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Abstract 11 

Positive displacement (PD) pumps are widely employed in industrial settings due to their 12 

inherent simplicity and reliability, serving a variety of applications from slurry transport to jet 13 

washing. Although their operational principles are straightforward, the fluid dynamics of the 14 

pumped medium exhibit non-trivial characteristics, including intricate transient phenomena. 15 

Consequently, a comprehensive fluid dynamic description, such as a three-dimensional fluid 16 

analysis, presents challenges due to its demanding computational requirements. While 17 

simpler analytical PD pump models are available, they often fail to adequately represent the 18 

primary system behaviours, particularly when dealing with cavitation. Motivated by these 19 

challenges, this study aims to develop a novel one-dimensional model for PD pumps, offering 20 

a representation of essential fluid phenomena without imposing significant computational 21 

burdens. After assessing the relative importance of the fluid dynamic behaviours that the 22 

model must capture, we construct a pump model based on a one-dimensional fluid 23 

description and solve it using a second-order in time and space MUSCL-TVD scheme. The 24 

model's validity is confirmed by its application to both single-chamber and three-chamber 25 

diaphragm PD pumps, which are instrumented for experimental validation. The results of the 26 

one-dimensional model exhibit strong agreement with physical experiments, both in 27 

controlled laboratory environments and field conditions. This success suggests a promising 28 

approach for industrial applications. 29 
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Nomenclature 30 

Acronyms 31 

BDC  Bottom dead centre 32 

CFD  Computational Fluid Dynamics 33 

CFL  Courant Friedrichs Lewy Condition 34 

DGCM  Discrete Gas Cavity Model 35 

MUSCL  Monotone Upwind Scheme for Conservative Law 36 

ODE  Ordinary differential equation 37 

PD  Positive Displacement Pump 38 

PDE  Partial differential equation 39 

RANS  Raynolds Averaged Navier Stokes 40 

TVD  Total variation diminishing 41 

Variables 42 

𝛼  volume fraction 43 

𝜌  Density [kg/m3] 44 

Θ  Multistep coefficient  45 

Ω  Multi-stage coefficient 46 

𝜀  Relative roughness 47 

𝜁𝑖   loss of the valve  48 

Δ  difference 49 

𝜆  eigenvalue 50 

Λ  pump piston design parameter 51 

𝜔  angular velocity [rad/s] 52 
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ψ  Pressure force coefficient 53 

𝐴  Area of the valve [m2] 54 

𝑐  speed of sound [m/s]  55 

𝐷ℎ  Hydraulic diameter [m] 56 

𝐹𝐷  Damping force [N] 57 

𝐹𝑚  Gravity force [N] 58 

𝐹𝑝𝑟𝑒  Preload spring force [N] 59 

𝐹𝑝  Pressure force [N] 60 

𝐹𝑠  Spring force [N] 61 

𝑓  Darcy friction factor velocity 62 

𝑙𝑔𝑎𝑝  gap length of the valve [m] 63 

𝑝  Pressure [Pa] 64 

𝑃  polynomial characteristic function 65 

𝑟  radius [m] 66 

𝑅𝑥𝑦  correlation factor  67 

𝑅𝑒  Reynolds number 68 

𝑆𝑥  Source term in the momentum equation 69 

𝑡  time [sec] 70 

𝑈  State variable 71 

𝑢  Fluid velocity [m/s]  72 

𝑥  axial coordinate [m] 73 

�̇�  velocity [m/s] 74 

�̈�  acceleration [m/s2] 75 
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𝑉  Volume [m3] 76 

𝑘  polytropic index 77 

Subscription 78 

𝑑𝑜𝑤𝑛  downwards 79 

𝑒𝑥𝑝  experiment 80 

𝑖  index 81 

𝐿  liquid 82 

𝑛𝑢𝑚  numerical 83 

𝑚  mixture 84 

𝑝  piston 85 

𝑢𝑝  upwards 86 

Introduction 87 

Basics principles of positive displacement pump  88 

Positive displacement pumps (PD) are simple and reliable machines capable of generating 89 

high pressures mostly independently from the applied load. Their straightforward mechanical 90 

configuration involves a reciprocating displacement motion, engendering compression within 91 

a confined volume to supply the requisite pressure. Widely employed in robust sectors such 92 

as mineral extraction, power generation, and oil & gas exploration. They exhibit diverse 93 

designs, incorporating liquid displacement mechanisms like pistons, plungers, or diaphragms. 94 

