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Advancements in practical single-photon sources (SPS) exhibiting high brightness and low g(2)(0)
have garnered significant interest for their application in quantum key distribution (QKD). To assess
their QKD performance, it is essential to compare them with the widely employed weak coherent
pulses (WCPs) in the decoy state method. In this work, we analyze the non-decoy efficient BB84

protocol for an SPS, partially characterising its photon statistics by its g(2)(0) and mean photon
number. We compare it to the 2-decoy efficient BB84 with WCPs within the finite-key analysis
framework while optimizing the parameters of both protocols. Our findings indicate that the non-
decoy SPS with a mean photon number of ⟨n⟩ = 0.5 and g(2)(0) = 3.6% can enhance the secure
key generation over the 2-decoy WCP for block sizes under 4.66 · 109 sent signals (29 seconds of
acquisition time) at a channel loss of 10 dB (52.5 km of optical fibre). Additionally, we demonstrate
an increase in the maximum tolerable channel loss for SPSs with mean photon number ⟨n⟩ ≥ 0.0142
at block sizes below 108 sent signals (0.62 seconds of acquisition time). These results suggest that
SPSs hold potential for key rate enhancement in short-range QKD networks, though further research
is required to evaluate their key generation capabilities when integrated into the decoy method.

Introduction. Public key cryptosystems have long pro-
posed secure communication schemes between parties us-
ing two keys, in which the sender (Alice) uses one key for
encryption, randomly applying an operation whose mu-
tually inverse is used for decryption. Although Alice pub-
licly announces the encryption method, the decryption
instructions must remain confidential to the intended re-
ceiver (Bob). Allowing anyone to encrypt a message, the
parties can swap roles and converse secretly. In a classi-
cal public key system, it is not possible to guarantee the
private key cannot be derived from the encrypted key by
computational methods [1, 2]. Seeking a security proof
method, quantum mechanics was introduced, leading to
the development of the quantum key distribution (QKD)
field after a lot of refinement [3].

QKD protocols utilize a quantum channel to trans-
mit signals with complementary physical properties, e.g.
in the BB84 protocol, the exploited quantum property
to detect an eavesdropper (Eve) is the polarization of
light [4]. When Eve attempts to monitor the channel
measuring the polarization, she inevitably disturbs a cer-
tain number of signals due to the Heisenberg uncertainty
principle. This causes errors, allowing Alice and Bob
to detect Eve’s presence and estimate the information
leaked to her. By setting an error threshold, Alice and
Bob have a criterion to abort the protocol if the error
rate exceeds a certain level.

An ideal QKD system would employ a quantum source
that consistently sends single-photons. Although ongo-
ing research aims to approach this ideal behaviour [5], it
is strictly unachievable in practice. Instead, in real QKD
systems, this inherent nonideality of practical sources is
exploited by the photon number splitting (PNS) attack
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[6, 7]. In a BB84 protocol employing exclusively one
source intensity, known as non-decoy, Eve, who fully con-
trols the channel, can perform PNS attacks to effectively
intercept the key whilst remaining undetectable by ex-
ploiting the multiphotons. By employing quantum non-
demolition measurements [8], Eve identifies the number
of photons contained in each pulse. He then blocks the
single-photon pulses and splits the multiphoton pulses
into single-photons, which are forwarded to Bob, while
the remaining photons are stored and measured after ba-
sis reconciliation. Therefore, to ensure the security of the
non-decoy protocol the click probability of Bob’s detec-
tors has to be greater than the multiphoton emission of
Alice, pclick > pmp. Otherwise, assuming all multipho-
ton emissions cause a detection event on Bob’s appara-
tus through Eve’s lossless channel, the expected detection
rate by Bob can be reproduced by Eve exclusively using
the sent multiphotons in a high-loss scenario. Compro-
mising the secrecy of the entire shared key bit string.
Consequently, only non-multiphoton detections can be
considered secure events.

