2.4. For the drift coefficient f : Rd → R
d, there exist some constants a1, a2 > 0

such that
〈x, f(x)〉 ≤ −a1‖x‖γ+1 + a2, ∀x ∈ R

d. (2.16)

Compared with the usual but strict strongly-convex condition on U and the globally Lipschitz
condition on ∇U , Assumptions 2.1-2.4 enable us to accommodate for a much wider family of
SDEs, especially for possible non-convex potentials. Here we give an example.

Example 2.5 (Double-well potential). Consider f(x) = x(1−‖x‖2), which is the negative gradient
of the double-well potential U(x) = ‖x‖4/4 − ‖x‖2/2. Such an f violates (1.4) and (1.5) but
satisfies Assumptions 2.1-2.4 with γ = 3, a1 = 1/2 and a2 = 1/2, where the Young inequality
‖x‖2 ≤ 1/2 + ‖x‖4/2 is used.

To obtain numerical approximations of the invariant measure allowed by such SDEs, even in
high dimensions and without assuming strong convexity or Lipschitz continuity, we, therefore,
propose a family of projected Langevin Monte Carlo (PLMC) algorithms as follows

{
Yn+1 = P(Yn) + f (P(Yn)) h+

√
2hξn+1,

Y0 = x0,
(2.17)
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where ξk = (ξ1,k, . . . , ξd,k)
T , k ∈ N, are i.i.d standard d-dimensional Gaussian vectors and P :

R
d → R

d denotes the projection operator given as

P(x) :=

{
min

{
1, ϑ( d

h
)1/2γ‖x‖−1

}
x, for γ > 1,

x, for γ = 1,
∀x ∈ R

d, (2.18)

with γ being given in Assumption 2.1. Furthermore, note that the parameter ϑ ≥ 1, independent
of the stepsize h and the dimension d, is pre-determined to ensure that the numerical solutions of
the PLMC scheme (2.17) will not be projected too often in the iteration, especially when dealing
with a high-dimensional target distribution. In particular, when γ = 1, then P = I is the identity
operator.

The main result of this paper is formulated as follows,

Theorem 2.6. (Main result – non-asymptotic bounds in the total variation distance.) Assume
Assumptions 2.1, 2.2, 2.4. Let {Xx0

t }t≥0 and {Y x0
n }n≥0 be the solutions of SDE (1.2) and the

PLMC algorithm (2.17) with the initial state Xx0
0 = Y x0

0 = x0, respectively. Then the Langevin
SDE {Xx0

t }t≥0 in (1.2) converges exponentially to a unique invariant measure, denoted by π, under
total variation distance. Furthermore, let h ∈ (0,min{1/a1, 1}) be the uniform timestep with a1
being shown in Assumption 2.4. Given any terminal time T ∈ (0,∞) such that Nh = T , N ∈ N,
for the super-linear drift f , i.e. γ > 1,

‖Π(Y x0
N ) − π‖

TV
≤ Ce−CNh

(
1 + E

[
‖x0‖2

])
+ Cdmax{3γ/2,2γ−1}h |ln h| , (2.19)

For the Lipschitz drift f , i.e. γ = 1, let {Ỹ x0
n }n≥0 be the solutions of the LMC algorithm (1.3)

with the initial state Ỹ x0
0 = x0, then

∥∥∥Π(Ỹ x0
N ) − π

∥∥∥
TV

≤ Ce−CNh
(
1 + E

[
‖x0‖2

])
+ Cd3/2h |ln h| . (2.20)

Remark 2.7. While completing this paper, we are aware of the work [17], where results analogous
to (2.20) in Theorem 2.6 were obtained with a sequence of decreasing step sizes via Malliavin
calculus under the contractivity at infinity condition on the Hölder continuous drift f . Instead, the
main focus of this paper is the analysis of the total variation distance with super-linearly growing
continuous drift f .

Remark 2.8. Regarding the smallest number of iterations, i.e. mixing time, of the LMC scheme
required to approximate the target measure of the Langevin SDE (1.2), it can be deduced from (2.20)
of Theorem 2.6 that, to achieve a given precision level ǫ > 0, a required number of iterations is
of order O

(
d3/2

ǫ
· ln(d

ǫ
) · ln(1

ǫ
)
)
. The proof is straightforward and postponed to Appendix D. To the

best of our knowledge, this is the first result considering mixing time of the LMC algorithm under
the total variation distance in non-convex setting.

3 Preliminary results

3.1 A priori estimates of the Langevin SDE

We begin with the lemma concerning the uniform moments estimate of {Xt}t≥0, defined by (1.2).
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Lemma 3.1. (Uniform moment bounds of the Langevin SDE.) Let the solution of the Langevin
SDE, denoted by {Xt}t≥0 in (1.2), satisfy Assumptions 2.1, 2.2 and 2.4. Then, for some constant
c ∈ (0, a1) with a1 being given in Assumption 2.4 and any p ∈ [1,∞)

E
[
‖Xt‖2p

]
≤ e−cpt

E
[
‖x0‖2p

]
+ Cdp. (3.1)

The proof of Lemma 3.1 can be found in Appendix A.1. We also mention that Lemma 3.1
can also cover the case p ∈ [0, 1) due to the Hölder inequality. The following lemma states the
existence and the uniqueness of the invariant measure induced by the Langevin SDEs (1.2).

Lemma 3.2. (Existence and uniqueness of the invariant measure for the Langevin SDEs.) Let
Assumptions 2.1, 2.2 and 2.4 hold. Then the Langevin SDEs (1.2) {Xx0

t }t≥0 in (1.2), with the
initial condition X0 = x0 admit a unique invariant measure, denoted by π. In addition, given
φ ∈ Cb(R

d), then

∣∣∣∣E [φ (Xx0
t )] −

∫

Rd

φ(x)π(dx)

∣∣∣∣ ≤ Ce−Ct
(
1 + E

[
‖x0‖2

])
, ∀t > 0. (3.2)

Proof of Lemma 3.2. Equipped with Lemma 3.1, the existence of the invariant measure for SDE
(1.2) is obtained by the Krylov-Bogoliubov criterion [7].

Moreover, the uniqueness of the invariant probability measure, defined as π, can be derived
from the Doob Theorem [7]. To achieve this, the strong-Feller property and the irreducibility
property need to be validated. Indeed, for the Langevin SDEs (1.2) it suffices to show that, given
φ ∈ Cb(R

d), ∣∣Ptφ(x1) − Ptφ(x2)
∣∣ ≤ C(t) · ‖x1 − x2‖, ∀t > 0, x1, x2 ∈ R

d, (3.3)

where Pt is the Markov semigroup of the corresponding SDEs (1.2) (see [7, Chapter 5]) denoted
by

Ptφ(x) = E[φ(Xx
t )], φ ∈ Cb(R

d), (3.4)

and C(t) = O(et/t) depending on ‖φ‖0 and t (see (4.16) in the proof of Theorem 4.4 below). The
strong Feller property of Pt is thus guaranteed. In addition, with the noise of (1.2) being additive
and non-degenerate, the irreducibility of SDEs (1.2) is straightforward (see [5, 7] for example).
Hence, the Langevin SDE (1.2) is ergodic.

To close the proof, we remark that the exponential convergence result (3.2), also known as the
exponential mixing property, can be easily obtained thanks to [12].

Owing to Lemma 3.2, it immediately implies Π(Xx0
t ) converges exponentially to an invariant

measure in the total variation distance as below,

∥∥Π (Xx0
t ) − π

∥∥
TV

≤ Ce−Ct
(
1 + E

[
‖x0‖2

])
, ∀t > 0. (3.5)

To sample from the invariant measure π produced by the Langevin SDE (1.2), in general we require
the existence, not the uniqueness, of the invariant measure induced by the PLMC algorithm (see
(5.1) or [8, 10, 18, 20, 21] for example). However, the drawback is that it does not tell us how fast
the law Π(Yn) converges to its invariant measure.
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3.2 A priori estimates of the PLMC algorithm

In the following we give some useful properties of the PLMC algorithm (2.17).

Lemma 3.3. Let Assumption 2.1 hold. Then, for ∀x ∈ R
d, the following estimates hold true

‖P(x)‖ ≤ min
{
‖x‖, ϑd1/2γh−1/2γ

}
, ‖f(P(x))‖ ≤ Cf

[
1γ>1ϑ

γd1/2h−1/2 + 1γ=1(1 + ‖x‖)
]
,

(3.6)
where Cf is a constant depending only on the drift f .

Proof of Lemma 3.3. The proof is obvious, which can also be found in [22].

The lemma below provides the uniform moment bounds for the PLMC algorithm (2.17).