Distinct designs exhibit specific operational characteristics; for example, the inclusion of a 95 

diaphragm plays a pivotal role in augmenting the pump's reliability. This is achieved by 96 

isolating the working fluid from the mechanical components, contributing to enhanced 97 

operational robustness. To explain the main functionality of the pump component, a typical 98 

diaphragm pump cross-section is presented in Figure 1. It is noteworthy that the delineation 99 

provided herein can be extended to piston and plunger pumps owing to their more 100 

straightforward design. In detail, referring to Figure 1, the crankshaft (1) is driven by an 101 

external engine, typically an electrical or internal combustion engine. This linkage is 102 
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established through a gearbox, facilitating the transmission of motion and power to the pump 103 

mechanism. The kinetic energy is transmitted to the piston (6) via an interconnected 104 

arrangement of connecting rods and couplings (3-6). In the context of mechanically driven 105 

diaphragm pumps, the diaphragm (9) is directly attached to the piston rod (5), establishing a 106 

direct mechanical linkage. For a hydraulically driven pump, a propellant liquid (15) intervenes 107 

between the piston and the diaphragm. This intermediary fluid serves the purpose of 108 

mitigating mechanical stresses imposed on the diaphragm during operation. Under this 109 

arrangement, the diaphragm acts as a barrier, effectively segregating the working fluid (16) 110 

from the driving section. Two valves (11-12) are mounted at each end of the pumping 111 

chamber (14) to determine the compressing volume. Suction and discharge ducts (16,19) are 112 

normally included in the design. For both discharge (17) and suction (18) lines, a hydraulic 113 

accumulator (10) or air vessel (13) can be used to dampen the pressure fluctuations in the 114 

system. 115 

 116 

Figure 1 - Cross-section of GEHO piston pump.  117 

This mechanism generates a theoretical pressure cycle that recurs every 360 degrees. 118 

However, due to different frequency responses of the hydraulic component, slight variations 119 

in the cycles can occur. To simplify the description of the pump cycle, the piston is 120 

conceptualized in its retracted position, denoted as the bottom dead centre (BDC), situated 121 

at the zero-crank position. The compression phase initiates with an outward displacement of 122 

the piston or diaphragm, theoretically commencing immediately as the suction valve (12) is 123 

closed. Nevertheless, the inertia of the valve and the intricacies of fluid dynamics may 124 
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introduce delays, leading to a lag in the compression phase. During this stage, there is a 125 

potential for the discharge phase to overlap with the closure of the suction valve, giving rise 126 

to operational losses. Once the suction valve is closed, the pressure within the piston chamber 127 

(15) rapidly ascends until it attains the opening pressure of the discharge valve. This pressure 128 

reaches a slightly higher value than the discharge plenum pressure partly due to the valve 129 

acting forces (inertia, spring, and pre-load force and pressure forces). Similarly, for the 130 

discharge valve closure and opening, the suction valve delays will occur introducing a 131 

decrease in pumping performance. 132 

 133 

Figure 2 – Example of pressure cycle for a PD pump with measurements taken from the chamber.  134 

To provide clarity, a normalized pressure response for a single chamber cycle is illustrated in 135 

Figure 2. This graphical representation was generated using a pressure transducer directly 136 

interfaced with the pump chamber, offering a comprehensive depiction of the pressure 137 

variations throughout the operational cycle. Table 1 presents the typical range of valve 138 

opening and closing movements in terms of crankshaft angle. This information provides a 139 

quantitative reference for the angular displacement associated with the initiation and 140 

termination points of valve actions within the pump mechanism. 141 

Table 1 - Opening and close Valve delay [1] 142 

 Opening Delay [deg] Closing Delay [deg] 

Suction Valve 20 – 45 5 - 10 

Discharge Valve 20 – 45 5 – 10 
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 143 