Weak coherent pulse (WCP) sources, which are atten-
uated lasers approaching the single-photon regime, have
been the most commonly employed sources in prepare-
and-measure QKD protocols due to their feasibility [9].
However, even strongly attenuated WCPs have a suffi-
ciently high multiphoton emission to be vulnerable to
PNS attacks in lossy channels, failing to fulfil pclick >
pmp. To mitigate such attacks and ensure the inequality
is met, the decoy method was proposed [10], which un-
derwent significant refinement [11–14]. This technique in-
volves using multiple intensity levels for WCPs with iden-
tical characteristics to bound the multiphoton events, i.e.
detections caused by multiphotons. While ensuring both
parties agree on their single-photon and vacuum events
estimate, which form the secure key. This accurate esti-
mation occurs since the used WCPs produce equal count-

ar
X

iv
:2

40
5.

19
96

3v
1 

 [
qu

an
t-

ph
] 

 3
0 

M
ay

 2
02

4

mailto:roberto.gonzalez-pousa@strath.ac.uk


2

ing rates for a sent k-photon state, commonly known as
yields, despite their distinct photon emission probabili-
ties. In fact, deviations in the yields between different
WCP intensities indicate the presence of an eavesdrop-
per, who lacks knowledge regarding the transmitted dis-
tribution.

Alternative quantum sources, such as single-photon
sources (SPS) based on defects in 2D materials or quan-
tum dots, exhibit significantly lower multiphoton emis-
sion than attenuated WCPs [15–17]. Therefore, consid-
ering no decoy states, these low-g(2)(0) SPSs satisfy the
pclick > pmp condition at higher channel losses than a
WCP, emerging as promising candidates for non-decoy
protocols. However, to evaluate the QKD performance
of practical SPSs, it is necessary to compare it with a
state-of-the-art decoy WCP protocol. Thus, this work
analyses the key generation of an efficient BB84 proto-
col for non-decoy SPS, expanding the analysis of [18] to
other SPS characteristics plus providing further theoret-
ical aspects, and for 2-decoy WCP based on [19]. Note
that efficient BB84 uses one basis (X basis) for key gen-
eration and the other (Z basis) for parameter estimation,
doubling the efficiency of standard BB84 [20].

In the decoy method, the single-photon and vacuum
events are lower-bounded by analysing the statistics from
the implemented multiple source intensities. In contrast,
the non-decoy protocol estimates secure non-multiphoton
events, lumping together the single-photon and vacuum
events, excluding the insecure multiphoton events from
the total sifted events, i.e. instances shared by both par-
ties when they chose the same basis. To avoid overes-
timating the non-multiphoton events, it is essential to
upper bound the sent multiphotons and the multipho-
ton events received by Bob. The subsequent finite-key
analysis will address the latter, while Alice’s source char-
acterisation will handle the former.

Source characterisation and multiphoton probability.
Our goal is not to fully characterise the SPS [21], rather,
we seek an estimate of the source statistics that up-
per bounds the multiphoton emissions. We denote the
true photon emission probabilities of the SPS in the

Fock basis as {P (SPS)
k }k∈N for the infinite Hilbert space,

where the multiphoton emission probability is P
(SPS)
mp =∑

k≥2 P
(SPS)
k . We assume these true probabilities are

not directly accessible. Instead, we estimate the pho-
ton number distribution of the SPS using the mean pho-
ton number ⟨n⟩ and the time-zero second-order corre-
lation function g(2)(0). Consequently, the multiphoton

probability can be upper-bounded as P
(SPS)
mp ≤ pmp =

g(2) ⟨n⟩2 /2 [22]. Here, uppercase P represents the true
emission probabilities, while lowercase p denotes bounded
estimates.

To simulate the counts of Bob’s apparatus as in a real
experiment, we select the set of photon states emitted
by Alice’s source which reaches exactly pmp, ensuring no
other combination of states exceeds this upper bound.
We study two types of distributions. First, we examine

a pathological distribution where all the emission proba-
bilities are null except three: vacuum, single-photon and
K-photon probabilities {p0, p1, pK}, where K ≥ 3 is a
fixed value. In this case, all multiphotons are K-photon
states, and any possible distribution yields a lower up-
per bound than pmp. As expected, when K tends to in-
finity, the multiphoton probability approaches pmp, thus
saturating the initial upper bound on the multiphoton
probability.
We assume an SPS distribution that exhibits a mono-

tonic decrease in its kth-order correlation functions
g(k+1)(0) ≤ g(k)(0) for all k ≥ 2, which is experimentally

verifiable. Expressing each emission probability p
(MD)
k in

terms of its associated g(k)(0), the upper bound of the
multiphoton probability is given by

p(MD)
mp = p

(MD)
2 +

∞∑
k=3

p
(MD)
k

=
g(2)(0) ⟨n⟩2

2
+

∞∑
k=3

k − 1

k
(−1)kg(k)(0) ⟨n⟩k

≤ p(MD)
mp = pmp + g(2)(0)