Lemma 3.4. (Uniform moment bounds of the PLMC algorithm.) Let Assumptions 2.1, 2.2,
2.4 be fulfilled. Also let h ∈ (0,min{1/a1, 1}) be the uniform timestep. Consider the numerical

simulation {Yn}n≥0 from the PLMC algorithm in (2.17). Then, for some constant C̃ ∈ (0, a1) and
any p ∈ [1,∞) ∩ N,

E
[
‖Yn‖2p

]
≤ e−C̃tnE

[
(1 + ‖x0‖2)p

]
+ Cdp, (3.7)

where tn := nh, n ≥ 0.

Proof of Lemma 3.4. Case I: for γ > 1
By (2.17), it is obvious to show that, for n ∈ {0, 1, 2, . . . , N − 1}, N ∈ N,

‖Yn+1‖2 =
∥∥P(Yn) + f (P(Yn))h+

√
2hξn+1

∥∥2

= ‖P(Yn)‖2 + 2h 〈P(Yn), f (P(Yn))〉 + 2
√

2h 〈P(Yn), ξn+1〉 + 2
√

2h3/2 〈f (P(Yn)) , ξn+1〉
+ h2‖f (P(Yn)) ‖2 + 2h‖ξn+1‖2

(3.8)
Using the Young inequality and Lemma 3.3 yields

2
√

2h3/2 〈f (P(Yn)) , ξn+1〉 ≤ ǫ̃h2‖f (P(Yn)) ‖2 +
2h

ǫ̃
‖ξn+1‖2

≤ C2
fϑ

2γdh+ 2h‖ξn+1‖2,
(3.9)

where we choose ǫ̃ = 1 for the case γ > 1. Moreover, it follows directly from Assumption 2.4 that,
for ∀x ∈ R

d,

〈x, f (x)〉 =
〈
x, f(x) +

a1
2
x
〉
− a1

2
‖x‖2

≤ −a1‖x‖γ+1 +
a1
2
‖x‖2 + a2 −

a1
2
‖x‖2

≤ C − a1
2
‖x‖2,

(3.10)

where C is a positive constant depending on a1, a2, Cf , ϑ. Plugging these estimates with Lemma
3.3 into (3.8) leads to

‖Yn+1‖2 ≤ (1 − a1h)‖P(Yn)‖2 + 2
√

2h 〈P(Yn), ξn+1〉 + 4h‖ξn+1‖2 + Cdh, (3.11)

which can be rewritten as follows,

1 + ‖Yn+1‖2 ≤ (1 − a1h)
(
1 + ‖P(Yn)‖2

)
(1 + Ξn+1) + Cdh, (3.12)
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and

Ξn+1 :=
2
√

2h 〈P(Yn), ξn+1〉
(1 − a1h) (1 + ‖P(Yn)‖2)︸ ︷︷ ︸

=:I1

+
4h‖ξn+1‖2

(1 − a1h) (1 + ‖P(Yn)‖2)︸ ︷︷ ︸
=:I2

. (3.13)

Following the binomial expansion theorem and taking the conditional mathematical expectation
with respect to Ftn on both sides of (3.12) show that,

E
[
(1 + ‖Yn+1‖2)p

∣∣Ftn

]

≤ (1 − a1h)p(1 + ‖P(Yn)‖2)pE
[
(1 + Ξn+1)

p
∣∣Ftn

]
︸ ︷︷ ︸

=:I1

+ C

p∑

ℓ=1

Cℓ
pd

ℓhℓ(1 − a1h)p−ℓ(1 + ‖P(Yn)‖2)p−ℓ
E
[
(1 + Ξn+1)

p−ℓ
∣∣Ftn

]

︸ ︷︷ ︸
=:I2

,

(3.14)

where Cℓ
p := p!/(ℓ!(p − ℓ)!) and C depends on a1, a2, Cf , ϑ, p. As a result, the analysis is divided

into the estimate of I1 and I2, respectively.
For the estimate of I1:

The key component of the estimate I1 is

(1 + ‖P(Yn)‖2)pE
[
(1 + Ξn+1)

p
∣∣Ftn

]
. (3.15)

We use the binomial expansion theorem again to deduce

E
[
(1 + Ξn+1)

p
∣∣Ftn

]
=

p∑

i=0

Ci
pE
[
Ξi
n+1

∣∣Ftn

]

= 1 + pE
[
Ξn+1

∣∣Ftn

]
+
p(p− 1)

2
E
[
Ξ2
n+1

∣∣Ftn

]
+
p(p− 1)(p− 2)

6
E
[
Ξ3
n+1

∣∣Ftn

]
+ ...

(3.16)

Obviously, the estimate for I1 is decomposed further into the following three steps.

Step I: estimate of E
[
Ξn+1

∣∣Ftn

]

Based on the property of the Gaussian random variable and the fact that ξn+1 is independent
of Ftn , we deduce

E
[
ξj,n+1

∣∣Ftn

]
= 0, E

[
|ξj,n+1|2

∣∣Ftn

]
= 1, j ∈ {1, . . . , d}, (3.17)

resulting in

E
[
Ξn+1

∣∣Ftn

]
=

4dh

(1 − a1h) (1 + ‖P(Yn)‖2) . (3.18)

Step II: estimate of E
[
Ξ2
n+1

∣∣Ftn

]

Recalling some power properties of the Gaussian random variable, we derive that, for ∀ℓ ∈ N,

E

[
(ξj,n+1)

2ℓ−1
∣∣Ftn

]
= 0, E

[
(ξj,n+1)

2ℓ
∣∣Ftn

]
= (2ℓ− 1)!!, ∀ n ∈ N, j ∈ {1, . . . , d},

(3.19)
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where (2ℓ− 1)!! := Πℓ
i=1(2ℓ− 1). As claimed before, one will observe

E
[
I1I2

∣∣Ftn

]
= 0. (3.20)

By (3.17), we immediately deduce that

E
[
(I1)

2
∣∣Ftn

]
=

8h‖P(Yn)‖2
(1 − a1h)2(1 + ‖P(Yn)‖2)2 ≤ 8h

(1 − a1h)2(1 + ‖P(Yn)‖2) . (3.21)

In addition, for any ℓ ∈ [2,∞) ∩ N, it holds that

E
[
|I2|ℓ

∣∣Ftn

]
=

4ℓ × (2ℓ− 1)!! × dℓhℓ

(1 − a1h)ℓ(1 + ‖P(Yn)‖2)ℓ . (3.22)

In summary, we have

E
[
Ξ2
n+1

∣∣Ftn

]
≤ 8h

(1 − a1h)2(1 + ‖P(Yn)‖2) +
48d2h2

(1 − a1h)2(1 + ‖P(Yn)‖2)2 . (3.23)

Step III: estimate of E
[
Ξℓ
n+1

∣∣Ftn

]
, ℓ ∈ [3, p] ∩ N

It follows from (3.19) and the Cauchy-Schwarz inequality that, for ℓ ∈ [3, p) ∩ N,

E
[
|I1|ℓ

∣∣Ftn

]
≤ C‖P(Yn)‖ℓE

[
‖ξn+1‖ℓ

∣∣Ftn

]

(1 − a1h)ℓ(1 + ‖P(Yn)‖2)ℓ

≤ Cdℓ/2hℓ/2

(1 − a1h)ℓ(1 + ‖P(Yn)‖2)ℓ/2 .
(3.24)

Bearing (3.22) and the fundamental inequality in mind, we deduce

E
[
Ξℓ
n+1

∣∣Ftn

]
= E

[
(I1 + I2)

ℓ
∣∣Ftn

]

≤ 2ℓ−1
(
E
[
|I1|ℓ

∣∣Ftn

]
+ E

[
|I2|ℓ

∣∣Ftn

] )

≤ Cdℓ/2hℓ/2

(1 − a1h)ℓ(1 + ‖P(Yn)‖2)ℓ/2 +
Cdℓhℓ

(1 − a1h)ℓ(1 + ‖P(Yn)‖2)ℓ .

(3.25)

Combining Step I∼Step III and the fact (1 − a1h)ℓ ≥ (1 − a1h)p, ℓ ∈ [1, p] ∩ N, yields,

I1 ≤ (1 − a1h)p(1 + ‖P(Yn)‖2)p
(

1 +
4p[d+ (p− 1)]dh

(1 − a1h) (1 + ‖P(Yn)‖2) +
24p(p− 1)d2h2

(1 − a1h)2(1 + ‖P(Yn)‖2)2

+

p∑

ℓ=3

Cdℓ/2hℓ/2

(1 − a1h)ℓ(1 + ‖P(Yn)‖2)ℓ/2 +
Cdℓhℓ

(1 − a1h)ℓ(1 + ‖P(Yn)‖2)ℓ

)

≤ (1 − a1h)p(1 + ‖P(Yn)‖2)p + Cdh(1 + ‖P(Yn)‖2)p−1 + Cd2h2(1 + ‖P(Yn)‖2)p−2

+

p∑

ℓ=3

Cdℓ/2hℓ/2(1 + ‖P(Yn)‖2)p−ℓ/2 + Cdℓhℓ(1 + ‖P(Yn)‖2)p−ℓ.

