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Abstract: In the present investigation, a one-step hydrothermal approach is proposed to synthesize
Li+, Rb+, and In3+intercalated PW12O40 (PTA) thin films. The photoelectrochemical performance
of the deposited Li3PW12O40 (Li−PTA), Rb3PW12O40 (Rb−PTA), and In3PW12O40 (In−PTA) pho-
tocathodes were investigated using a two-electrode cell configuration of FTO/Li3PW12O40/(0.1 M
I−/I3−)aq./Graphite. The energy band gaps of 2.24, 2.11, and 2.13 eV were observed for the Li−PTA,
Rb−PTA, and In−PTA films, respectively, as a function of Li+, Rb+, and In3+. The evolution of
the spinal cubic crystal structure with increased crystallite size was observed for Rb+ intercalation
within the PTA Keggin structure, which was confirmed by X-ray diffraction (XRD). Scanning electron
microscopy (SEM) revealed a modification in the surface morphology from a rod-like structure to a
densely packed, uniform, and interconnected microsphere to small and large-sized microspheres for
Li−PTA, Rb−PTA, and In−PTA, respectively. Compositional studies confirmed that the composing
elements of Li, Rb, In, P, W, and O ions are well in accordance with their arrangement for Li+, Rb+,
In3+, P5+, W6+, and O2− valence states. Furthermore, the J-V performance of the deposited photo-
cathode shows power conversion efficiencies (PCE) of 1.25%, 3.03%, and 1.62%, as a function of the
incorporation of Li+, Rb+, and In3+ ions. This work offers a one-step hydrothermal approach that is a
prominent way to develop Li+, Rb+, and In3+ ions intercalated PTA, i.e., Li3PW12O40, Rb3PW12O40,
and In3PW12O40 photocathodes for competent solar energy harvesting.

Keywords: polyoxometalates; hydrothermal; phosphotungstate (PW12O40); thin films; power
conversion efficiency (PCE)

1. Introduction

Due to the limitations of non-renewable energy sources and the consumption of fossil
fuels, the development and commercial synthesis of renewable energy sources have piqued
the interest of today’s scholars in recent years. Because the sun is an infinite source of light
energy, researchers are concentrating their efforts on developing new photovoltaic solar
cells [1–3]. Polyoxometalates are used in the field of energy, such as solar cells [4] and
lithium-ion batteries [5,6]. The most studied Keggin types of structures are [XM12O40]n−

and [PMo12O40]3− [7]. Because these compounds are highly stable in air and water and can
conduct reversible and steady electron transfer processes, they are attractive candidates for
use in the energy field [8,9]. Although polyoxometalates offer attractive electrochemical
characteristics, there have been comparatively few studies of polyoxometalate carried
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out on photo-electrochemical solar cells. A photoconversion efficiency (η) of 033% was
reported in favor of (PW12/TiO2)3 thin films [10], and PW12-0.75 showed the highest (η) of
0.13% [11]. Recently, a Tl+-doped phosphomolybdic acid (TlPMA) absorber produced a
conversion efficiency of 0.42% [12].

Polyoxometalates (POMs), a well-known class of inorganic nanoclusters with a metal–
oxygen framework, have an inherent ability to accept electrons readily [13]. POMs can
undergo reversible multielectron redox reactions while retaining their intact structure, mak-
ing them an efficient electron scavenger to enhance the photoelectrochemical response [14].
Polyoxometalates (POMs), a class of molecular metal-oxo cluster compounds based primar-
ily on Mo, W, and V elements, have demonstrated superior physicochemical properties and
a wide range of applications [15,16]. POMs, in particular, have an intrinsic electron acceptor
property that is likely to capture photogenerated electrons from the semiconductor conduc-
tion band (CB) and thus promote semiconductor power conversion efficiency. Yoon et al.
reported that phosphotungstic acid played a vital role in improving the energy conversion
efficiency of a TiO2 anode [17]. Researchers also carried out a systematic study in the fields
of conductivity [18], photocatalysts [19,20], semiconductors [21], and polyoxometalates as
absorber materials in photovoltaic (PV) cells.

Recently, our group investigated the incorporation of monovalent and trivalent metal
ions into POMs films to enhance photoelectrochemical performance. These modifications
of POMs upon doping could promote its photoelectrochemical performance; this is a
promising strategy for enhancing electron–hole pair recombination, as a result, improving
the power conversion efficiency of the PTA photocathode [22,23].

The partial exchange of protons in heteropoly acid with large cations such as Cs+, Rb+,
NH4

+, and K+ transforms a water-soluble acid with a low surface area (<5 m2g−1) into a
water-insoluble salt with a surface area greater than 100 m2g−1 [24,25]. The presence of
the counter cation was discovered to affect the relative stability of heteropoly acids. The
heteropolyacids (HPAs) can be altered by exchanging protons with various metal or alkali
metal ions. HPA salts are formed by the partial and complete exchange of heteropolyacid
protons. As a result, the polyoxometalate materials exhibit significant improvement and
optimization in the growth pathway for refining their optoelectronic and photovoltaic prop-
erties through the doping strategy. Doping is a technique that involves introducing small
amounts of impurities into the lattice of a material, causing changes in the morphological,
optostructural, and electrical properties of the parent material [26].