∞∑
k=3

k − 1

k
(−1)k ⟨n⟩k︸ ︷︷ ︸
<0

,

hence p
(MD)
mp ≤ pmp. Note that in any truncated

Hilbert space, making the summation finite, this inequal-
ity holds. Though counterintuitive, we conclude that
any distribution with states higher than two-photons
decreases the overall multiphoton probability. Conse-
quently, to simulate Bob’s counts, we implement the dis-

tribution {p(MD)
k }k=0,1,2 with p

(MD)
k>2 = 0, since it satisfies

the equality p
(MD)
mp = p

(MD)
2 = pmp. Thus, Alice’s emis-

sion probabilities read as

p
(MD)
2 =

g(2)(0) ⟨n⟩2

2
(1)

p
(MD)
1 = ⟨n⟩ − 2p

(MD)
2 (2)

p
(MD)
0 = 1− p

(MD)
2 − p

(MD)
1 . (3)

Furthermore, pre-attenuating Alice’s source increases
the maximum tolerable channel loss, defined as the
highest loss that generates a positive key. We de-
fine this pre-attenuation by a transmissivity value
ηtr, representing the fraction of signal that goes
through the attenuator to the quantum channel.
This transmissivity reduces the multiphoton probabil-

ity quadratically p
(att)
m = g(2)(0) ⟨n⟩2 η2tr/2, while de-

creasing the click probability at Bob’s detectors lin-
early at a first-order Taylor approximation, pclick =∑∞

n=0 p
(MD)
k [1− (1− pdc) (1− ηtrηchηdet)

n
] ≈ pdc +

(1− pdc) ηtrηchηdet ⟨n⟩, where ηch and ηdet are the chan-
nel and detector efficiencies, respectively, and pdc is the
dark count probability. Although we compute the ex-
act expression in our model, this approximation is valid
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as states with two or more photons do not dominate
the source photon emission. Therefore, the multiphoton
probability decreases more rapidly than the click prob-
ability on Bob’s side, widening the range of tolerable
losses. This enhances the key generation at the high-loss

regime where p
(att)
m dominates, obtaining the highest pos-

sible secure key by optimising ηtr for each channel loss.
Additionally, the basis bias pX , the probability of choos-
ing the X basis by either party, is also optimised. Note
that pZ = 1−pX for the parameter estimation basis. Set-
ting an unequal bias has been reported as an exceptional
strategy to increase the key generation [23, 24].

Secure key length estimation: asymptotic and finite-key
analysis. We distinguish two scenarios for the secure key
length (SKL) estimation: the asymptotic and finite-key
analysis. In the asymptotic limit, we assume the experi-
ment runs for an infinity time duration, resulting in a suf-
ficiently large number of detection events in the key gen-
eration basis, allowing us to consider pX → 1, and a neg-
ligible phase error rate, pZ → 0. Consequently, the count
rates converge to their underlying true expectation val-
ues. Asymptotic secure key rates were already proposed
long ago such as the Devetak-Winter bound [25]. How-
ever, in this work, we compute the asymptotic key rates
by simply setting a sufficiently large block size, which
yields identical outcomes to the asymptotic formula.

However, in a real experiment, the obtained statistics
are finite and subject to fluctuations from their expected
outcomes. Consequently, studies were proposed to ac-
count for the effect of finite statistics [26]. Here, this
issue is addressed as follows: with generality, we de-
fine the number of multiphoton states received by Bob
as a finite set of independent Bernoulli random vari-
able {XB

1 , XB
2 , · · · , XB

NS
} with two possible outcomes

{0, 1}. Its observed value is XB ≡
∑NS

i=1 X
B
i that satisfy

Pr
(
XB

i = 1
)
= Pi,click|m P

(att)
i,m for fixed fixed m ≥ 2, i.e.