(3.26)
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Obviously, for any k ∈ [1, p] and ǫ1 > 0, adopting the Young inequality yields

Cdk(1 + ‖P(Yn)‖2)p−k ≤ ǫ1(1 + ‖P(Yn)‖2)p + Cǫ1d
p. (3.27)

Therefore, the estimate (3.26) can be rewritten as

I1 ≤ (1 − a1h)p(1 + ‖P(Yn)‖2)p + pǫ1h(1 + ‖P(Yn)‖2)p + Cǫ1d
ph (3.28)

For the estimate of I2:

In the same manner of the analysis of I1, with the dimension d≫ 1 and the step size h ∈ (0, 1)
in mind, one obtains the following rough estimate, for ℓ ∈ [1, p] ∈ N,

(1 − a1h)p−ℓdℓ(1 + ‖P(Yn)‖2)p−ℓ
E
[
(1 + Ξn+1)

p−ℓ
∣∣Ftn

]
≤ C

[
dℓ(1 + ‖P(Yn)‖2)p−ℓ + dp

]
, (3.29)

leading to

I2 ≤ Ch

p∑

ℓ=1

dℓ(1 + ‖P(Yn)‖2)p−ℓ + Chdp. (3.30)

Still, using the Young inequality infers, for ℓ ∈ [1, p] ∩ N and a sufficiently small constant ǫ2 > 0,

Chdℓ(1 + ‖P(Yn)‖2)p−ℓ ≤ ǫ2h(1 + ‖P(Yn)‖2)p + Cǫ2d
ph. (3.31)

Consequently, we derive the final estimate of I2 as below,

I2 ≤ pǫ2h(1 + ‖P(Yn)‖2)p + Cǫ2d
ph. (3.32)

Combining the estimates of I1 and I2:

Plugging the estimates of I1 and I2 and taking expectations on the both sides yield

E
[
(1 + ‖Yn+1‖2)p

]
≤
[
1 − a1h+ p(ǫ1 + ǫ2)h

]
E
[
(1 + ‖P(Yn)‖2)p

]
+ Cǫ1,ǫ2d

ph. (3.33)

Letting a1 − p(ǫ1 + ǫ2) =: C̃ > 0 and h ∈ (0,min{1/a1, 1}), we combine this with Lemma 3.3 to
show,

E
[
(1 + ‖Yn+1‖2)p

]
≤ (1 − C̃h)E

[
(1 + ‖Yn‖2)p

]
+ Cǫ1,ǫ2d

ph

= (1 − C̃h)n+1
E
[
(1 + ‖x0‖2)p

]
+

n∑

i=0

(
1 − C̃h

)i
Cǫ1,ǫ2d

ph

≤ e−C̃tn+1E
[
(1 + ‖x0‖2)p

]
+
Cǫ1,ǫ2

C̃
dp,

(3.34)

where we have used the fact that for any x > 0, 1 − x ≤ e−x.
Case II: for γ = 1
Similar to (3.9), recalling Lemma 3.3 and Assumption 2.4 with γ = 1, the following estimate

holds true,

2
√

2h3/2 〈f (P(Yn)) , ξn+1〉 ≤ a1h
2‖P(Yn)‖2 +

a1
C2

f

h2 +
4C2

f

a1
h‖ξn+1‖2, (3.35)

where the fundamental inequality (1 + ‖x‖)2 ≤ 2(1 + ‖x‖2), ∀x ∈ R
d, has been adopted and

ǫ̃ = a1/2C
2
f . By putting (3.35) into (3.8), one obviously obtains the estimate (3.11) as well, and

the rest of the proof follows much the same procedure as in case γ > 1. The proof is completed.
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4 Kolmogorov equation and regularization estimates

To carry out the error analysis, we introduce the function u(·, ·) : [0,∞)×R
d → R defined by, for

φ ∈ Cb(R
d),

u(t, x) := E [φ (Xx
t )] , (4.1)

and in the following we will show that u(·, ·) is the unique solution of the Kolmogorov equation
associated with SDE (1.2) as below,

∂tu(t, x) = Du(t, x)f(x) +

d∑

j=1

D2u(t, x)
(
ej , ej

)
, (4.2)

where {ej}j∈{1,··· ,d} is denoted as the orthonormal basis of R
d. In addition, let us revisit the

mean-square differentiability of random functions, quoted from [22, 27], as follows.

Definition 4.1. (Mean-square differentiable.) Let Ψ : Ω × R
d → R and ψi : Ω × R

d → R be
random functions satisfying

lim
τ1→0

E

[∣∣∣∣
1

τ1
[Ψ (x+ τ1ei) − Ψ(x)] − ψi(x)

∣∣∣∣
2
]

= 0, ∀i ∈ {1, 2, · · · , d}, (4.3)

where ei is the unit vector in R
d with the i−th element being 1. Then Ψ is called to be mean-square

differentiable, with ψ = (ψ1, . . . , ψd) being the derivative (in the mean-square differentiable sense)
of Ψ at x. Also denoting D(i)Ψ = ψi and DΨ(x) = ψ.

The above definition can be generalized to vector-valued functions in a component-wise manner.
As a result, for every t ∈ [0,∞), we take the function X

(·)
t : Rd → R

d, and write its derivative as
DXx

t ∈ L(Rd,Rd), D2Xx
t ∈ L(Rd, L(Rd,Rd)). The following lemma states some a priori estimates

of the mean-square derivative of solutions {Xx
t }t≥0.

Lemma 4.2. Let Assumptions 2.1, 2.2 and 2.4 hold. Then, for ∀t ∈ [0,∞) and some constants
ρ1, ρ2, ρ3 > 1 with 1/ρ1 + 1/ρ2 + 1/ρ3 = 1,

‖DXx
t v1‖ ≤ eLt ‖v1‖ , ∀x, v1 ∈ R

d, (4.4)
∥∥D2Xx

t (υ1, υ2)
∥∥
L2(Ω,Rd)

≤ Ce(3L+1/2)t sup
r∈[0,∞)

‖Pγ−2(X
x
r )‖L2ρ1 (Ω,R) ‖υ1‖L2ρ2 (Ω,Rd) ‖υ2‖L2ρ3 (Ω,Rd) ,

∀x ∈ R
d, υ1 ∈ L2ρ2(Ω,Rd), υ2 ∈ L2ρ3(Ω,Rd),

(4.5)
where P(·)(·) : R× R

d → [1,∞) is defined as

Pγ̄(x) := max {1, (1 + ‖x‖)γ̄} , ∀γ̄ ∈ R, ∀x ∈ R
d, (4.6)

and L > 0 comes from Remark 2.3.

The proof of Lemma 4.2 is deferred to Appendix B.1. We remark that in the existing result with
the strongly-convex condition, one can prove the mean-square derivatives of solutions {Xx

t }t≥0

decreasing exponentially in time t and use the chain rule to obtain the regularization of u(t, ·)
and its derivatives for some smooth enough test functions (see [22]). However, such a technique
would be invalid in our setting. As Lemma 4.2 has shown, the derivatives of {Xx

t }t≥0 increase
exponentially in time. On the other hand, the chain rule breaks down for φ ∈ Cb(R

d). Here we
revisit the Bismut-Elworthy-Li formula (see [5]).
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Lemma 4.3. (Bismut-Elworthy-Li formula [5,11].) Let {Xx
t }t≥0 be the solutions of the Langevin

SDE (1.2) with the initial state Xx
0 = x. If {Xx

t }t≥0 is mean-square differentiable, then for any
ϕ ∈ Cb(R

d), t > 0 and x, v ∈ R
d,

〈
D
(
Ptϕ(x)

)
, v
〉

=
1√
2t
E

[∫ t

0

〈
DXx

s v, dWs

〉
ϕ (Xx

t )

]
, (4.7)

where Pt(·) defines a transition semigroup of the corresponding SDEs (1.2) as Ptϕ(x) = E[ϕ(Xx
t )].

Recalling the fact that Ptφ(x) = u(t, x) by (4.1), the Bismut-Elworthy-Li formula paves the
way to presenting an expression for the derivatives of u(t, ·) where it only requires φ ∈ Cb(R

d).
Combining with Lemma 4.2 and the Bismut-Elworthy-Li formula, we are now in the position to
obtain some regularization estimates with regard to the derivatives of u(t, ·), t > 0 .

Theorem 4.4. If Assumptions 2.1, 2.2 and 2.4 hold, then the function u(t, ·) ∈ C2
b (Rd). Moreover,

for t ∈ (0, 1], there exist some positive constants ρ1, ρ2, ρ3 > 1 with 1/ρ1 + 1/ρ2 + 1/ρ3 = 1, such
that

|Du(t, x)v1| ≤
C√
t
‖v1‖, ∀x, v1 ∈ R

d, (4.8)

and

∥∥D2u(t, x)(υ1, υ2)
∥∥
L1(Ω,R)

≤ C

t
sup

r∈[0,∞)

‖Pγ−2(X
x
r )‖L2ρ1 (Ω,R) ‖υ1‖L2ρ2 (Ω,Rd) ‖υ2‖L2ρ3 (Ω,Rd) ,

∀x ∈ R
d, υ1 ∈ L2ρ2(Ω,Rd), υ2 ∈ L2ρ3(Ω,Rd).