Polyoxometalate Keggin’s structure remains intact even after its protons are exchanged
with various metal ions. The extent to which protons are exchanged with metal ions has
a significant effect on these POMs’ photovoltaic, catalytic, and sensing properties. POMs
that have been partially exchanged have been reported to have higher acidity than POMs
that have been completely exchanged [27]. This is due to the increased surface area, which
contributes to the protons’ high mobility.

Several research articles on the synthesis of monovalent metal-ion-exchanged polyox-
ometalate using solid-state ion exchange [28], batch reactor vessels [29], and layer-by-layer
methods [30] have been published, but all of these methods produce materials in powder
form, which is not suitable for solar cell application in terms of uniformity. Therefore,
we have directly implemented the modified one-pot hydrothermal route to synthesize a
uniform and adherent thin film, which is a simple and cost-effective procedure.

In the present investigation, the hydrothermal process was directly implemented to
construct a Li3PW12O40 (Li-PTA), Rb3PW12O40 (Rb-PTA), and In3PW12O40 (In-PTA) ab-
sorber on fluorine-doped tin oxide (FTO) substrates using Na2-EDTA as a complexing agent.
The main aim is to investigate the role of dopant monovalent Li+, Rb+, and trivalent In3+

ions in a phosphotungstate anion using a simple one-step hydrothermal process, as well as
the effect on optostructural, compositional, and morphological properties. Furthermore,
photoelectrochemical properties of directly synthesized Li3PW12O40 (Li-PTA), Rb3PW12O40
(Rb-PTA), and In3PW12O40 (In-PTA) thin films were investigated.
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2. Experimental Details
2.1. Chemicals and Material Details

Thin films of Lithium (Li+), Rubidium (Rb+), and Indium (In3+)-intercalated phos-
photungstate anions were synthesized using phosphotungstic acid (H3PW12O40) (PTA)
and lithium chloride, rubidium sulfate, and indium sulfate, all of which were purchased
from Himedia laboratories and used as sources of (PW12O40)3− and Li+, Rb+, and In3+ ions,
respectively. To allow for the gradual release of cations from the solution, the complex dis-
odium salt of ethylenediaminetetraacetic acid (Na2−EDTA, 99.9%, S.D. Fine Chem., Hong
Kong, China) was used. An ammonia solution (NH3, 25%, Thomas Baker, Mumbai, India)
was used to keep the pH of the reaction bath stable. Using an FTO conducting substrate
(~8 Ω/sq, Seoul, Republic of Korea), the photoelectrochemical application of Li+, Rb+, and
In3+-intercalated phosphotungstate anions was investigated. To perform electrochemical
reactions, a 0.1 M iodide/polyiodide solution was used to investigate the photoelectro-
chemical solar cell performance of Li−PTA, Rb−PTA, and In−PTA photoelectrodes. All
solutions were produced with double-distilled water (DDW).

2.2. Preparation of Solutions
2.2.1. Phosphotungstic Acid (H3PW12O40)

A 0.02 M H3PW12O40 solution was prepared by dissolving 5.76 g of H3PW12O40 in
double-distilled water (DDW) and diluted to 100 mL with DDW.

2.2.2. Lithium Chloride (LiCl)

A 0.1 M LiCl solution was made by dissolving 0.423 g of LiCl in double-distilled water
(DDW) and diluting it to 100 mL with DDW.

2.2.3. Rubidium Sulfate (Rb2SO4)

The 0.01 M Rb2SO4 solution was made by dissolving 0.267 g of Rb2SO4 in double-
distilled water and diluting it to 100 mL with DDW.

2.2.4. Indium (III) Sulfate (In2(SO4)3)

To make a 0.1 M In2(SO4)3 solution, we dissolved 0.517 g of In2(SO4)3in double-
distilled water and diluted it to 100 mL with DDW.

2.2.5. Ethylene Diamine Tetra Acetic Acid (EDTA)

A 0.1 M EDTA solution was made by dissolving 2.92 g of EDTA in double-distilled
water and diluting it to 100 mL with DDW.

2.2.6. Iodide/Polyiodide Electrolyte

Potassium iodide weighing 1.66 g was dissolved in a small amount of distilled water
to make a 0.1 M solution. Then 1–2 iodine crystals and a pinch of KCl powder and d were
added with double-distilled water to reach 100 mL.

