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We present an efficient machine learning based automated framework for the fast tuning of single-electron
pump devices into current quantization regimes. It uses a sparse measurement approach based on an iterative
active learning algorithm to take targeted measurements in the gate voltage parameter space. When compared
to conventional parameter scans, our automated framework allows us to decrease the number of measurement
points by about an order of magnitude. This corresponds to an eight-fold decrease in the time required to
determine quantization errors, which are estimated via an exponential extrapolation of the first current plateau
embedded into the algorithm. We show the robustness of the framework by characterizing 28 individual
devices arranged in a GaAs/AlGaAs multiplexer array, which we use to identify a subset of devices suitable
for parallel operation at communal gate voltages. The method opens up the possibility to efficiently scale the
characterization of such multiplexed devices to a large number of pumps.

Single-electron pumps are nanoscale devices that can
produce quantized macroscopic electric currents by clock-
ing the transfer of individual electrons to an external
periodic drive1–9. This device technology has been pri-
marily developed to realize the practical implementation
of the SI unit of current, the ampere, which since 2019
is defined by the fixed value of the elementary charge,
e10–12. The overarching goal is the experimental realiza-
tion of devices generating a quantized current according
to the relationship I = n e f , where f is the periodic
drive frequency and n is an integer multiple of electrons
transferred in a cycle.

The device operation requires a large degree of manual
intervention to find the appropriate operation conditions
in a large space of control parameters. With the increas-
ing need of operating multiplexed devices in a parallel
configuration to generate usefully large quantized cur-
rents13–15, the manual tuning of control parameters for
each device becomes a significant bottleneck. Since each
pump has slightly different operating parameters, this
severely limits the pace at which candidate devices can
be screened.

To tackle this limitation, here we present a machine
learning (ML) based framework that supports the auto-
matic tuning of multiple single-electron pumps. The use
of ML for experimental control of quantum devices is be-
coming increasingly popular, as it may unleash significant
speedups16,17. Our framework automatically finds and
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characterizes the n = 1 plateau in single-electron pumps
as a function of control DC voltages. We focus on the
n = 1 plateau since this is the region where the pumps
are typically operated to achieve the best current quan-
tization4,18. We present an active learning (AL) sparse
measurement (ALSM) framework in which measurements
are obtained iteratively in a data-driven approach, which
is designed to gain the necessary information from as few
measurements as possible. To this aim, the method needs
to find the boundaries of the n = 1 plateau and acquire
sufficient data to perform an exponential extrapolation
from the boundary to the center of the plateau, a tech-
nique used to estimate the quantization error beyond the
measurement noise floor19.

We apply our protocol to a multiplexed array of
GaAs/AlGaAs quantum dot pump devices20, driven at a
frequency of f = 0.2GHz, with a fixed external magnetic
field of B = 12.5T (Fig. 1b). The devices periodically
trap and transfer a fixed number of electrons through a
quantum dot (QD) with a single drive signal21. Such pe-
riodic drive is superimposed to a static DC voltage at
the entrance barrier of the QD (Vent) to precisely clock
the operation of the pump whilst the exit barrier is kept
at a fixed DC voltage (Vexit). Depending on the setting
for Vent and Vexit, the operation can be in the regime of
quantized transfers taking place with specific number of
electrons, or in the regime where the charge transfer is
not quantized due to insufficient loading or incomplete
emission2. To quantify the deviation from the n = 1
quantization of the measured average electron number
per cycle, ⟨n⟩ = I/ef , we use the single-electron quan-
tization error, defined as η = log10(|⟨n⟩ − 1|), so that a
lower value of η represents better current quantization.
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FIG. 1. Schematic overview of the ALSM approach to characterize the n = 1 plateau. a) ηM, acquired through a PLS, as
a function of Vent and Vexit voltages, where a coarse scan over a wider parameter range is followed by a fine line scan around
the n = 1 plateau (Vexit coarse stepsize is 0.005V, fine stepsize is 0.0005V ; Vent stepsize is 0.002V) b) scanning electron
microscope (SEM) image of the 64-pump GaAs/AlGaAs multiplexer array; c) variance of ηM obtained with the k-NN active
learning (AL) method at the 3rd iteration, where the black dots indicate the Nmeas = 60 points that the k-NN method selects
for measuring in the next iteration; d) sparse measured ηM points after NAL = 20 AL iterations; e) interpolation of ηM from
measurements in d) to a regular dense grid; the inner dashed curve encloses points with η below the measurement noise floor
ηnoise, while the outer dashed curve delimits the area of the n = 1 plateau (ηmax = −0.6); f) ALSM and i) PLS η as function
of Vexit for Vent = −0.464V, illustrating the exponential fit (blue lines) of the ηM in a) (PLS) and e) (ALSM) for both sides of
the plateau; the lower (upper) dashed line corresponds to ηnoise (ηmax); for ALSM the fit is performed to the 2D interpolation
data (green curve) rather than the measurement points (red dots); g) ALSM and h) PLS final extrapolated quantization error,
ηE(Vexit, Vent), resulting from the the exponential fits (blue lines in f and i) for the whole 2D area. The color scale presented
in a) is used for all 2D maps of η.