(4.9)
For t ∈ (1,∞), there exist some constants ρ1, ρ2, ρ3 > 1 with 1/ρ1 + 1/ρ2 + 1/ρ3 = 1 such that

|Du(t, x)υ1| ≤ Ce−C(t−1) sup
r∈[0,∞)

∥∥ (1 + ‖Xx
r ‖)
∥∥
L4(Ω,R)

‖v1‖ ∀x ∈ R
d, v1 ∈ R

d, (4.10)

and
∥∥D2u(t, x)(υ1, υ2)

∥∥
L1(Ω,R)

≤ Ce−C(t−1) sup
r∈[0,∞)

∥∥ (1 + ‖Xx
r ‖)
∥∥
L4(Ω,R)

‖Pγ−2(X
x
r )‖L2ρ1 (Ω,R) ‖υ1‖L2ρ2 (Ω,Rd) ‖υ2‖L2ρ3 (Ω,Rd) ,

∀x ∈ R
d, υ1 ∈ L2ρ2(Ω,Rd), υ2 ∈ L2ρ3(Ω,Rd).

(4.11)

Proof of Theorem 4.4. The Bismut-Elworthy-Li formula (see Lemma 4.3 or [5,11]) states that for
some function Φ : Rd → R belongs to Cb(R

d), there exists K(Φ, x) > 0, which depends on Φ and
x, such that,

|Φ(x)| ≤ K(Φ, x), ∀x ∈ R
d, (4.12)

then we can calculate the first and the second derivative of

U(t, x) := E[Φ(Xx
t )] (4.13)

with respect to x. Indeed, we have

DU(t, x)v1 =
1√
2t
E

[∫ t

0

〈ηv1(s, x), dWs〉Φ (Xx
t )

]
. (4.14)
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By Lemma 4.2, the Hölder inequality and the Itô isometry, we obtain that, for ∀v1 ∈ R
d,

∣∣DU(t, x)v1
∣∣ ≤ ‖K(Φ, Xx

t )‖L2(Ω,R)√
2t

∥∥∥
∫ t

0

〈ηv1(s, x), dWs〉
∥∥∥
L2(Ω,R)

=
‖K(Φ, Xx

t )‖L2(Ω,R)√
2t

(∫ t

0

‖ηv1(s, x)‖2L2(Ω,Rd) ds

)1/2

≤ ‖K(Φ, Xx
t )‖L2(Ω,R)√
2t

(∫ t

0

e2Lsds

)1/2

‖v1‖

≤ C
‖K(Φ, Xx

t )‖L2(Ω,R)

t

(
e2Lt − 1

)1/2‖v1‖.

(4.15)

Before moving on, we remark that the function u(t, ·), t > 0, in (4.2) is Lipschitz continuous.
Recalling (4.15), one can set Φ = φ ∈ Cb(R

d) with K(Φ, x) = ‖φ‖0 to obtain

|u(t, x1) − u(t, x2)| ≤ C(t) · ‖x1 − x2‖, ∀x1, x2 ∈ R
d, t > 0, (4.16)

with the Lipschitz constant C(t) = O(et/t), depending on ‖φ‖0 and t. This in turn enables the
derivation of the strong Feller property of u(t, ·) corresponding to the Langevin SDEs (1.2).

Going back to the proof, the Markov property of SDE (1.2) has been used to imply

U(t, x) = E
[
U
(
t/2, Xx

t/2

)]
, (4.17)

which leads to the following expression with respect to DU(t, ·),

DU(t, x)v1 =
2√
2t
E

[∫ t
2

0

〈ηv1(s, x), dWs〉U
(
t/2, Xx

t/2

)
]
, (4.18)

which directly implies a formula for the second derivative of U(t, ·) as follows,

D2U(t, x)(v1, v2) =
2√
2t
E

[∫ t
2

0

〈ξv1,v2(s, x), dWs〉U
(
t/2, Xx

t/2

)
]

+
2√
2t
E

[∫ t
2

0

〈ηv1(s, x), dWs〉DU
(
t/2, Xx

t/2

)
ηv2(t/2, x)

]
.

(4.19)

Equivalently, due to (4.15), Lemma 4.2, the Hölder inequality and the Itô isometry, one has,
for ρ1, ρ2, ρ3 > 1 with 1/ρ1 + 1/ρ2 + 1/ρ3 = 1 and some random variables υ1 ∈ L2ρ2(Ω,Rd),
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υ2 ∈ L2ρ3(Ω,Rd), denoting X := Xx
t/2 for simplicity,

∥∥D2U(t, x)(υ1, υ2)
∥∥
L1(Ω,R)

≤ 2√
2t

∥∥∥
∫ t

2

0

〈ξυ1,υ2(s, x), dWs〉
∥∥∥
L2(Ω,R)

∥∥∥U (t/2,X)
∥∥∥
L2(Ω,R)

+
2√
2t

∥∥∥
∫ t

2

0

〈ηυ1(s, x), dWs〉
∥∥∥
L2(Ω,R)

‖DU (t/2,X) ηυ2(t/2, x)‖L2(Ω,R)

≤ C
‖K(Φ,X)‖L2(Ω,R)

t

(∫ t
2

0

‖ξυ1,υ2(s, x)‖2L2(Ω,Rd) ds

)1/2

+
‖K(Φ, XX

t/2)‖L2(Ω,R)

t2
(
eLt − 1

)1/2
(∫ t

2

0

‖ηυ1(s, x)‖2L2(Ω,Rd) ds

)1/2

‖ηυ2(t/2, x)‖L2(Ω,Rd)

≤ C
‖K(Φ,X)‖L2(Ω,R)

t

(
e(3L+1/2)t − 1

)1/2
sup

r∈[0,∞)

‖Pγ−2(X
x
r )‖L2ρ1 (Ω,R) ‖υ1‖L2ρ2 (Ω,Rd) ‖υ2‖L2ρ3 (Ω,Rd)

+ C
‖K(Φ, XX

t/2)‖L2(Ω,R)

t2
(
eLt − 1

)
eLt/2 ‖υ1‖L2(Ω,Rd) ‖υ2‖L2(Ω,Rd) .

(4.20)
The proof will be separated into two cases in accordance with the range of time t > 0.
Case I: t ∈ (0, 1]

Here we choose the function Φ = φ with K(Φ, x) = ‖φ‖0. Then it follows immediately from
(4.15), (4.20) and the Hölder inequality that

|Du(t, x)v1| ≤
C√
t
‖v1‖, ∀x, v1 ∈ R

d, (4.21)

and

∥∥D2u(t, x)(υ1, υ2)
∥∥
L1(Ω,R)

≤ C

t
sup

r∈[0,∞)

‖Pγ−2(X
x
r )‖L2ρ1 (Ω,R) ‖υ1‖L2ρ2 (Ω,Rd) ‖υ2‖L2ρ3 (Ω,Rd) ,

∀x ∈ R
d, υ1 ∈ L2ρ2(Ω,Rd), υ2 ∈ L2ρ3(Ω,Rd),

(4.22)
for some constant C depends on ‖φ‖0, L and ρ1, ρ2, ρ3 > 1 meeting 1/ρ1 + 1/ρ2 + 1/ρ3 = 1, where
we have also used the fact that ect − 1 ≤ 2ct, ∀c > 0, and 1/

√
t ≤ 1/t, t ∈ (0, 1].