2.3. Synthesis of Li+, Rb+, In3+ Doped PTA Thin Films

The synthesis of Li+, Rb+, and In3+ intercalated PTA thin films was deposited onto
the FTO substrate using a one-step hydrothermal route. In the process, the appropriate
volume of the 0.02 M H3PW12O40 solution was taken separately, and pH was adjusted
to 5.2, 6.8, and 6.5 ± 0.2 for Li+, Rb+, and In3+, respectively. Using an NH3 solution, the
colored metal-complex reaction solution changed to colorless and was then stirred for
10 min. Subsequently, an appropriate volume of freshly prepared EDTA complexed with
a 0.1 M LiCl, In2(SO4)3, and 0.01 M Rb2SO4 salt (Li−EDTA, Rb−EDTA, and In−EDTA)
solution was prepared and separately added drop-wise with continuous stirring to the
above solution. Finally, the entire reaction mixture was transferred to a 40 mL Teflon-lined
steel autoclave, and the precleaned FTO substrate was placed vertically in Teflon with the
conducting side facing the solution.
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For the hydrothermal synthesis of Li−PTA, Rb−PTA, and In−PTA, the autoclave
was stored in the furnace at 90, 85, and 120 ± 2 ◦C for 3 h. After the desired period, the
stainless-steel autoclave was naturally cooled to room temperature and the deposited films
were dried for one hour at 100 ◦C and used for further characterization. Table 1 displays
the optimized deposition parameters for Li−PTA, Rb−PTA, and In−PTA thin films.

Table 1. Optimized parameters for the synthesis of Li−PTA, Rb−PTA, and In−PTA thin films.

Sample Code Bath Composition pH Temperature (◦C) Deposition
Time (h)

Li−PTA

20 mL of 0.02 M H3PW12O40
+ liquor NH3

+ 10 mL
of Li-EDTA complex were added to the above

solution and the whole reaction mixture was put
into a Teflon-lined stainless-steel autoclave with a

capacity of 40 mL.

5.2 ± 0.2 90 ± 2 ◦C 3 h

Rb−PTA

20 mL of 0.02 M H3PW12O40
+ liquor NH3

+ 10 mL
of Rb-EDTA complex were added to the above

solution and the whole reaction mixture was put
into a Teflon-lined stainless-steel autoclave with a

capacity of 40 mL.

6.8 ± 0.2 85 ± 2 ◦C 3 h

In−PTA

20 mL of 0.02 M H3PW12O40
+ liquor NH3

+ 10 mL
of In-EDTA complex were added to the above

solution and the whole reaction mixture was put
into a Teflon-lined stainless-steel autoclave with a

capacity of 40 mL.

6.5 ± 0.2 120 ± 2 ◦C 3 h

2.4. Characterization of Li−PTA, Rb−PTA, and In−PTA Thin-Film Photocathode

The thickness of the Li−PTA, Rb−PTA, and In−PTA thin films was measured using a
surface profilometer (AMBIOS Model-XP-1, Ambios Technology, Milpitas, CA, USA). The
optical absorption spectra of the films were measured using a UV-Vis. spectrophotometer
(Shimadzu Model-UV-1800, Shimadzu Corporation Analytical & Measuring Instruments
Division, Kyoto, Japan) in the 300–700 nm range. An X-ray diffractometer was used to
examine the structural properties of Li−PTA, Rb−PTA, and In−PTA films (Bruker Model-
140 AXS D8, Bruker Ltd., Mannheim, Germany). Morphology and compositional data of
Li-PTA, Rb-PTA, and In-PTA films were investigated using field emission scanning electron
microscopy (FE-SEM) (MIRA3 LMH, TESCAN, Brno, Czech Republic, EU) coupled with
energy-dispersive spectroscopy (EDS) (JEOL-JSM 6360A, JEOL Ltd., Tokyo, Japan). The
analysis of valence states of constituted ions present in the Li−PTA, Rb−PTA, and In−PTA
films was performed with X-ray photoelectron spectroscopy (XPS, Thermo Scientific, Model:
Multilab-2000, Waltham, MA, USA).

A simple two-electrode cell configuration system was used to investigate the photo-
electrochemical cell performance of Li−PTA, Rb−PTA, and In−PTA photocathodes. In
the photo-electrochemical cell (PEC) setup, deposited Li−PTA, Rb−PTA, and In−PTA
thin films serve as a photocathode, while the graphite plates serve as counter electrodes
in a 0.1 M Iodide/polyiodide redox electrolyte solution under dark and light illumina-
tion from a 500 W tungsten lamp (light intensity of 100 mW/cm2). The electrode cell
configuration of FTO/Rb-PTA|(0.1 M Iodide/polyiodide)aq.|Graphite was used to assess
the PEC performance. The spacing between the photocathode and the counter electrode
was sustained up to ~1 cm. The electrochemical measurements were performed on an
Autolab electrochemical workstation using NOVA software (Model: Autolab, PGSTAT
100 potentiostat, Metrohm, Herisau, Switzerland).
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3. Results and Discussion
3.1. Proposed Growth and Reaction Pathway for Li−PTA, Rb−PTA, and In−PTA Thin Films

The surface morphology and crystal quality of Li−PTA, Rb−PTA, and In−PTA thin
films depend on the deposition process of the films onto the substrate. A simple and easy
low-cost hydrothermal approach is employing Na2-EDTA as a complexing agent to deposit
Li−PTA, Rb−PTA, and In−PTA films onto a conducting fluorine-doped tin oxide (FTO)
substrate. In this, the different metal ions were complexed with Na2-EDTA. Herein, the
controlled release of metal ions at an optimized temperature and pressure is the reason for
the chelating agent in this reaction. The Na2-EDTA is a useful organic complexing agent
that helps to deposit high-quality Li−PTA, Rb−PTA, and In−PTA thin films by allowing
different metal ions such as Lithium (Li+), Rubidium (Rb+), and (Indium) In3+ to slowly
escape during the deposition process.