The complexity of the cycle is further extended by the possible formation of cavitation, 144 

expansion of non-dissolved gas, and the interaction of pressure waves with other components 145 

or chambers for multi-chamber pumps. The inception of cavitation is notably prevalent during 146 

the suction phase, where low static pressures arise due to the acceleration of the fluid across 147 

the valve[2]–[8]. This second-phase phenomenon introduces further complexity to the 148 

operational dynamics of the pump system. If the vapor pressure at the local liquid 149 

temperature is reached, then cavitation can occur. Concurrently, non-dissolved gases may 150 

undergo expansion.  151 

Considering the pure mechanical description, it becomes evident that the pump's 152 

performance is profoundly impacted by piston movement that in the first instance can be 153 

described by a sinusoidal formulation. Equation ( 1 ) represents the piston’s velocity profile 154 

with the design parameter Λ =
𝑟

𝑙
, where 𝑟 is the crank radius and 𝑙 is the connecting rod 155 

length. 156 

𝑥�̇�(𝑡) ≈ 𝑟𝜔 [𝑠𝑖𝑛 𝜔𝑡 −
𝛬

2
𝑠𝑖𝑛 2𝜔𝑡] ( 1 ) 157 

When Λ is equal to zero the output manifests as a pure sinusoidal waveform. Nonetheless, 158 

this parameter holds paramount significance for pump efficiency. Λ exerts the potential 159 

aspect to mitigate issues such as cavitation. The careful consideration and adjustment of this 160 

parameter are essential in optimizing the overall performance and reliability of the pump 161 

system. 162 

Literature review 163 

As previously mentioned, the operational concept of the positive displacement (PD) pump 164 

may seem straightforward, relying on a reciprocating piston/diaphragm and self-acting 165 

valves. However, the intricacies arising from the interaction of these components make 166 

computational fluid dynamics analysis challenging. The dynamic interplay of forces, fluid 167 

flows, and valve actions necessitate a nuanced approach to comprehensively model and 168 

understand the pump's behaviour through computational simulations. The intricate flow 169 

interactions within the pump demand a thorough understanding and precise modelling of 170 

each component. Utilizing three-dimensional algorithms, especially those requiring a moving 171 
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mesh for dynamic elements such as the piston and self-acting valves proves to be a 172 

challenging and computationally demanding task [2], [3], [7], [9]. Therefore, the full 173 

description of the fluid dynamics in a PD pump is expensive if not impractical for many 174 

industrial applications. The challenge is further increased in the case of multiple-cylinder 175 

pumps, commonly used in industry to increase flow rate and efficiency. The connection of the 176 

cylinders, due to a common suction and discharge chambers, results in a coupling between 177 

the chambers and hence affects the pump operating behaviour. In addition, initialization 178 

issues occur due to different phase shifts of the chambers. Consequently, few full CFD models 179 

are described in the literature, and they are mostly focused on a specific component; typically, 180 

the suction valves [2], [3], [9], [10] or diaphragm [11]. Differently complete networks [10], 181 

[12] consider a one-dimensional approach. Iannetti et al. [2], simulate only the suction phase 182 

where cavitation conditions occur and neglect the discharge phase and any interactions that 183 

the pump has with the overall hydraulic system. The same condition for a small diaphragm 184 

pump was performed by Li et al.[8] where organic fluid was considered. Therefore, no wave 185 

reflection and interaction with other chambers or the reservoir is considered. Iannetti et 186 

al.[2], [3] also highlight the importance of correctly tuning the value of the existence of non-187 

condensable gas (NCG).  188 

In contrast, the simplest models of reciprocating pumps are constructed from simply lumped 189 

parameter approaches [6], [13]–[16]. Shu et al. model [9] built upon Johnston’s model [5], [6] 190 

developed a multi-chamber model with network interaction. Several simplifications were 191 

implemented: (1) the discharge flows of all the chambers are connected in one lumped point, 192 

(2) a small air pocket chamber is simulated in the suction line to consider a non-condensable 193 

gas, and (3) volume parameters are introduced to calculate the effective bulk modulus of the 194 

air-liquid flow. The latest condition implies tuning two different parameters to achieve 195 

accurate results. To compute the dynamics of the network, Shu et al. [14] used the Galerkin 196 

finite element method that considers frequency-dependent friction. Although their code 197 

predicted the behaviour of the pump network with acceptable accuracy, the algorithm was 198 

ineffective when cavitation occurred. Moreover, the authors highlighted the importance of 199 

the compressibility effect on the valve model to achieve good predictions. A different 200 

approach to analysing the dynamics of a system was given by Singh et al. [17]who for the first 201 

time studied a network of multiple PD pumps and their associated interaction. This was done 202 
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in the frequency domain, normally used for steady pump conditions. They use an iterative 203 

process to calculate the pump behaviour and the pipe system response. At that time the 204 