Case II: t ∈ (1,∞)
Recalling (4.1), when t > 1, the Markov property immediately implies that

u(t, x) = E[u(t− 1, Xx
1 )], (4.23)

and from (3.2) we arrive at
∣∣∣∣u(t− 1, x) −

∫

Rd

φ(x)π(dx)

∣∣∣∣ ≤ Ce−C(t−1)
(
1 + E

[
‖x‖2

])
. (4.24)

Motivated by [3], here we choose

Φ(x) := u(t− 1, x) −
∫

Rd

φ(x)π(dx) (4.25)
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with
K(Φ, x) = Ce−C(t−1)(1 + E[‖x‖2]). (4.26)

Then, by the Markov property again, one has

E [Φ(Xx
1 )] = E [u(t− 1, Xx

1 )] −
∫

Rd

φ(x)π(dx)

= u(t, x) −
∫

Rd

φ(x)π(dx)

(4.27)

leading to

u(t, x) = E[Φ(Xx
1 )] +

∫

Rd

φ(x)π(dx) = U(1, x) +

∫

Rd

φ(x)π(dx). (4.28)

Equipped with the estimates (4.15), (4.20) and (4.26) at t = 1, we obviously attain

∣∣Du(t, x)v1
∣∣ ≤ Ce−C(t−1) sup

r∈[0,∞)

∥∥ (1 + ‖Xx
r ‖)
∥∥
L4(Ω,R)

‖v1‖, ∀x, v1 ∈ R
d

(4.29)

and
∥∥D2u(t, x)(υ1, υ2)

∥∥
L1(Ω,R)

≤ Ce−C(t−1) sup
r∈[0,∞)

∥∥ (1 + ‖Xx
r ‖)
∥∥
L4(Ω,R)

‖Pγ−2(X
x
r )‖L2ρ1 (Ω,R) ‖υ1‖L2ρ2 (Ω,Rd) ‖υ2‖L2ρ3 (Ω,Rd) ,

∀x ∈ R
d, υ1 ∈ L2ρ2(Ω,Rd), υ2 ∈ L2ρ3(Ω,Rd),

(4.30)
where ρ1, ρ2, ρ3 > 1 with 1/ρ1 + 1/ρ2 + 1/ρ3 = 1. Thus, the proof is completed.

We close this section by the following remark.

Remark 4.5. Owing to Lemma 4.4, we obtain that given some test function φ ∈ Cb(R
d) and t > 0,

the function u(t, ·) ∈ C2
b (Rd). Then u(t, x) is the unique solution of the Kolmogorov equation (4.2)

(see [5, Theorem 1.6.2]).

5 Proof of Theorem 2.6: time-independent error analysis

Thanks to (3.5), the total variation distance between the law of the PLMC algorithm and the
target distribution induced by (1.2) boils down to the weak error analysis of the PLMC scheme
(2.17) and the Langevin SDEs (1.2) as follows, setting T = Nh,

‖Π(Y x0
N ) − π‖TV ≤

∥∥Π(Y x0
N ) − Π(Xx0

T )
∥∥
TV

+ ‖Π(Xx0
T ) − π‖TV

= sup
φ∈Cb(Rd), ‖φ‖0≤1

∣∣E [φ(Xx0
T )] − E [φ(Y x0

N )]
∣∣+ ‖Π(Xx0

T ) − π‖TV

≤ sup
φ∈Cb(Rd), ‖φ‖0≤1

∣∣E [φ(Xx0
T )] − E [φ(Y x0

N )]
∣∣+ Ce−CNh

(
1 + E

[
‖x0‖2

])
.

(5.1)

Before proceeding any further, it is important to mention that the continuity of the PLMC al-
gorithm (2.17) throughout the entire time interval cannot be guaranteed due to the restriction
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imposed on such scheme, which prevents it from leaving a sphere with radius depending on the
timestep size, at each iteration. To address this issue and make full use of the Kolmogorov equa-
tions, we introduce the continuous-time version of the PLMC algorithm (2.17) as follows, for
s ∈ [tn, tn+1], n ∈ {0, 1, . . . , N − 1},

{
Y

n(s) = Y
n(tn) + f (Yn(tn)) (s− tn) +

√
2(Ws −Wtn)

Y
n(tn) = P(Yn),

(5.2)

and present some regular estimates of the process {Yn(s)}s∈[tn,tn+1].

Lemma 5.1. Let Assumptions 2.1, 2.2 and 2.4 hold. Let {Yn(s)}s∈[tn,tn+1] be defined as (5.2),
n ∈ {0, 1, . . . , N − 1}, N ∈ N. Then, for ∀p ∈ [1,∞), the following estimates hold true,

E

[∥∥Yn(s)
∥∥2p
]
≤ Cdp

(
1 + E

[
‖X0‖2p

])
. (5.3)

and
E

[∥∥Yn(s) − Y
n(tn)

∥∥2p
]
≤ Chp sup

0≤r≤N
E
[
(1 + ‖Yr‖)2pγ

]
,

E

[∥∥f
(
Y

n(s)
)
− f

(
Y

n(tn)
)∥∥2p

]
≤ Chp sup

0≤r≤N
E
[
(1 + ‖Yr‖)4pγ−2p] .

(5.4)

Moreover, we would like to present the error estimate between the random variable ζ ∈ R
d and

the projected version P(ζ) ∈ R
d, which is defined by (2.17).

Lemma 5.2. Let ζ ∈ L4γ+1(Ω,Rd), where γ is from Assumption 2.1. Let P(ζ) be defined as
(2.17). Then we have

E [‖ζ − P(ζ)‖] ≤ 2ϑ−4γd−2h2E
[
‖ζ‖4γ+1

]
. (5.5)

Especially, when γ = 1, ζ − P(ζ) = 0 for ∀ζ ∈ R
d.

We point our that both Lemma 5.1 and Lemma 5.2 are direct consequences in [22], for com-
pleteness, the proof of Lemma 5.2 is also shown in Appendix C.1. Up to this stage, we have
established sufficient machinery to obtain the uniform weak error estimate of the Langevin SDE
(1.2) and the PLMC scheme (2.17) as below.

Theorem 5.3. Let Assumptions 2.1, 2.2 and 2.4 hold. Let {Xx0
t }t≥0 and {Y x0

n }n≥0 be the solutions
of SDE (1.2) and the PLMC algorithm (2.17) with the same initial state Xx0

0 = Y x0
0 = x0,

respectively. Also, let h ∈ (0,min{1/a1, 1}), where a1 is given in Assumption 2.4, be the uniform
timestep. Then for some test function φ ∈ Cb(R

d) and any terminal time T such that T = Nh,

∣∣E [φ(Y x0
N )] − E [φ(Xx0

T )]
∣∣ ≤ Cdmax{3γ/2,2γ−1}h |ln h| . (5.6)

Especially, for the Lipschitz drift f , i.e. γ = 1, let {Ỹ x0
n }n≥0 be the solutions of the Euler-

Maruyama method with Ỹ x0
0 = x0, then

∣∣∣E
[
φ
(
Ỹ x0
N

)]
− E

[
φ
(
Xx0

T

)] ∣∣∣ ≤ Cd3/2h |ln h| . (5.7)
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Proof of Theorem 5.3. By the telescoping argument, (5.2) and (4.1), the weak error can be rewrit-
ten as

∣∣E [φ(Y x0
N )] − E [φ(Xx0

T )]
∣∣ =

∣∣u(0, Y x0
N ) − u(T, x0)

∣∣

=

∣∣∣∣∣

N−1∑

n=0

E
[
u(T − tn+1, Yn+1)

]
− E

[
u(T − tn, Yn)

]
∣∣∣∣∣

≤
∣∣∣∣∣

N−1∑

n=0

E
[
u
(
T − tn,Y

n(tn)
)]

− E
[
u
(
T − tn, Yn

)]
∣∣∣∣∣

︸ ︷︷ ︸
:=J1

+

∣∣∣∣∣

N−1∑

n=0

E
[
u
(
T − tn+1,Y

n(tn+1)
)]

− E
[
u
(
T − tn,Y

n(tn)
)]
∣∣∣∣∣

︸ ︷︷ ︸
:=J2

(5.8)

where we have used the fact that Y
n(tn+1) = Yn+1 due to (5.2). Furthermore, in the following,

setting N1 ∈ N such that tN1 = N1h = 1. We deal first with the case γ > 1.
Step I: γ > 1

The estimate of J1 can be derived by Lemma 3.4, Theorem 4.4, Lemma 5.2 and the Taylor
expansion as follows, setting υ1(r̄) := Yn + r̄

(
Y

n(tn) − Yn
)
, r̄ ∈ [0, 1],

J1 ≤
N−N1−1∑

n=0

∣∣∣∣E
[∫ 1

0

Du
(
T − tn, υ1(r̄)

)(
Y

n(tn) − Yn
)
dr̄

]∣∣∣∣

+
N−1∑

n=N−N1

∣∣∣∣E
[∫ 1

0

Du
(
T − tn, υ1(r̄)

)(
Y

n(tn) − Yn
)
dr̄

]∣∣∣∣

≤ C

N−N1−1∑

n=0

e−C(T−tn−1) sup
r∈[0,T ]

∥∥ (1 +
∥∥Xυ1(r̄)

r

∥∥) ∥∥
L4(Ω,R)

‖Yn(tn)) − Yn‖L1(Ω,Rd)

+ C
N−1∑

n=N−N1

(
1√

T − tn

)
‖Yn(tn) − Yn‖L1(Ω,Rd)

≤ Cd−2 sup
0≤r≤N

(
1 + ‖Yr‖L4(Ω,Rd)

)(
1 + ‖Yr‖4γ+1

L4γ+1(Ω,Rd)