We controlled the deposition parameters of Li−PTA, Rb−PTA, and In−PTA films
such as the temperature, pH, and precursor concentration to allow slowly released Li+,
Rb+, and In3+ metal ions to react with phosphotungstate (PW12O40)3− ions. The optimized
temperature and pressure in the hydrothermal reaction promote a rapid rate of reaction
by supplying heat energy to the reactant. As a result, a white-colored precipitate forms
rather than a film. To avoid precipitation, metal ions are complexed with Na2−EDTA and
decrease the precipitate with the formation of Li3PW12O40, Rb3PW12O40, and In3PW12O40
in powder form. At an optimized temperature and pressure, metal ions Li+, Rb+, and In3+

slowly dissociate from Li−EDTA, Rb−EDTA, and In−EDTA complexes inside the reaction
and are deposited via ion-by-ion condensation followed by the Ostwald ripening process.
In optimum conditions, smaller, thermodynamically unstable nuclei join one another to
produce bigger stable crystals, according to the Ostwald ripening law [31]. When the ionic
products of Li+, Rb+, and In3+ and (PMo12O40)3− ions progress to the solubility product
of the Li3PW12O40, Rb3PW12O40, and In3PW12O40 thin films, the deposition of Li−PTA,
Rb−PTA, and In−PTA thin films on the conducting FTO substrate occur [32].

Hydrothermally synthesized Li3PW12O40, Rb3PW12O40, and In3PW12O40-based thin
films exhibit good optoelectronic properties with Li+, Rb+, and In3+ intercalation, resulting
in uniform, adherent, and improved film quality. The possible growth mechanism for the
deposition of (i) Li−PTA, (ii) Rb−PTA, and (iii) In−PTA films by a cost-effective, simple,
one-step hydrothermal technique is shown in Figure 1.

(i) The reaction pathway for the deposition of Li3PW12O40 films is as follows:

Initially, the formation of metal ion complex Li2−EDTA in an aqueous medium is-
demonstrated in reaction (1)

2LiCl + Na2EDTA −−−−−−−−−→ [Li2−EDTA]2− + 2NaCl (1)

At an optimal pH and reaction temperature, the H3PW12O40and Li2−EDTA complex
dissociated and formed (PW12O40)3−and Li+, respectively, as shown in reactions (2) and (3)
below.

H3PW12O40 −−−−−−−−−→ (PW12O40)3− (2)

Li2−EDTA]2− −−−−−−−−−→ 2Li+ + (EDTA)2− (3)

When ionic products of Li+ and (PW12O40)3− ions exceeded and formed Li−PTA
as a solubility product, the formation of a Li3PW12O40 film onto the FTO substrate was
demonstrated in reaction (4).

(PW12O40)3− + 3Li+ −−−−−−−−−→ Li3PW12O40 (4)

(ii) The reaction pathway for the formation of Rb3PW12O40 films is as follows.
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As demonstrated in reaction (5), the Rb2−EDTA complex is formed in an aqueous
medium.

Rb2SO4 + Na2EDTA −−−−−−−−−→ [Rb2−EDTA]2− + Na2SO4 (5)

At an optimized pH and reaction temperature, the H3PW12O40 and Rb2−EDTA complex
dissociated and formed (PW12O40)3− and Rb+, respectively, as shown in reactions (6) and (7)
below.

H3PW12O40 −−−−−−−−−→ (PW12O40)3− (6)

[Rb2−EDTA]2− −−−−−−−−−→ 2Rb+ + (EDTA)2− (7)

When ionic products of Rb+ and (PW12O40)3− ions exceeded and formed Rb−PTA as
a solubility product, reaction (8) demonstrates the formation of the Rb3PW12O40 thin film
on the FTO substrate.

(PW12O40)3− + 3Rb+ −−−−−−−−−→ Rb3PW12O40 (8)
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Figure 1. Graphical representation of possible growth mechanism of (i) Li3PW12O40, (ii) Rb3PW12O40,
and (iii) In3PW12O40 thin film deposited by the single-step hydrothermal approach.

(iii) The reaction pathway for the formation of In3PW12O40 films is as follows.

The formation of an In2-EDTA complex in an aqueous medium is demonstrated in
reaction (9).

In2(SO4)3 + Na2EDTA −−−−−−−−−→ [In2-EDTA]2− + Na2(SO4)3 (9)

At an optimized pH and reaction temperature, the H3PW12O40 and In2−EDTA complex
dissociated and formed (PW12O40)3− and In3+, respectively, as shown in reactions (10) and
(11) below.

H3PW12O40 −−−−−−−−−→ (PW12O40)3− (10)
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[In2−EDTA]2− −−−−−−−−−→ 2In3+ + (EDTA)2− (11)

When ionic products of In3+ and (PW12O40)3− ions exceeded and formed In-PTA as
a solubility product, this resulted in the formation of In3PW12O40 thin film on the FTO
substrate as indicated in reaction (12).