method was a significant contribution to the field, although the complexity of the valves and 205 

the pump interaction was not well captured, being too simplistic for the complexity of the 206 

processes. The importance of valve modelling was highlighted by Johnston et al. [5], [6], who 207 

studied the valve dynamics and the cavitation conditions experimentally. Test data were used 208 

to determine a force coefficient and establish a semi-empirical simple valve model. The 209 

results considered the effects of different valve angles and the shape of the valve as major 210 

behaviour factors. Johnston’s simulation [5], [6] agreed with the experiment in the non-211 

cavitating regime. However, when cavitation occurred, even in small quantities, differences 212 

were found, emphasizing the significant impact that this phenomenon has on the pump 213 

performance. 214 

Research involving purely cavitation in PD pumps was performed by Opitz et al. [4]. They 215 

categorized the cavitation phenomenon as pseudo-cavitation, vapour cavitation, and gas 216 

cavitation. The vapour cavitation condition is further refined into incipient, partial, and full 217 

cavitation. This categorization is important for a better understanding of the potentially 218 

harmful cavity condition. In addition, the authors’ model calculates the amount of cavitation 219 

using a fluid velocity model that is related to the theoretical piston velocity. Although that 220 

model perfectly matches the cavitation produced in many cases, it does not give information 221 

on the pressure and flow, or the number of cavities produced and propagated in the system. 222 

The propagation of information inside the hydraulic network in which a PD pump is embedded 223 

is vital to understanding the performance of the pump itself as pointed out by Vetter and 224 

Schweinfurter [18]. In their research, the generated pressure pulsations are related to the 225 

volumetric efficiency of the pump, for a different number of chambers. The main purpose was 226 

to simulate the pressure pulsation of an entire pump network using the ROLAST software, a 227 

one-dimensional code solving the continuity and momentum, using the method of 228 

characteristics. The predicted results agreed with different pump designs, although no 229 

cavitation algorithm was considered. 230 

With the same logic, Josifovic et al. [12], used two different commercial codes to exploit the 231 

potential of one-dimensional approaches alongside three-dimensional RANS analysis. The 232 

three-dimensional model performed in Fluent environment determined the general hydraulic 233 
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characteristics of the valve which were extrapolated into the one-dimensional model. Once 234 

more the limitation of the computational effort was highlighted, and good agreement was 235 

found with the experimental results when cavitation was not addressed. The use of two 236 

different software approaches limited the range of applicability. However, it has the benefit 237 

of establishing a better definition of the complex components, whereas in many other cases, 238 

commercial codes have the major drawback of modelling the dynamics of components with 239 

empirical coefficients. This results in the simplification of important phenomena, like valve 240 

backflow or energy losses in orifices. 241 

Another major factor influencing the simulation accuracy of a positive displacement 242 

diaphragm pump is the interaction that the fluid has with the diaphragm. In the case of a 243 

hydraulically driven pump, the propelling liquid is interposed between the piston and the 244 

diaphragm due to structural reasons. Van Rijswick [1] studied the interaction that the 245 

diaphragm has with the surrounding fluid, using a three-dimensional fluid-structure 246 

interaction approach. In his research, the simplification of a mixture density description for 247 

both driven and slurry fluid was considered, a feasible approximation when the density of 248 

both fluids is comparable. This simplification opens the possibility of using a one-dimensional 249 

analysis of wave propagation not only for mechanical-driven pumps but also for fluid-driven 250 

pumps.  251 

The simplest system of equations capable of describing the discussed complexity in one 252 

dimension is the water hammer equations. They are implemented with different algorithms 253 

and strategies, mainly using finite-difference approaches [19]–[24] or the finite volume 254 

method [25]–[30]. The main advantage of the finite volume methods is their ability to handle 255 

discontinuities in fluid behaviour. In addition to these algorithms, the use of a total variation 256 

diminishing (TVD) solver reduces the influence of numerical wiggle and noise [31]. Regarding 257 

the time integration strategy, water hammer equations are often solved explicitly, although 258 

the implicit schemes are more stable and time-efficient, they are limited by the distortion 259 

produced in wave propagation paths [32]. 260 

In conclusion, the complexity of the system, the importance of the second phase (air or/and 261 

vapour), the time-grid dependence, the cavitation model, and the simulation of the network 262 

are all important features highlighted in the literature. For this reason, this paper addresses 263 