the product of the conditional probability of a click when
a multiphoton is sent after Alice’s pre-attenuation and
the probability of sending a multiphoton. Note that each
random variable denoted by the subscript i is associated
with a multiphoton state with a fixed number of photons
m ≥ 2, which may change for each variable, hence their
probabilities too. To prevent an overestimation of the
secure events, we assume the worst scenario where every
sent multiphoton, which is untrustworthy, causes a click
on Bob’s apparatus, i.e. Pi,click|m = 1. Therefore, an ex-

pected value of XB is expressed as XB ∗ =
∑NS

i=1 P
(att)
i,m ,

where NS = Rratet is the number of sent signals by Al-
ice that forms the finite block, defined by the acquisition
time t, i.e. the time the experiment is run, and the source
repetition rate Rrate. However, since we lack access to
the true attenuated photon emission probabilities of the

SPS P
(att)
i,m , we bound them as XB ∗ =

∑NS

i=1 P
(att)
i,m ≤∑NS

i=1 p
(att)
mp = NSp

(att)
mp . Note that even if the legitimate

parties had access to them from perfect SPS character-
isation, they would not know how many photons Alice
sends in each state. After sifting, the expected number

of multiphoton events received by Bob in the key gener-

ation basis is NX ∗
R,mp = p2XXB ∗ ≤ NSp

2
Xp

(att)
mp = N

X ∗
R,mp.

In a real QKD experiment, Bob observes clicks from
his detector and unfortunately, even if Bob measures the
multiphoton events using a photon number resolving de-
tector, his results cannot be trusted due to potential PNS
attacks by Eve. Therefore, we need a consistent method
that for a given expected value NX ∗

R,mp of a data block, de-

rives an upper bound of the observed value N
X

R,mp, whose
tail probability is bounded with a parameter estimation
failure probability as Pr

[
NX

R,mp ≥
(
1 + ∆U

)
NX ∗

R,mp

]
≤

εPE = 2εsec/3.
Several methods were proposed to account for these

statistical fluctuations in finite blocks for decoy WCP
methods, such as the Gaussian analysis method [27], the
Hoeffding inequality [19] and the multiplicative Cher-
noff bound [28]. However, an improved analytical Cher-
noff bound has reported tighter finite-key bounds, en-
hancing the key generation [29]. Here, for our 2-decoy
WCP protocol, we employ this updated Chernoff bound
with the decoy method of [28], as presented in the anal-
ysis of [30] but for a fibre link instead of a satellite-
to-ground link. Our non-decoy SPS protocol of [18]
has already shown massive key rate enhancements using
the same updated Chernoff bound as the decoy WCP
studies, compared to previous mathematical deviations
applied to protocol probabilities [31]. Thus, we apply
their Chernoff bound to estimate the upper bound of

the observed value N
X

R,mp = N
X ∗
R,mp + ∆U with ∆U =(

β +

√
8βN

X ∗
R,mp + β2

)
/2N

X ∗
R,mp where β = − ln εPE.

The lower bound of the observed non-multiphoton events

in the key generation basis is NX
R,nmp = NX

R − N
X

R,mp,

where NX
R = NSp

2
Xpclick is the observed number of de-

tection events in the X basis by Bob. Likewise, NZ
R =

NSp
2
Zpclick and NZ

R,nmp = NZ
R −N

Z

R,mp are calculated for
the parameter estimation basis. Note that here the secu-

rity condition against PNS attacks pclick > p
(att)
mp is im-

posed because if it is not met, NX
R,nmp is negative, result-

ing in no shared key, see eq. (5). The number of errors is
determined as mX = NSp

2
Xperr and mZ = NSp

2
Zperr for

each basis, where given the error probability due to mis-
alignment of the set-up pmis the error probability reads
as

perr =
p0pdc
2

+

∞∑
n=1

pn [1− (1− pdc)(1− ηchηdetηatt)
n] pmis.