(PW12O40)3− + 3In3+ −−−−−−−−−→ In3PW12O40 (12)

3.2. Thickness Studies

A surface profilometer was used to calculate the thickness of the as-deposited Li−PTA,
Rb−PTA, and In−PTA thin films, which were found to be 510, 620, and 570 nm, respectively.
The thickness of the deposited films is controlled by uniform growth and surface morphology.

3.3. Optical Absorption Studies

The film thickness of Li−PTA, Rb−PTA, and In−PTA films plays a crucial role in
optical absorption studies, which are found to be 510, 620, and 570 nm, respectively. The
synthesized Li−PTA, Rb−PTA, and In−PTA thin films indicate maximal light absorption
within the range of 500–600 nm, which is observed in Figure 2a; as seen from the absorption
spectra, slight shifting was observed in the absorption edge from Li+ to In3+ to Rb+ interca-
lation in the PTA film. The energy band gap of the Li−PTA, Rb−PTA, and In−PTA thin
films decreases with an increase in thickness. Large-sized cations intercalate in PW12O40,
increasing the grain-size expansion of Li−PTA, Rb−PTA, and In−PTA, which help to
shrink the voids, leading to Li−PTA, Rb−PTA, and In−PTA absorbers. Furthermore, the
decrease in band-gap energy of PW12O40 thin films might be due to additional energy
levels introduced by Li+, Rb+, and In3+ ions, which are close to the valence band edge
in the Eg of the host PW12O40, or a decrease in the energy associated with the direct and
allowed transition, which causes the position of the absorption edge to shift to higher
wavelength [33–36]. The band gap of deposited Li−PTA, Rb−PTA, and In−PTA films was
determined by plotting the graph of (αhυ)2 versus (hυ), as shown in Figure 2b–d, which
depends on Tauc Equation (13) [37].

α =
A(hv− Eg)n

hv
(13)

In which, ‘h’ is Planck’s constant, ‘Eg’ is the thin-film energy bandgap, exponent ‘n’ is
the type of electronic transition, and ‘A’ is the parameter that depends on the probability of
the electronic transition.

The optical absorption spectra of thin films have been studied to determine the absorp-
tion coefficient and optical energy gap. The optical properties of thin films are affected by
their thickness and the chemical elements or compounds that comprise them. Photovoltaic,
optoelectronics, electrochromic performance, solar cells, and photo-electrochemistry are
some applications based on the optical absorption of thin films. Absorption is propor-
tional to both the thickness of the film samples and the concentration of the absorbing
material [26].

The calculated band gaps for Li−PTA, Rb−PTA, and In−PTA films were 2.24, 2.11, and
2.13 eV, respectively, as a result of Li+, In3+, and Rb+ ions intercalated in the PTA, which is
lower than the parent PTA (3.24 eV). The energy band gap decreased owing to the increased
thickness of Li−PTA, Rb−PTA, and In−PTA films. Moreover, a reduced band gap was
observed in the PTA after Rb+ intercalation compared to Li+ and In3+, which is attributed
to the increased thickness of synthesized films and the improved grain size. As a result,
a densely packed and well-grown Rb3PW12O40 nanosphere film was formed. Rb−PTA
has a narrower band gap than Li−PTA and In−PTA, which increases light absorption in
photoelectrochemical cells [38].
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Figure 2. (a) Optical absorption spectra for Li−PTA, Rb−PTA, and In−PTA thin films and optical
band gap of (b) Li−PTA (c) Rb−PTA, and (d) In−PTA thin films.

3.4. Structural Analysis of Li−PTA, Rb−PTA, and In−PTA by XRD

The crystal structures of synthesized Li+, Rb+, and In3+-intercalated PTA films were
assessed by the XRD patterns. The XRD analysis of synthesized Li−PTA, Rb−PTA, and
In−PTA films were shown in Figure 3. As seen from Figure 3, the Li−PTA, Rb−PTA, and
In−PTA films all show similar X-ray diffractograms of the body-centered cubic secondary
Keggin structure with major diffraction peaks at 10.50–10.80, 15.15–15.32, 18.45–18.70, 21.27–
21.53, 26.41–26.69, 30.59–30.85, 36.00–36.27, and 39.20–39.35◦ [39]. Compared to pure PTA, a
slight shift in the prominent plane (222) towards higher 2θ values was observed in Li−PTA,
Rb−PTA, and In−PTA, indicating the successful intercalation of Li+, Rb+, and In3+ in PTA.
It is presumed that the Li+, Rb+, and In3+-intercalated PTA show similar symmetry but
contracted unit cells.
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The lattice parameters for the spinel cubic structure (a=b=c) for Li+, Rb+, and In3+-
intercalated PTA were found to be 12.02, 11.52, and 11.90 Å, respectively [29,40]. This
shrinkage of the unit cell can be described by the exchangeable protons present in the
secondary Keggin structure in the form of dihydronium ions H5O2

+ for hydrated Li+,
Rb+, and In3+ cations, which are primarily responsible for the contraction in the unit
cell parameter. This type of behavior was observed by Borghese et al. [41]. As a result,
XRD demonstrates the successful intercalation of Li+, Rb+, and In3+ ions into PTA while
preserving the Keggin structure. We calculated the crystallite size for Li−PTA, Rb−PTA,
and In−PTA samples using Scherrer’s Equation (14) [42].