)
h

≤ Cd2γ−1h,

(5.9)

where, due to Lemma 5.2, it is obvious to obtain that

N−N1−1∑

n=0

e−C(T−tn−1)h and

N−1∑

n=N−N1

(
1√

T − tn

)
h (5.10)

are uniformly bounded with respect to T .
Regarding J2, bearing the Itô formula, the corresponding Kolmogorov equation (4.2) and the
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conditional expectation argument in mind, we have

J2 =

∣∣∣∣∣

N−1∑

n=0

E

[∫ tn+1

tn

Du
(
T − s,Yn(s)

)(
f
(
Y
n(tn)

)
− f

(
Y
n(s)

))
ds

]∣∣∣∣∣

=

∣∣∣∣∣

N−1∑

n=0

E

[∫ tn+1

tn

Du
(
T − s,Yn(tn)

)(
f
(
Y
n(tn)

)
− f

(
Y
n(s)

))
ds

]∣∣∣∣∣
︸ ︷︷ ︸

=:J2,1

+

∣∣∣∣∣

N−1∑

n=0

E

[∫ tn+1

tn

(
Du
(
T − s,Yn(s)

)
−Du

(
T − s,Yn(tn)

))(
f
(
Y
n(tn)

)
− f

(
Y
n(s)

))
ds

]∣∣∣∣∣
︸ ︷︷ ︸

=:J2,2

(5.11)

Recalling the Taylor expansion, we note that,

f
(
Y

n(s)
)

= f
(
Y

n(tn)
)

+Df
(
Y

n(tn)
)(
Y

n(s) − Y
n(tn)

)
+ Rf

(
Y

n(s),Yn(tn)
)

= f
(
Y

n(tn)
)

+Df
(
Y

n(tn)
) [
f (Yn(tn)) (s− tn) +

√
2(Ws −Wtn)

]

+ Rf

(
Y

n(s),Yn(tn)
)
,

(5.12)

where

Rf

(
Y

n(s),Yn(tn)
)

:=

∫ 1

0

(
Df

(
Y

n(tn) + r
(
Y

n(s) − Y
n(tn)

))
−Df

(
Y

n(tn)
))(

Y
n(s) − Y

n(tn)
)

dr.
(5.13)

Moreover, in light of Assumption 2.1, Lemma 3.4 and Lemma 5.1, one can further adopt the
Hölder inequality to imply

∥∥Rf

(
Y
n(s),Yn(tn)

)∥∥
L2(Ω,Rd)

≤ C

∫ 1

0

∥∥∥
(
1 + ‖rYn(s) + (1− r)Yn(tn)‖+ ‖Yn(tn)‖

)γ−2 ‖Yn(s)− Y
n(tn)‖2

∥∥∥
L2(Ω,R)

dr

≤ C

(
1 + sup

0≤r≤N
‖Yr‖max{2γ,3γ−2}

Lmax{4γ,6γ−4}(Ω,Rd)

)
h

≤ Cdmax{γ,3γ/2−1}h.

(5.14)

Regarding J2,1, using (5.2), the Taylor expansion and a conditional expectation argument gives

J2,1 =

∣∣∣∣−
N−1∑

n=0

E

[ ∫ tn+1

tn

Du
(
T − s,Yn(tn)

)(
Df
(
Y

n(tn)
)
f (Yn(tn)) (s− tn)

+ Rf

(
Y

n(s),Yn(tn)
))

ds
]∣∣∣∣,

(5.15)

where we derive from (2.12) and (2.13) that

∥∥Df
(
Y

n(tn)
)
f (Yn(tn)) (s− tn)

∥∥
L2(Ω,Rd)

≤ C

(
1 + sup

0≤r≤N
‖Yr‖2γ−1

L4γ−2(Ω,Rd)

)
h ≤ Cdγ−1/2h. (5.16)
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Using Lemma 3.1, Lemma 3.4, Theorem 4.4, (5.14) and (5.16) yields,

J2,1 ≤ Cdmax{γ,3γ/2−1}

N−N1−1∑

n=0

∫ tn+1

tn

e−C(T−s−1)ds sup
r1∈[0,T ]

∥∥∥
(

1 +
∥∥XY

n(tn)
r1

∥∥
)∥∥∥

L4(Ω,R)
h

+ Cdmax{γ,3γ/2−1}
N−1∑

n=N−N1

∫ tn+1

tn

1√
T − s

ds h

≤ Cdmax{γ+1/2,(3γ−1)/2}h.

(5.17)

For the estimate of J2,2, which is rather technical, to overcome the possible singularities, we need
to break down the time interval (0, T ] into (0, h], [h, 1] and [1, T ]. Applying the Taylor expansion
to Du(t, ·) leads to, for υ2(r̄) := Y

n(tn) + r̄(Yn(s) − Y
n(tn)), r̄ ∈ [0, 1],

J2,2

≤
N−N1−1∑

n=0

∣∣∣∣E
[∫ tn+1

tn

∫ 1

0
D2u

(
T − s, υ2(r̄)

)(
Y
n(s)− Y

n(tn), f
(
Y
n(tn)

)
− f

(
Y
n(s)

))
dr̄ds

]∣∣∣∣
︸ ︷︷ ︸

=:J2,2,1

+

N−2∑

n=N−N1

∣∣∣∣E
[∫ tn+1

tn

∫ 1

0
D2u

(
T − s, υ2(r̄)

)(
Y
n(s)− Y

n(tn), f
(
Y
n(tn)

)
− f

(
Y
n(s)

))
dr̄ds

]∣∣∣∣
︸ ︷︷ ︸

=:J2,2,2

+

∣∣∣∣E
[∫ T

T−h

(
Du
(
T − s,Yn(s)

)
−Du

(
T − s,Yn(tn)

))(
f
(
Y
n(tn)

)
− f

(
Y
n(s)

))
ds

]∣∣∣∣ .
︸ ︷︷ ︸

=:J2,2,3

(5.18)

By Theorem 4.4, we have

J2,2,1 ≤ C sup
r∈[0,T ]

∥∥ (1 +
∥∥Xυ2(r̄)

r

∥∥) ∥∥
L4(Ω,R)

∥∥Pγ−2

(
Xυ2(r̄)

r

)∥∥
L2ρ1 (Ω,R)

×

N−N1−1∑

n=0

∫ tn+1

tn

e−C(T−s−1) ‖Yn(s) − Y
n(tn)‖L2ρ2 (Ω,Rd)

∥∥f
(
Y

n(tn)
)
− f

(
Y

n(s)
)∥∥

L2ρ3 (Ω,Rd)
ds.

(5.19)
With the same argument as the estimate of J2,2,1, one derives from Theorem 4.4 to imply

J2,2,2 ≤ C sup
r∈[0,T ]

∥∥ (1 +
∥∥Xυ2(r̄)

r

∥∥) ∥∥
L4(Ω,R)

∥∥Pγ−2

(
Xυ2(r̄)

r

)∥∥
L2ρ1 (Ω,R)

×

N−2∑

n=N−N1

∫ tn+1

tn

1

T − s
‖Yn(s) − Y

n(tn)‖L2ρ2 (Ω,Rd)

∥∥f
(
Y

n(tn)
)
− f

(
Y

n(s)
)∥∥

L2ρ3 (Ω,Rd)
ds.

(5.20)

In the following, moving on to the estimate of J2,2,1 and J2,2,2, respectively, different range of γ
deserves to be considered carefully.
Case I: 1 ≤ γ ≤ 2:
If 1 ≤ γ ≤ 2, taking ρ1 = ∞, ρ2 = (3γ − 1)/γ and ρ3 = (3γ − 1)/(2γ − 1), with the aid of Lemma
3.1, Lemma 3.4, and Lemma 5.1 shows

J2,2,1 ≤ C
N−N1−1∑

n=0

∫ tn+1

tn

e−C(T−s−1)ds sup
0≤r≤N

(
1 + ‖Yr‖3γ−1

L6γ−2(Ω,Rd)

)(
1 + ‖Yr‖L4(Ω,Rd)

)
h ≤ Cd3γ/2h.

(5.21)
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Regarding J2,2,2, one deduces

J2,2,2 ≤ C
N−2∑

n=N−N1

∫ tn+1

tn

1

T − s
ds sup

0≤r≤N

(
1 + ‖Yr‖3γ−1

L6γ−2(Ω,Rd)

)(
1 + ‖Yr‖L4(Ω,Rd)

)
h ≤ Cd3γ/2h |ln h|

(5.22)
where

N−2∑

n=N−N1

∫ tn+1

tn

1

T − s
ds =

∫ 1

h

1

s
ds = |ln h| . (5.23)

Case II: γ > 2:
If γ > 2, taking ρ1 = (4γ − 3)/(γ − 2), ρ2 = (4γ − 3)/γ and ρ3 = (4γ − 3)/(2γ − 1) with Lemma
5.1 yields

J2,2,1 ≤ C

N−N1−1∑

n=0

∫ tn+1

tn

e−C(T−s−1)ds sup
0≤r≤N

(
1 + ‖Yr‖4γ−3

L8γ−6(Ω,Rd)

)(
1 + ‖Yr‖L4(Ω,Rd)

)
h ≤ Cd2γ−1h.