(4)

Note mX is not publicly revealed and is only used to
estimate the number of bits needed to perform error cor-
rection.
Subsequently, we blind ourselves to this simulation

model and work with the observed outcomes to estimate
the secure key length (SKL). We calculate the SKL for
each finite block defined by the number of sent signalsNS.
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The main steps of the efficient BB84 protocol proceed as
follows: Alice sends NS states from her pre-attenuated
SPS and Bob measures them, obtaining NR detection
events. This block is split into three sub-blocks: the dis-
carded events due to sifting 2pX (1− pX), the events used
for key generation p2X and the events used for parameter

estimation (1− pX)
2
. Finally, the extracted SKL from

the sifted key is given by [18]

ℓSPS = NX
R,nmp

[
1−H

(
ϕ
X
)]

−λEC−2 log2
3

εsec
−log2

2

εcor
,

(5)

where 1 −H
(
ϕ
X
)
represents the information leaked to

Eve, bounded by the binary entropy H(e) = −e log2 e−
(1 − e) log2(1 − e). We set a phase error rate threshold
of ϕX

th = 0.11 (11 %) [32]. Thus, the legitimate par-

ties abort the protocol if ϕ
X ≥ ϕX

th, assuming the pres-
ence of an eavesdropper. The parties publicly announce
their errors in the parameter estimation basis mZ to es-
timate the phase error rate caused by non-multiphotons
in the key generation basis ϕX = mZ/N

Z
R,nmp, which is

upper-bounded for the NX
R sample, that is not revealed,

as ϕ
X

= ϕX + γU
(
NX

R , NZ
R , ϕX , εPE

)
using the γU func-

tion of [29] for the random sampling without replacement
problem. λEC accounts for the number of bits used in the
error correction code and we use the improved approxi-
mation of [33]. However, no practical code has reached a
value below the Shannon limit of 1.16NX

R H (eX) where
eX = mX/NX

R is the quantum bit error rate. Therefore,
if λEC/N

X
R H(eX) < 1.16, we recover the Shannon limit

to estimate the bits used in error correction. Finally,
the last two terms represent the secrecy and correctness
parameters, εsec and εcor respectively, which ensures the
protocol is εQKD = εsec + εcor secure in the composable
security framework [34].

Since we lump together the vacuum and single-photon
detection events into the non-multiphoton estimation,
one may think adding a vacuum distribution allows us
to estimate them separately and more accurately, hence
enhancing the key rate. Here we show this is not the case.
We consider two new scenarios: first, Bob knows exactly

the vacuum contribution, NX
R,0 = NSp

2
Xp

(MD)
0 pclick; sec-

ond, Bob estimates a lower bound of the vacuum events.
For the latter, using the mean photon number defini-
tion, we estimate the lower bound of the vacuum emission
probability as P0 ≥ p

0
= 1 − ⟨n⟩ and then the vacuum

events as NX
R,0 = NSp

2
Xp

0
pclick.

The key enhancement showed by these two scenarios
with a vacuum decoy state goes unnoticed for all channel
losses. In particular, in the high-loss regime, even as-
suming Bob has complete knowledge of the vacuum con-
tribution, the maximum tolerable loss increases by only
0.05 dB for one minute of acquisition time, see Figure
1. Therefore, due to its modest key rate increase, the
extra experimental endeavour, considering the usual dif-
ficulty of creating a perfect decoy vacuum state in prac-
tice [12, 35], and the need for additional detector char-

FIG. 1. The secure key of the non-decoy SPS protocol as a
function of the channel loss (fibre distance) in a semi-log scale

with optimised pX and ηtr. The g
(2)(0) = 0.036 and the mean

photon number ⟨n⟩ = 0.0142 are fixed for 1 minute of acqui-
sition time. The dashed blue curve represents the SKL using
the non-multiphoton estimation, and the other two curves es-
timate separately the vacuum and single-photon events, the
green dotted curve uses lower bound on the vacuum events
NX

R,0 and the dashed purple curve uses the exact number of

vacuum events NX
R,0.

acterisation to estimate the vacuum contribution, is not
worth considering. Thus, we also show the lower bound of
the non-multiphoton events is not underestimated com-
pared to estimating the events separately. As a result,
we take this conservative approach and assume that Eve
gains the same amount of information from the vacuum
states as from the single-photon states.
As mentioned above, we also employ the updated Cher-

noff bound for a 2-decoy protocol with WCPs. Thus, we
use the finite-key analysis and parameter optimisation
of [30], considering one decoy state with a lower intensity
than the signal state and a vacuum decoy state, whose
secret key length is given by

ℓWCP =NX
R,0 +NX

R,1

[
1−H(ϕ̄X)