D =
0.94 λ
β COS θ

(14)

where ‘D’ is the crystallite size (nm), ‘λ’ is the radiation source (CuKα = 1.5406 Å), ‘β’ is
the full width at half maximum (FWHM) intensity (taken in radians), and ‘θ’ is Bragg’s
diffraction angle (degree).

As shown in Table 2, the calculated crystallite sizes for Li−PTA, Rb−PTA, and In−PTA
were 48.85, 72.03, and 52.54 nm, respectively. The larger rubidium cation size can be
attributed to the increased crystallite size observed on Rb+ intercalated within the PTA
Keggin structure. When metal ions intercalate, the reaction accelerates, resulting in the
creation of a large number of nuclei and, as a result, a larger crystallite size, which is
beneficial for lowering electron–hole pair recombination [26,31]. Crystallite-size-dependent
structural parameters such as the dislocation density (δ) and microstrain (ε) were assessed
using Equations (15) and (16) [43].

δ =
1

D2 (15)

ε =
β COS θ

4
(16)

Table 2. Structural parameters of Li−PTA, Rb−PTA, and In−PTA thin films.

Sample
Code

Crystallite Size
(nm)

Dislocation Density (δ)
(Line m−2) × 1014

Microstrain (ε)
(line−2 m−4) × 10−4

Experimental
d-Spacing Value (Å)

Li−PTA 48.85 3.71 6.68 3.36

Rb−PTA 72.03 1.92 4.81 3.33

In−PTA 52.54 3.27 5.96 3.34

It is clearly shown that crystallite size was increased in the Rb−PTA thin film compared
to Li−PTA and In−PTA thin films due to the improved crystal quality and decreased
recombination rate between the electrons and holes, resulting in increased Jsc and Voc values
and subsequently increased photoelectrochemical performance. Dislocation density (δ)
and microstrain (ε) were calculated using Equations (15) and (16) and presented in Table 2.
The estimated XRD parameters were correlated with the reported data. Furthermore, XRD
analysis revealed that the Rb−PTA thin film has improved crystallinity when compared
to Li−PTA and In−PTA thin films, lowering the grain boundary resistance and defect
levels in Rb−PTA thin film. A reduced grain boundary in an Rb−PTA photocathode was
beneficial for increasing power conversion efficiency.

3.5. Morphological Studies

The influence of Li+, Rb+, and In3+ ions on the surface morphology of PTA thin
films was investigated using scanning electron microscopy (SEM). Figure 4a–f indicates
SEM images of Li−PTA, Rb−PTA, and In−PTA samples at low and high magnifications.
Figure 4a,b show low- and high-magnification SEM photographs of the Li−PTA film with
irregular-sized rod-like structures and an average grain size of ~0.08–0.32 µm. Low- and
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high-magnification SEM pictures of the Rb−PTA thin film confirm the formation of a
densely packed, well-grown, uniform-sized and -shaped, interconnected, microspherical
surface morphology with an average grain size of ~0.50–0.70 µm, as shown in Figure 4c,d.
Figure 4e,f show low- and high-magnification SEM pictures of the In−PTA thin film and
reveal the creation of small and large-sized micro-spherical surface morphology with an
average grain size of ~0.35–0.60 µm, respectively.
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Hydrothermally produced microsphere and rod-shaped surface morphologies are
significant for improving optical, electrical, and electronic properties, as well as increasing
the surface area for light absorption in solar cells. Overall, the morphological analysis
shows that developing the Rb−PTA surface morphology with interconnected microspheres



Materials 2023, 16, 888 11 of 16

of increasing grain size, which reduces grain boundary resistance, is useful for the further
enhancement of electrochemical properties [39].

3.6. Compositional Studies

The chemical composition of the Li+, Rb+, and In3+ ion-doped phosphotungstate
anion influences the output of PEC performance because it reveals the stoichiometry of
the produced Li−PTA, Rb−PTA, and In−PTA photocathodes, hence EDAX analysis is
performed for Li−PTA, Rb−PTA, and In−PTA. Figure 5a–c depict the elemental com-
position of constituent elements present in Li−PTA, Rb−PTA, and In−PTA thin films,
respectively. The EDAX spectra of the deposited Li−PTA thin film are shown in Figure 5a,
and the peaks that arise at binding energies (B.E.) of 0.5, 2.1, and 1.4 KeV confirm the
presence of oxygen, phosphorus, and tungsten elements, respectively. Lithium has the
atomic number of (Z = 3) and it has very low energy and is not detected in EDAX analysis
due to the detection limit. The EDAX spectra of the deposited Rb−PTA thin film are shown
in Figure 5b. Peaks confirm the existence of oxygen, phosphorus, tungsten, and rubidium
elements at 0.5, 2.1, 1.4, and 1.8 KeV binding energies, respectively. Figure 5c depicts the
EDAX spectra of the deposited In-PTA thin film. The peaks appear at binding energies of
0.5, 2.1, 1.4, and 3.3 KeV, which validate the occurrence of oxygen, phosphorus, tungsten,
and indium, respectively. The EDAX analysis indicates that theoretical and experimental
atomic percentages of Li−PTA, Rb−PTA, and In−PTA samples are consistent, tabulated in
the right inset of Figure 5a–c [44]. Distinct atomic percentages of O, P, and W were observed
in deposition; this is due to the reactivity of monovalent and trivalent ions to bare PW12O40.