The operation of our ALSM framework in compari-
son with a conventional line-scan method is presented in
Fig. 1. We establish a baseline with the traditional ap-
proach in which we scan Vexit for different Vent values22,
which allows us to extract a heat map of η over the pa-
rameter space. The grid scan consists of an initial coarse
voltage scan over the full range of interest, followed by
a higher resolution scan in the region around the n = 1
plateau. We denote this protocol as plateau line scan
(PLS). In Fig. 1a, we show the measured PLS η, which
we denote as ηM, as function of Vexit and Vent for one
pump. One can identify the primary large n = 1 plateau
at the center of Fig. 1a (dashed rectangle). Additionally,
the secondary n = 1 plateaus obtained through incom-
plete emissions are visible above it. In the rest of the
manuscript, we focus on the automatic characterization
of the primary plateau.

A large fraction of the measurements in a PLS, for ex-
ample the extended black regions, give redundant infor-
mation. Our ALSM framework is designed to minimize
the number of measurements by iteratively identifying
the points that are expected to provide the largest infor-

mation gain by using a k-nearest neighbor (k-NN) regres-
sor23. This extracts a relationship between gate voltages
and η at a low computational cost24, and is hence ideally
suited to be included in the data acquisition loop. Its
prediction for η at unmeasured points is given by an av-
erage over already measured neighboring points, where
neighbors are weighted according to their inverse dis-
tance. At each iteration, we choose new points to be
measured according to the variance in η over their k-NN
neighbors, giving a proxy metric that determines the un-
certainty of the estimated η values. The first iteration
consists of a very coarse scan with Ncoarse measurements
points over a large voltage area, followed by small batches
of Nmeas measurement points selected in each AL itera-
tion, balancing additional time overhead to perform the
k-NN prediction and data transfer versus keeping Nmeas

small, for a number of iterations, NAL. At each iter-
ation, we identify the Ncandidates points that have the
largest k-NN variance on a fine evaluation grid as poten-
tial candidates for a measurement in the next round, and
sample the next measurement batch from these points
with uniform sampling probability. For the results pre-
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sented here, we use Nmeas = 60, Ncandidates = 100,
Ncoarse = 400, NAL = 20 and k = 425. Illustratively,
we show the variance in the 3rd iteration of the AL cy-
cle as a heat map in Fig. 1c, which also indicates the
points selected for measurement in the following iteration
as black dots. A large variance is typically found when η
varies strongly, or when measurement data is mostly ab-
sent in some region. The 2D AL pump map for ηM after
NAL iterations is shown in Fig. 1d. The sparse measure-
ment points are predominantly placed at the boundary
regions of the n = 1 plateau. When compared to the
traditional PLS, which uses about 23, 000 measurements
(10, 736 for the coarse scan and 12, 495 for the fine scan),
the AL framework only performs 1, 600 measurements
(NAL × Nmeas + Ncoarse), a reduction of more than an
order of magnitude.

After completion of the AL cycle, we perform a two-
dimensional piecewise linear interpolation between the
measurement data26–28, allowing us to produce data on
the same fine grid around the n = 1 region used in the
PLS. The results are shown in Fig. 1e. Within the n = 1
plateau, it results in a smooth function until the data
becomes noisy in the central area of the plateau with
the highest current quantization accuracy. In these re-
gions, the values of ηM are markedly affected by the mea-
surement random uncertainty, given the limited averag-
ing used (20 milliseconds). We assume this corresponds
to the measurement noise floor for ηM, and we denote it
as ηnoise. Note that our AL method avoids taking a large
number of measurements in this region, which would be
dominated by noise.