(5.24)
For J2,2,2, one infers

J2,2,2 ≤ C
N−2∑

n=N−N1

∫ tn+1

tn

1

T − s
ds sup

0≤r≤N

(
1 + ‖Yr‖4γ−3

L8γ−6(Ω,Rd)

)(
1 + ‖Yr‖L4(Ω,Rd)

)
h ≤ Cd2γ−1h |ln h| .

(5.25)
We are now in a position to present the estimate of J2,2,3 as follows

J2,2,3 ≤
∣∣∣∣E
[∫ T

T−h

Du
(
T − s,Yn(s)

)(
f
(
Y

n(tn)
)
− f

(
Y

n(s)
))

ds

]∣∣∣∣

+

∣∣∣∣E
[∫ T

T−h

Du
(
T − s,Yn(tn)

(
f
(
Y

n(tn)
)
− f

(
Y

n(s)
))

ds

]∣∣∣∣ .
(5.26)

We can deduce from Lemma 3.4, Theorem 4.4 and Lemma 5.1 that

J2,2,3 ≤ C

∫ T

T−h

1√
T − s

ds

(
1 + sup

0≤r≤N
‖Yr‖2γ−1

L4γ−2(Ω,Rd)

)
h1/2 ≤ Cdγ−1/2h. (5.27)

Combining all the estimates of J2,2,1 to J2,2,3 yields

J2,2 ≤ Cdmax{3γ/2,2γ−1}h |ln h| . (5.28)

Gathering (5.9), (5.17) and (5.28) together completes the proof of (5.6).
Step II: γ = 1:

If γ = 1, the LMC algorithm, i.e. the Euler-Maruyama scheme (1.3), is equivalent to the
PLMC algorithm (2.17). Recalling Lemma 5.2, one will arrive at

J1 = 0 (5.29)

in (5.8). In conjunction with (5.17) and (5.28) with γ = 1, the proof of (5.7) is completed

To conclude, the proof of Theorem 2.6 is obtained obviously due to (5.1).

22



6 Numerical experiment

In this section, some numerical results are performed to verify the theoretical analysis above. We
illustrate our finding via the drift of the corresponding double well model as follows,

f(x) = αx− β‖x‖2x, α, β > 0, ∀x ∈ R
d. (6.1)

Numerical parameters. Let α = 1, β = 4, the initial condition X0 = 0 ∈ R
d. We fix

a terminal time T = 6 and five different stepsizes h = 2−5, 2−6, 2−7, 2−8, 2−9. Here we focus on
the convergence analysis with dimension d ∈ {6, 10, 50, 100} with the parameter of the PLMC
algorithm (2.17) being chosen as ϑ = 1. The empirical mean of E [φ(XT )] is estimated by a Monte
Carlo approximation, involving 3,000 independent trajectories.

Test functions. We here construct the indicator function and step function as, for ∀x ∈ R
d.

φ1(x) := 1‖x‖∈(0,1/2)∪(3/2,2)∪(5/2,3) and φ2(x) :=





0 ‖x‖ ∈ [0, 1/2),
1 ‖x‖ ∈ [1/2, 1),

1/2 ‖x‖ ∈ [1, 3/2),
−1 ‖x‖ ∈ [3/2, 2),
1/4 ‖x‖ ∈ [2, 5/2),
−1/2 ‖x‖ ∈ [5/2,∞), .

(6.2)

Along this section, we consider the following four test functions

φ(x) ∈ {φ1(x), e−‖x‖, φ2(x), arctan(‖x‖)}, ∀x ∈ R
d. (6.3)

Obviously, all φ(x) ∈ Bb(R
d) with ‖φ‖0 = 1.

Reference solutions. Here we choose a convergent modified tamed Langevin Monte Carlo
(MTLMC) algorithm [20]

Y n+1 = Y n +
αY n − β‖Y n‖2Y n

(1 + h‖Y n‖6)1/2
h+

√
2hξn+1, Y 0 = X0, (6.4)

with a fine timestep href = 2−13 in order to represent the target distribution.
Density test. Before proceeding on, we would like to make sure that the choice of terminal

time T = 6 is suitable. To do so, the empirical distributions at T = 6 of the first components Y (1)

and Y
(1)

when d = 10 using the uniform stepsize h = 2−13 are chosen as an example, which can
be found in Figure 1. As Figure 1 has illustrated that the normalised histogram plots of samples
as well as the marginal probability density curves generated by the PLMC algorithm (2.17) and
the MTLMC algorithm (6.4) are pretty close so that the choice of time T = 6 is appropriate.

Convergence test. Moving on to the convergence analysis, we run the PLMC algorithm (2.17)
for the Langevin SDEs with drift (6.1) by different stepsizes and dimension d ∈ {6, 10, 50, 100}
till T = 6. Further, the exact solutions are represented by the MTLMC algorithm (6.4) at a fine
stepsize href = 2−13. The reference lines of slope 0.5 and 1 are presented as well. From Figure
2, Figure 3, Figure 4 and Figure 5, it is natural to obtain that the convergence rate under the
total variation distance with d ∈ {6, 10, 50, 100} is of order 1. Also, all weak errors are reported
in Table 1, Table 2, Table 3 and Table 4.
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Figure 1: Probability density of the first component of the double-well model.

Weak errors for d = 6
h\φ φ1(x) exp(−‖x‖) φ2(x) arctan(‖x‖)
2−5 3.13e-02 8.64e-04 3.83e-02 1.25e-03
2−6 1.33e-02 5.36e-04 1.68e-02 7.63e-04
2−7 6.00e-03 1.95e-04 8.00e-03 2.81e-04
2−8 3.00e-03 1.14e-04 4.12e-03 1.63e-04
2−9 1.33e-03 5.19e-05 1.83e-03 7.39e-05

Table 1: Weak errors of PLMC algorithm for the double
well model (d = 6)
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Weak convergence rate of the projected Langevin Monte Carlo algorithm (d=6)
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Figure 2: Weak convergence rates of PLMC algorithm for
the double well model (d = 6)
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Weak errors for d = 10
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Figure 4: Weak convergence rates of PLMC algorithm for
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Table 4: Weak errors of PLMC algorithm for the double
well model (d = 100)
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Figure 5: Weak convergence rates of PLMC algorithm for
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[9] A. Durmus and É. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. The Annals of Applied Probability, 27(3):1551–1587, 2017.
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A Proof of Lemmas in Section 3

A.1 Proof of Lemma 3.1

Proof of Lemma 3.1. Applying the Itô formula to ecpt(ǫ3 + ‖Xt‖2)p, for some constants c ∈ (0, a1)
and ǫ3 > 0, with the Cauchy-Schwarz inequality shows,

ecpt
(
ǫ3 + ‖Xt‖2

)p

≤ (ǫ3 + ‖x0‖2)p + cp

∫ t

0

ecps
(
ǫ3 + ‖Xs‖2

)p
ds+ 2p

∫ t

0

ecps
(
ǫ3 + ‖Xs‖2

)p−1 〈Xs, f(Xs)〉 ds

+ 2
√

2p

∫ t

0

ecps
(
ǫ3 + ‖Xs‖2

)p−1
dWs + 2p(2p− 1)d

∫ t

0

ecps
(
ǫ3 + ‖Xs‖2

)p−1
ds.

(A.1)
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For γ > 1, taking expectations on the both sides of (A.1) with Assumption 2.4 and letting ǫ3 → 0+

yield

ecptE
[
‖Xt‖2p

]

≤ E
[
‖x0‖2p

]
+ pE

[∫ t

0

ecps
[
− a1‖Xs‖2p+γ−1 + c‖Xs‖2p + (4pd− 2d+ a2)‖Xs‖2p−2

]
ds

]
.

(A.2)

Using the Young inequality

ab2p−2 ≤ 1

p
ap +

p− 1

p
b2p, (A.3)

for any a, b > 0 and p ≥ 1 suggests

(4pd− 2d+ a2)‖Xs‖2p−2 ≤ (4pd− 2d+ a2)
p

p
+
p− 1

p
‖Xs‖2p. (A.4)

Putting (A.4) into (A.2) with the fact that

−a1‖x‖2p+γ−1 +

(
c +

p− 1

p

)
‖x‖2p ≤ C, ∀x ∈ R

d, p ≥ 1, (A.5)

where C depends on a1, p, γ, we deduce,

ecptE
[
‖Xt‖2p

]
≤ E

[
‖x0‖2p

]
+ Cdp

∫ t

0

ecps, (A.6)

leading to
E
[
‖Xt‖2p

]
≤ e−cpt

E
[
‖x0‖2p

]
+ Cdp. (A.7)

Especially, for the case γ = 1, recalling Assumption 2.4 and the Itô formula, we obtain

ecptE
[
‖Xt‖2p

]

≤ E
[
‖x0‖2p

]
+ pE

[∫ t

0

ecps
[(

− a1 + c
)
‖Xs‖2p +

(
4pd− 2d+ a2

)
‖Xs‖2p−2

]
ds

]
.