]
− λEC

− 6 log2
21

εsec
− log2

2

εcor
,

(6)

where NX
R,0, N

X
R,1 are the lower bounds of the vacuum

and single-photon events respectively. Note that the rest
of the parameters follow the same criteria as in the non-
decoy SPS protocol. Finally, the secure key rate (SKR)
is defined as rSPS = ℓSPS/NS and rWCP = ℓWCP/NS for
non-decoy SPS and 2-decoy WCP, respectively.
Discussion. Here, we analyse the impact of different

SPS characteristics on the secure key and the maximum
tolerable loss for several finite blocks. The block size
used to extract the secure key is defined by the number
of signals sent by Alice which depends on the acquisition
time of the experiment. We compare the results of the
non-decoy SPS protocol with the 2-decoy WCP protocol.
The fixed QKD parameters to all protocols and figures
are shown in Table I.
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FIG. 2. Comparison of the secure key in a semi-log scale for
the non-decoy SPS protocol with several second-order corre-
lation functions g(2)(0) and block sizes, optimising the ba-
sis bias pX and the transmissivity ηtr associated with Alice’s
source pre-attenuation for each channel loss. The SKR rSPS

and SKL ℓSPS, eq. (5), are represented by the bits per pulse

and the bits per second, respectively. The g(2)(0) = 3.6%
(blue curves) corresponds to the quantum dot used in the

QKD analysis of [18]. The g(2)(0) = 1.8% (orange curves)

is based on [36] and g(2)(0) = 0.1% (green curves) is consid-
ered an optimistic case. The mean photon number is fixed to
⟨n⟩ = 0.0142, which corresponds to the quantum dot of [18].
We consider two acquisition times (number of sent signals) of
1 second (1.607·108), dotted curves, and 1 minute (9.642·109),
dashed curves, plus the asymptotic limit, solid curves.

Description Parameter Value

Source repetition rate Rrate 160.7 MHz
Misalignment probability pmis 0.003
Dark count probability pdc 3.67× 10−8

Detector efficiency ηdet 0.6525
Fibre loss l 0.1904 dB/km
Secrecy failure probability εsec 10−10

Correctness failure probability εcor 10−15

TABLE I. Baseline QKD protocol parameters based on the
experiment of the quantum dot [18].

In Figure 2, we show the impact of g(2)(0) on the se-
cure key performance for channel losses (optical fibre dis-
tances) in the non-decoy SPS protocol. As expected, fix-
ing the dark count probability means that the g(2)(0)
value determines the drop-off of the secure key curves,
hence the maximum tolerable loss. For a one-second time
block (dotted curves), the improvement in the maximum
tolerable loss is approximately 1 dB between the three
g(2)(0) values, which is modest. However, for one minute
of acquisition time (dashed curves), the difference in the
range of tolerable losses among the g(2)(0) values ex-
hibits a considerable increment since the secure key per-

FIG. 3. Comparison of the maximum tolerable channel loss
as a function of the acquisition time in a semi-log scale for the
non-decoy SPS protocol with several mean photon numbers
⟨n⟩ and the 2-decoy WCP protocol (orange curve), optimising
the free parameters in both protocols. The maximum loss
is displayed as a function of the block size represented by
the acquisition time or the number of sent signals by Alice.
Here the second-order correlation function is fixed to g(2)(0) =
3.6%.

formance is already remarkably close to the asymptotic
regime. The asymptotic key of g(2)(0) = 3.6% (solid blue
curve) is approached at one minute of acquisition time
by halving the g(2)(0) (dashed orange line). It is worth
mentioning that one hour of acquisition time is needed
for g(2)(0) = 3.6% to approach its asymptotic key rate.
Therefore, halving the g(2)(0) from 3.6% to 1.8% pro-
duces similar key rates but for massively different block
sizes, resulting in a reduction of approximately 98% in
the acquisition time.