To obtain estimates beyond ηnoise, we fit the η with
η > ηnoise to an exponential approach of the current to
the plateau from both sides using a regression analysis
(Fig. 1i and f), which corresponds to a linear fit in η. For
the PLS, we fit ηM directly (Fig. 1a), while for ALSM
we fit the interpolated values (Fig. 1e). Such an expo-
nential function is a common phenomenological approx-
imation for the approach to the plateau regions, whose
actual physical behavior is masked by the limited mea-
surement accuracy19. We denote the extrapolated quan-
tization errors as ηE(Vexit, Vent). We determine the value
of ηnoise via ML density analysis25,29,30 of the occurrence
frequency, p(η), of η values across the full area of inter-
est; p(η) exhibits a peak where the data is dominated
by noise, so that we set ηnoise at the position of the lo-
cal minimum of p(η) above this peak (see Supplementary
Materials for details). We also set an upper threshold of
ηmax = −0.6 for the η included in the regression, since
we consider points with larger values to be outside n = 1
plateau region.

The obtained 2D function ηE(Vexit, Vent) is the final
output of our pipeline, which is shown in Figs. 1h,g for
PLS and ALSM, respectively. The ALSM heat map re-
produces the reference PLS result well, and both have re-
gions where the single-electron quantization error reaches
values of ηE ≈ −5. Whereas the PLS uses ≈ 23, 000 sin-
gle point measurements resulting in a total time of ≈ 49
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FIG. 2. MSEη of the extrapolated single electron quan-
tization error ηE as function NAL, and where ηE,ref for the
reference in Eq. 1 are data of a full dense scan over the final
grid. The underlying ALSM data is obtained with a ran-
dom (shortest jump) sequence measurement path for the or-
ange (blue) curve. Solid lines and shaded areas denote the
mean and standard deviation over five different realizations
for each setting, respectively. The inset shows the normalized
histogram of the step sizes taken in the random sequence and
shortest jump paths. For comparison, the horizontal dashed
line shows the averaged MSEη for five analogous PLS. MSEη

where the AL measurement data at each AL round is re-
placed with the data of the reference (PLS) measurement for
the same (Vexit,l, Vent,l) is shown in green (purple).

minutes on average, the AL result is obtained with 1, 600
measurements, reducing the total time required to char-
acterize the plateau to ≈ 6 minutes. This total time is
made up of ≈ 5 minutes taken for the experimental data
acquisition (consisting of the bare measurement times,
as well as additional control and communication over-
heads for interfacing with the experiment), an additional
time of less than 4 seconds in total for the identification
of measurement points with the k-NN algorithm, and a
total post-processing time of ≈ 38 seconds.

Having established the considerable speedup of our
ALSM approach and the qualitative agreement with the
PLS, we evaluate quantitatively the fidelity of the ob-
tained ηE(Vexit, Vent) when compared with line scan re-
sults. To quantify the fidelity between a given method
and a reference measurement approach, we compute the
mean squared error

MSEη =
1

Np

Np∑
l=1

(ηE,l − ηE,ref,l)
2
, (1)

where ηE,l = ηE(Vexit,l, Vent,l), Np is the total number of
grid points in the final data, and the sum goes over all
(Vexit,l, Vent,l) points in Figs. 1h,g where ηE,ref,l is smaller
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FIG. 3. a) Active learning ηE(Vexit, Vent) of 28 pumps of the multiplexed chip; voltage ranges are the same for all maps and
shown in panel (b); b) number of overlapping pump regions with a quantization error ηE < 10−3, showing that a maximum of
five pumps could be operated in parallel with common gate voltages to within this quantization error.

than zero. As reference data, we use ηE obtained for a
separate full dense line scan with Np measurements. In
Fig. 2, we present the results averaged over five exper-
iments of AL and PLS measurements, with an approx-
imately one and a half hour time delay between exper-
iments of the same type. The MSEη value for the re-
peated PLS data sets the lowest possible MSEη (dashed
line), and reflects the presence of measurement noise for
the line-scan itself, as well as potential drifts of the de-
vice during measurements. The orange curve is the MSEη

for a random sequence of measurement acquisition points
within a given AL set of points. When increasing NAL,
MSEη initially decreases rapidly before it plateaus after
about NAL ≈ 20.