(A.8)

Choosing c ∈ (0, a1), we obtain that the following estimate holds true by the similar approach
above,

(−a1 + c) ‖Xs‖2p +
(
4pd− 2d+ a2

)
‖Xs‖2p−2 ≤ Cdp. (A.9)

Hence, we arrive at

ecptE
[
‖Xt‖2p

]
≤ E

[
‖x0‖2p

]
+ Cdp

∫ t

0

ecsds, (A.10)

resulting in
E
[
‖Xt‖2p

]
≤ e−cpt

E
[
‖x0‖2p

]
+ Cdp. (A.11)

The proof is completed.
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B Proof of lemmas in Section 4

B.1 Proof of Lemma 4.2

Proof of Lemma 4.2. The existence and the uniqueness of the mean-square derivatives up to the
second order can be derived owing to Remark 2.3 (see [5, 28]). For simplicity, we denote that

ηv1(t, x) := DXx
t v1, ξv1,v2(t, x) := D2Xx

t (v1, v2), ∀x, v1, v2 ∈ R
d. (B.1)

Part I: estimate of the first variation process

It follows from Remark 2.3 that,

〈Df(x)y, y〉 ≤ L‖y‖2, ∀x, y ∈ R
d. (B.2)

Moreover, for the first variation process of SDE (1.2), one gets

dηv1(t, x) = Df(Xx
t )ηv1(t, x) dt, ηv1(0) = v1. (B.3)

Taking the temporal derivative of ‖ηv1(t, x)‖2, we obtain that

d‖ηv1(t, x)‖2 = 2 〈ηv1(t, x), Df(Xx
t )ηv1(t, x)〉 ≤ 2L‖ηv1(t, x)‖2, (B.4)

which leads to
‖ηv1(t, x)‖2 ≤ e2Lt‖v1‖2. (B.5)

Part II: estimate of the second variation process

Similarly, due to the variation approach, we have the second variation process with respect to
SDEs (1.2) as follows,

dξv1,v2(t, x) =
(
Df(Xx

t )ξυ1,υ2(t, x) +D2f(Xx
t )
(
ηυ1(t, x), ηυ2(t, x)

))
dt, ξυ1,υ2(0) = 0. (B.6)

Following the same argument as before and the Young inequality, we deduce that

d‖ξυ1,υ2(t, x)‖2

=
(

2 〈ξυ1,υ2(t, x), Df(Xx
t )ξυ1,υ2(t, x)〉 + 2

〈
ξυ1,υ2(t, x), D2f(Xx

t )
(
ηυ1(t, x), ηυ2(t, x)

)〉 )
dt

≤ (2L + 1)‖ξυ1,υ2(t, x)‖2dt+
∥∥D2f(Xx

t )
(
ηυ1(t, x), ηυ2(t, x)

)∥∥2 dt.

(B.7)

The key issue is to estimate ‖D2f(Xx
t )(ηυ1(t, x), ηυ2(t, x))‖L2(Ω,Rd), where, by Assumption 2.1, the

range of γ deserves to be discussed carefully. If 1 ≤ γ ≤ 2, with (B.5) and the Hölder inequality
in mind, we will arrive at, for some constants ρ1, ρ2 > 1 with 1/ρ1 + 1/ρ2 = 1, and some random
variables υ1 ∈ L2ρ1(Ω,Rd), υ2 ∈ L2ρ2(Ω,Rd),

∥∥D2f(Xx
t )
(
ηυ1(t, x), ηυ2(t, x)

)∥∥
L2(Ω,Rd)

≤ C
∥∥ ‖ηυ1(t, x)‖ · ‖ηυ2(t, x)‖

∥∥
L2(Ω,R)

≤ Ce2Lt ‖υ1‖L2ρ1 (Ω,Rd) ‖υ2‖L2ρ2 (Ω,Rd) .
(B.8)

Taking this into (B.7) shows

E
[
‖ξυ1,υ2(t, x)‖2

]
≤ (2L+ 1)

∫ t

0

E
[
‖ξυ1,υ2(s, x)‖2

]
ds+ C

∫ t

0

e4Lsds ‖υ1‖2L2ρ1 (Ω,Rd) ‖υ2‖
2
L2ρ2 (Ω,Rd) ,

(B.9)
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and by the Gronwall inequality we get the result. If γ > 2, using the Hölder inequality with (B.5)
yields, for ρ1, ρ2, ρ3 > 1 with 1/ρ1 + 1/ρ2 + 1/ρ3 = 1,

∥∥D2f(Xx
t )
(
ηυ1(t, x), ηυ2(t, x)

)∥∥
L2(Ω,Rd)

≤ C
∥∥ (1 + ‖Xx

t ‖)γ−2 ‖ηυ1(t, x)‖ · ‖ηυ2(t, x)‖
∥∥
L2(Ω,R)

≤ C
∥∥ (1 + ‖Xx

t ‖)γ−2
∥∥
L2ρ1 (Ω,R)

‖ηυ1(t, x)‖L2ρ2 (Ω,Rd) ‖ηυ2(t, x)‖L2ρ3 (Ω,Rd) .

(B.10)

In the same manner, thanks to the Gronwall inequality, we have, for some random variables
υ1 ∈ L2ρ2(Ω,Rd) and υ2 ∈ L2ρ3(Ω,Rd),

‖ξυ1,υ2(t, x)‖L2(Ω,Rd) ≤ Ce(3L+1/2)t sup
r∈[0,∞)

∥∥(1 + ‖Xx
r ‖)γ−2

∥∥
L2ρ1 (Ω,R)

‖υ1‖L2ρ2 (Ω,Rd) ‖υ2‖L2ρ3 (Ω,Rd) .

(B.11)
Combining (B.9) and (B.11), the proof is completed.

C Proof of Lemmas in Section 5

C.1 Proof of Lemma 5.2

Proof of Lemma 5.2. Consider these two measurable sets

Ah :=
{
ω ∈ Ω : ‖ζ(ω)‖ ≤ ϑd

1
2γ h−

1
2γ

}
, Ac

h := Ω\Ah. (C.1)

Therefore, owing to the Hölder inequality, for 1/q + 1/q′ = 1, we obtain

E [‖ζ − P(ζ)‖] = E
[
‖ζ − P(ζ)‖1Ac

h

]
≤ ‖ζ − P(ζ)‖Lq(Ω,Rd)‖1Ac

h
‖Lq′(Ω,R). (C.2)

Here, using Lemma 3.3 with the triangular inequality yields

‖ζ − P(ζ)‖Lq(Ω,Rd) ≤ ‖ζ‖Lq(Ω,Rd) + ‖P(ζ)‖Lq(Ω,Rd) ≤ 2‖ζ‖Lq(Ω,Rd). (C.3)

In addition, it follows from the Markov inequality that,

‖1Ac
h
‖Lq′ (Ω,R) =

(
P(Ac

h)
) 1

q′ ≤ ϑ
− β

q′ d
− β

2γq′ h
β

2γq′ ‖ζ‖
β
q′

Lβ(Ω,Rd)
. (C.4)

We choose q = 4γ + 1, q′ = 1 + 1/4γ and β = 4γ + 1, then the proof is completed.

D Proof of Remark 2.8

Proof. Given tolerance ǫ ∈ (0, 1) and k ∈ N, it follows from Theorem 2.6 that

∥∥∥Π(Ỹ x0

k ) − π
∥∥∥
TV

≤ Ce−Ckh
(
1 + E

[
‖x0‖2

])
︸ ︷︷ ︸

≤ ǫ
2

+Cd3/2h| ln h|︸ ︷︷ ︸
≤ ǫ

2

. (D.1)
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Solving the first part on the right hand of (D.1) yields

k ≥ C

h
ln
(1

ǫ

)
. (D.2)

The second part on the right hand of (D.1) goes to

1
h

ln( 1
h
)
≥ C

d3/2

ǫ
, (D.3)

leading to
1

h
≥ C

d3/2

ǫ
· ln
(d
ǫ

)
. (D.4)

To obtain this result, from (D.3), we denote by Ĉ := Cd3/2/ǫ to find an appropriate 1/h such that

1

h
− Ĉ ln

(1

h

)
≥ 0. (D.5)

As we know, the function x−Ĉ ln x is increasing when x ≥ Ĉ. Hence one can take 1/h = O(Ĉ ln Ĉ),

for example, choosing 1/h = 2Ĉ ln Ĉ, to make (D.4) hold. Plugging this into (D.2) yields

k ≥ C
d3/2

ǫ
· ln
(d
ǫ

)
· ln
(1

ǫ

)
, (D.6)

which completes the proof.
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