Materials 2023, 16, x FOR PEER REVIEW 12 of 17 
 

 

spectra of the deposited In-PTA thin film. The peaks appear at binding energies of 0.5, 
2.1, 1.4, and 3.3 KeV, which validate the occurrence of oxygen, phosphorus, tungsten, and 
indium, respectively. The EDAX analysis indicates that theoretical and experimental 
atomic percentages of Li−PTA, Rb−PTA, and In−PTA samples are consistent, tabulated in 
the right inset of Figure 5a–c [44].Distinct atomic percentages of O, P, and W were ob-
served in deposition; this is due to the reactivity of monovalent and trivalent ions to bare 
PW12O40. 

 
Figure 5. Energy-dispersive X-ray spectra of (a) Li−PTA, (b) Rb−PTA, and (c) In−PTA thin films. 

Figure 6 shows the XPS analyses of Li−PTA, Rb−PTA, and In−PTA films that were 
analyzed to investigate the chemical parameters of the Li3PW12O40, Rb3PW12O40, and 
In3PW12O40 thin films. Figure 6a demonstrates the XPS survey spectrum of the Li−PTA 
sample, which shows the occurrence of Li, P, W, and O elements with their correspond-
ing binding energy (B.E.) positions, which confirms the presence of lithium (1+), phos-
phorus (5+), tungsten (6+), and oxygen (2−) oxidation states. Figure 6b represents the XPS 
survey spectrum of the Rb−PTA sample, which shows the existence of Rb, P, W, and O 
elements with their respective binding energies positions, which confirms the presence of 
rubidium (1+), phosphorus (5+), tungsten (6+), and oxygen (2−) oxidation states. Figure 6c 
depicts the XPS survey spectrum of the In−PTA sample, which affirms the presence of In, 
P, W, and O elements with their corresponding(B.E.) positions, which confirms the 
presence of indium (3+), phosphorus (5+), tungsten (6+), and oxygen (2−) oxidation states. 
In addition, the survey spectra of Li−PTA, Rb−PTA, and In−PTA contain a carbon peak, 
which is assigned as adventitious carbon. 

Figure 5. Energy-dispersive X-ray spectra of (a) Li−PTA, (b) Rb−PTA, and (c) In−PTA thin films.



Materials 2023, 16, 888 12 of 16

Figure 6 shows the XPS analyses of Li−PTA, Rb−PTA, and In−PTA films that were
analyzed to investigate the chemical parameters of the Li3PW12O40, Rb3PW12O40, and
In3PW12O40 thin films. Figure 6a demonstrates the XPS survey spectrum of the Li−PTA
sample, which shows the occurrence of Li, P, W, and O elements with their corresponding
binding energy (B.E.) positions, which confirms the presence of lithium (1+), phosphorus
(5+), tungsten (6+), and oxygen (2−) oxidation states. Figure 6b represents the XPS survey
spectrum of the Rb−PTA sample, which shows the existence of Rb, P, W, and O elements
with their respective binding energies positions, which confirms the presence of rubidium
(1+), phosphorus (5+), tungsten (6+), and oxygen (2−) oxidation states. Figure 6c depicts
the XPS survey spectrum of the In−PTA sample, which affirms the presence of In, P, W,
and O elements with their corresponding(B.E.) positions, which confirms the presence of
indium (3+), phosphorus (5+), tungsten (6+), and oxygen (2−) oxidation states. In addition,
the survey spectra of Li−PTA, Rb−PTA, and In−PTA contain a carbon peak, which is
assigned as adventitious carbon.
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Overall, the survey spectra for Li−PTA, Rb−PTA, and In−PTA -based thin films show
they are composed of elements Li, Rb, In, P, W, and O ions are reliable in their arrange-
ment for Li+, Rb+, In3+, P5+, W6+, and O2− valence states, confirming that synthesized
Li−PTA, Rb−PTA, and In−PTA thin films are consistent with their stoichiometric formula,
Li3PW12O40, Rb3PW12O40, and In3PW12O40, respectively.

3.7. Photoelectrochemical Performance of Li−PTA, Rb−PTA, and In−PTA Thin Films

The photoelectrochemical performance of Li−PTA, Rb−PTA, and In−PTA photo-
cathodes was measured with a simple, cost-efficient, liquid junction photoelectrochemical
(PEC) cell. Figure 7 depicts a schematic illustration of the Rb−PTA photocathode in the
PEC cell configuration. The photoelectrodes in the PEC cells were made up of Li−PTA,
Rb−PTA, and In−PTA thin films. A graphite blade acted as a counter electrode, and an
electrolyte solution of 0.1 M Iodide/polyiodide was utilized for the electrochemical pro-
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cess. The photoelectrochemical cell is represented as:FTO/Rb−PTA |Iodide/polyiodide
(0.1 M)|Graphite.
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Figure 7. Schematic representation of Rb−PTA photocathode.