The fast early decrease of MSEη is due to the pro-
gressively larger amount of information available for the
interpolation between measurement points when a larger
number of data points is included in the ALSM. When
further increasing NAL beyond 20, the averaged MSEη

then converges to a value that is around a factor of
two larger than the reference value set by repeated PLS.
For very large NAL, the main difference to a PLS ap-
proach lies not in the number of measured points but
in the way these are acquired. Whereas traditional line
scans have a small constant step size between consecu-
tive (Vexit,l, Vent,l) points, ∆V =

√
∆V 2

exit +∆V 2
ent, po-

tentially large and irregular jumps are taken in the ALSM
approach. The histogram of the ALSM step sizes (in-
set of Fig. 2) shows that such jumps are randomly dis-
tributed over a range of about 0.2V. We find that the
averaged difference between the measured ALSM, ⟨n⟩,
and the reference measurements increases as a function
of ∆V , which is also more pronounced around the edges
of the plateau (see Supplemental Material for details).
This is likely due to the fact that large voltage steps can
cause systematic errors for a given time-delay between
measurements, since the measurement apparatus settling
times for large ∆V increases. Such memory effects can,

for example, be due to the RC time constant of the low-
pass filters inserted in the gate voltage lines protecting
the gates from voltage surges, resulting in finite settling
times when switching voltages. Note that also the se-
quential stepping used in the line scans for the reference
data may exhibit time correlations of the measurement
data resulting in a spurious parameter space correlation
of the data, which may be the cause for slight variations
in positions of the plateau edges. Part of the MSEη may
be attributed to a spurious correlation in the line scan
data that is not present in the ALSM data due to the
largely unbiased data acquisition path.

To mitigate effects of insufficient voltage settling be-
tween measurements, we therefore optimize the ALSM
by ordering the measurement sequence to approximately
minimize ∆V between measurements. As shown in the
inset of Fig. 2, this optimization results in a large re-
duction in the range of step sizes (blue histogram). The
resulting MSEη (blue curve) is significantly reduced when
compared to the random sequence results, and with in-
creasing NAL systematically converges to a value just
slightly higher than the PLS baseline.

The question then arises how much of the MSEη (if
any) is solely introduced by the way the AL approach
itself collects data. We can answer this by replacing the
AL measurement data at each AL round with a sparse
data set from the reference measurements for the same
(Vexit,l, Vent,l) points queried in the AL experiment, and
plot the results as green curve in Fig. 2. This curve
systematically decreases with increasing NAL, indicating
that the AL approach itself can reach arbitrarily low tar-
get MSEη. When we replace the AL measurement data
with its corresponding PLS data rather than the full line
scan reference, the MSEη systematically converges to the
PLS baseline at around 60 AL rounds (purple curve).

We showcase the robustness of our ALSM framework
by using it to automatically characterize the n = 1
plateau for pumps from a multiplexed chip with 64 de-
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vices. Separate line scans show that a subset of 28 pumps
exhibits a plateau region, whereas the remaining ones do
not exhibit well-defined quantization20. The plateaus ex-
tracted with our ALSM approach are shown in Fig. 3a.
Our approach is able to successfully extract a characteris-
tic pump heat map for all the devices with reliable single-
electron operation, highlighting the ability to faithfully
find this “needle in the haystack” with only 1, 600 mea-
surements per pump. Our algorithm estimates lowest
quantization errors as low as ηE ≈ −8.7 across the 28
pumps. In Fig. 3b, we show how many pumps exhibit
ηE < 10−3 for a given (Vexit, Vent) parameter setting. It
allows to select both the parameter settings and the spe-
cific pumps that can be operated in parallel to reach this
target η on each pump. For this multiplexer and mea-
surement settings, our results predict that a maximum of
five pumps can be operated in parallel over extended pa-
rameter regions to obtain ηE < 10−3 for each. Note that
the use of communal gate voltages for parallel operation
is needed for multiplexer device architectures for which
some gate electrodes are shared among multiple pumps20.
For devices, where (Vexit, Vent) can be set independently
for each pump, our approach allows for fast characteriza-
tion and optimization of the (Vexit, Vent) parameters for
each pump to maximize the number of pumps that can
be operated in parallel to within a target η.

In conclusion, we have developed, and demonstrated,
an automatic machine learning based active learning
sparse measurement protocol to characterize single-
electron pumps for metrological applications. Our results
enable time-efficient measurements by selecting meaning-
ful data points to build quantization maps, as opposed
to the conventional data acquisition approach relying
on comprehensive exploration of the voltage parameter
space by line scans. Our approach lends itself to be ex-
tended to other control parameter dimensions, such as
drive signal amplitude and frequency, or magnetic field.
Although our application focuses on the characteriza-
tion of the first plateau region, the pipeline is directly
transferable to higher level plateaus, making it a gen-
eral prototype for the fully automated tuning of single-
charge pumps. The demonstration that this AL-based
framework can also be used for a large array of devices
underlines its ability to streamline the experimental op-
eration of single-electron pumping experiments towards
parallelization.
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