In Figure 3, we show the maximum tolerable chan-
nel loss varying the mean photon number ⟨n⟩ while fix-
ing g(2)(0). A higher ⟨n⟩ represents a lower vacuum
emission and higher single-photon and multiphoton emis-
sions. Therefore, the higher ⟨n⟩ is, the lower acquisition
time (number of sent signals) is required for the pre-
attenuation of Alice’s source to kick in. The SPS with
⟨n⟩ = 0.5 (red curve) introduces the pre-attenuation even
for the smallest acquisition time. This indicates that any
other source with a mean photon number ⟨n⟩ > 0.5 will
not be able to cause a rise in the maximum tolerable
loss, as the distribution will be pre-attenuated by Alice
anyway. The point at which each curve converges to the
curve with ⟨n⟩ = 0.5 represents its first acquisition time
in which the pre-attenuation is introduced. For acqui-
sition times above one second, all the key curves reach
the secure key of ⟨n⟩ = 0.5 and their asymptotic limit
is achieved above 100 seconds where the maximum loss
is constant despite the rise of time. In particular, for
the SPS of [18] (blue curve), there is an increase between
0.1 and 0.2 dB on the maximum tolerable loss for acqui-
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FIG. 4. Secure key as a function of the acquisition times
(sent signals) in log-log scale for (a) 10 dB and (b) 20 dB of
channel loss for the optimised non-decoy SPS protocol with
various mean photon numbers ⟨n⟩ and the optimised 2-decoy

WCP method (orange curve). Here the g(2)(0) = 0.036.

sition times within the interval of [0.01, 0.1] seconds. A
greater mean photon number than ⟨n⟩ > 0.0142 is needed
to tolerate higher losses than the 2-decoy state protocol
for times below 0.62 seconds (108 sent signals). Con-
sequently, an SPS with ⟨n⟩ > 0.0142 would extend the
range of tolerable losses compared to a decoy WCP sys-
tem with a maximum tolerable channel loss of 25 dB or
below. Outside this range, the superiority of the 2-decoy
WCP is evident. However, it is worth mentioning the
SPS with the highest mean photon number, ⟨n⟩ = 0.5,
for extremely short acquisition times of 0.01 seconds, the
SPS protocol tolerates up to 9 dB (47 km) more channel
loss (fibre distance) than the WCP protocol.

We also fix the channel loss and show the secure key
rate versus time blocks. Note that for the fixed losses in
Figure 4, a higher mean photon number than ⟨n⟩ = 0.5
(red curve) would produce the same key rate, since it

would be pre-attenuated and g(2)(0) does not dominate
in this low-loss regime. Therefore, ⟨n⟩ = 0.5 shows the
highest possible secure key generation for the SPS proto-
col at these channel losses. This principle is illustrated in
Figure 4 (b) with 20 dB of channel loss, where the key re-
sults of ⟨n⟩ = 0.5 (red curve) overlap with the secure key
curve of ⟨n⟩ = 0.142 (purple curve). In the regime when
the block size tends to the asymptotic limit, the highest
key rate (red curve) scales by a factor of 5 compared to
the lowest ⟨n⟩ = 0.0142. Furthermore, non-decoy SPS
only shows an advantage over the 2-decoy WCP at 20
dB loss for extremely small acquisition times, where the
2-decoy method is unable to generate key. In Figure 4
(a) with a 10 dB of channel loss, the non-decoy SPS of
⟨n⟩ = 0.142 (purple line) and ⟨n⟩ = 0.5 (red line) out-
perform the secure key generation of the 2-decoy WCP
(orange curve) for block sizes approximately below 0.03
seconds (4.8 · 106 sent signals) and 29 seconds (4.66 · 109
sent signals), respectively.

Conclusions. We demonstrate that the non-decoy SPS
may enhance the key rate performance of the 2-decoy
WCP for short acquisition times (small number of sent
signals) in the low-loss regime. Additionally, the range
of acquisition times where the non-decoy SPS surpasses
the 2-decoy WCP can be potentially wider for channel
losses below 10 dB (52.5 km of fibre). Within the same
regime, at least a mean photon number as the quantum
dot in [18] is required to tolerate higher losses over the 2-
decoy WCP. Complementary SPS characteristics for both
improvements include a g(2)(0) ≤ 3.6% and a source rep-
etition rate of Rrate ≥ 160.7 MHz. Through our theo-
retical key estimates, we present SPSs as a valid quan-
tum source for short-range QKD, performing an efficient
BB84 protocol with one unique source at Alice’s side,
thus avoiding experimental complexity associated with
decoy methods. Nevertheless, further research is neces-
sary to establish a fair comparison between WCPs and
SPSs within the decoy method framework. Concretely, a
comparison to decoy analysis using a Fock basis notation
that aligns with the SPS approach outline here would be
beneficial [37].
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