The J-V characteristics of the Li−PTA, Rb−PTA, and In−PTA photocathodes were an-
alyzed on the auto-lab electrochemical workstation shown in Figure 8a–c. When the photo-
cathode was exposed to light, it absorbed incident light. As a result, an electronic transition
appeared from the valence band (VB) to the conduction band (CB). Current density–voltage
measurements were performed on deposited Li−PTA, Rb−PTA, and In−PTA samples
without and with illumination from a 100 mW/cm2 filament lamp. Figure 8 shows that,
under dark conditions, Li−PTA, Rb−PTA, and In−PTA photoelectrodes behave similarly
to rectifier diodes, and under light irradiation, it is observed that the magnitude of the
open-circuit voltage increases with positive polarity, confirming that Li−PTA, Rb−PTA,
and In−PTA photoelectrodes are p-type semiconductors.
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From the J-V curves, the fill factor (FF) and power conversion efficiency (η%) of Li+,
Rb+, and In3+-intercalated PTA films were evaluated using Equations (17) and (18) [45].

FF =
Jmax ×Vmax

Jsc ×Voc
(17)

η% =
Jsc ×Voc

Pin
× FF× 100 (18)

where ‘Jmax’ is the maximum output current, ‘Vmax’ is the maximum output voltage, ‘Jsc’ is
the short-circuit current, ‘Voc’ is the open circuit voltage, and ‘Pin’ is the input light intensity
of a tungsten lamp (100 mW/cm2).

As seen from the J-V analysis, there was an increment in current density upon Li+, Rb+,
and In3+-intercalated PTA films. The calculated power conversion efficiency for Li−PTA,
Rb−PTA, and In−PTA was 1.25%, 3.03%, and 1.62%, respectively. An improvement in
PEC was seen due to the intercalation of Li+, Rb+, and In3+ in PTA. Table 3 summarizes
all of the photo-electrochemical cell performance data, which shows lower Voc values
observed in the J-V measurements. This might be due to recombination processes in the
photoelectrochemical cell [46,47].

Table 3. Photoelectrochemical parameters of Li−PTA, Rb−PTA, and In−PTA photocathode.

Sample
Code Eg (eV) Jsc

(mA cm−2)
Voc

(mV)
Jmax

(mA cm−2)
Vmax
(mV) FF η%

Li−PTA 2.24 1.23 690 0.92 418 0.44 1.254

Rb−PTA 2.11 2.20 827 1.67 571 0.50 3.032

In−PTA 2.13 1.35 770 1.05 465 0.46 1.627

As seen from Figure 8, when Li+, Rb+, and In3+ were intercalated in PTA, an increase
in current density and open-circuit voltage was seen as a result of improving the PEC
performance. The increase in PEC output is due to the formation of compactly and densely
packed uniform films of Li−PTA, Rb−PTA, and In−PTA, respectively. Rb−PTA presents
highly uniform and compact film formation that reduces the number of grain boundaries
and provides enough space to absorb photons compared to Li−PTA and In−PTA thin films.
Furthermore, the uniform film surface shows close exposure between the electrolyte the and
electrode along with a sufficient surface area for photogenerated electrons, while the less
uniform film is present in Li−PTA and In−PTA, which licks the photocurrent, thus forming
a low current that accomplishes the lower conversion efficiency as compared to Rb−PTA.
Overall, the Rb−PTA photocathode exhibits a better photoelectrochemical performance,
attributed to improvements in the densely packed film and increased thickness, providing
enough surface for solar energy absorption and diminishing the rate of electron–hole pair
recombination, which is useful for photoabsorption in photoelectrochemical solar cells.

4. Conclusions

To fabricate the Li−PTA, Rb−PTA, and In−PTA thin films onto FTO substrates, a
one-step, cost-effective, non-toxic hydrothermal route was used. Optical and structural
studies revealed that Rb−PTA thin films exhibit direct and appropriate types of transitions
with lower energy bandgap, i.e., 2.11 eV, when compared to Li−PTA and In−PTA thin
films. The surface morphology of Li+, Rb+, and In3+ intercalation in PTA differs, resulting in
irregular rods, interconnected microspheres, and agglomerated microspheres, respectively.
The presence of Li, Rb, In, P, W, and O ions with valence states of Li+, Rb+, In3+, P5+, W6+,
and O2− is confirmed by compositional data. The PEC study confirms the generation of
conversion efficiencies of 1.25%, 3.03%, and 1.62% for Li−PTA, Rb−PTA, and In−PTA
photocathodes, respectively. Improvement in the power conversion efficiency (PCE) for
Rb−PTA was observed, attributed to the optimal bandgap produced after Rb+ ion interca-
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lation. Moreover, from the achieved results, the one-step hydrothermal approach is a better
alternative than other thin-film deposition techniques.
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