those problems by discussing an overall improved model for the simulation of positive 264 
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displacement pumps. The effect of pressure wave propagation, compressibility, non-265 

condensable gas, and cavitation are accounted for and the simulation of multiple chambers 266 

and their interaction with pipeline networks is also implemented. The improved model is 267 

developed from a one-dimensional computational description making it computationally 268 

efficient and validated with experimental data for two different positive displacement 269 

diaphragm pump designs. The performance of the pump is numerically determined and 270 

compared with experimentally determined pressure values. In addition, pump efficiency 271 

frequency analysis, and indirect cavitation evaluation are given to better understand the 272 

pump conditions and performances. 273 

Methodology 274 

The diaphragm pump employed in this study is akin to the one depicted in Figure 1. The model 275 

used in this work closely resembles the physical configuration illustrated in the figure, 276 

providing a basis for the analysis and simulations conducted in the study. 277 

To provide a comprehensive depiction of the pump, each constituent element, including the 278 

suction and discharge line ducts, chambers, and valves, is individually represented. This 279 

approach allows for a detailed analysis of the interactions among these components, 280 

facilitating a thorough understanding of the pump's operational dynamics. The modelling 281 

approach assumes axial flow, and for simplicity, three-dimensional phenomena are 282 

neglected. In the model, several mechanical components are represented by a lumped 283 

parameter approach including the suction, discharge valve and hydraulic accumulator.  284 

Figure 3 shows the schematic and simplification of a positive displacement pump for a single 285 

chamber pump. The configuration consists of:  286 

•� piston section, (component 6, in Figure 1 and component 1, in Figure 3); 287 

•� pre-chamber section (component 15, in Figure 1 and component 2, in Figure 3); 288 

•� chamber section (component 14, in Figure 1 and component 3, in Figure 3), where the 289 

diaphragm dynamics are neglected [33], and the two fluids (propelling and working 290 

fluid) cannot physically interact but they can exchange momentum.  291 

•� Suction and discharge section (components 16 and 19, in Figure 1 and components 5 292 

and 6, in Figure 3), representing the volume upstream of the valve; 293 
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•� Suction and discharge pipe (components 17 and 18, in Figure 1 and components 6 and 294 

7, in Figure 3), and the volume downstream of the suction valve and discharge valve 295 

(components 11 and 12, in Figure 1). 296 

 297 

Figure 3 - Pump simplified schematic for one-dimensional analysis. 298 

The intricate interplay between all pump components and the fluid itself forms a complex 299 

system. This complexity necessitates the computation of both the dynamic behaviours of the 300 

components and the fluid dynamics. A comprehensive understanding of these interactions is 301 

crucial for accurate modelling and simulation of the pump system. 302 

Numerical Solution  303 

The numerical simulation of the entire system demands simultaneous calculations for both 304 

fluid dynamics, described through a one-dimensional approach, and the dynamics of the 305 

mechanical components. The fluid dynamics model elucidates the fluid solution, while the 306 

mechanical component model provides insights into the mechanical dynamics. This dual-307 

model approach ensures a holistic representation of the intricate interactions between the 308 

fluid and the mechanical elements within the pump system. 309 
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Fluid dynamics model  310 

A comprehensive one-dimensional analysis of the pressure wave phenomenon in all fluid-311 

based components is conducted through a complete one-dimensional fluid dynamic 312 

description. In this analysis, the temperature variation in the system is assumed to be 313 

negligible, rendering the system isothermal. Consequently, the energy equation is neglected, 314 

allowing the continuity and momentum equations, expressed as partial differential equations 315 

(PDEs), to accurately represent the hydraulics, as outlined in Equation (2): 316 

{

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
= 0

𝜕𝜌𝑢

𝜕𝑡
+

𝜕(𝜌𝑢𝑢+𝑝)

𝜕𝑥
= 𝑆𝑥

 ( 2 ) 317 

Where 𝜌 is the density, 𝑢 the fluid velocity, 𝑝 the pressure and 𝑆𝑥 the source term corresponds 318 

to the dissipation term.  319 

The system is deemed hyperbolic when the Jacobian matrix of the system is diagonalizable 320 

with real eigenvalues. This system is weakly hyperbolic [34], [35] due to the eigenvalues being 321 

equal to 𝜆1 = 0 and 𝜆2 = 𝑢, thus, to solve this system a preconditioning matrix should be 322 

considered [35]. Implementing this methodology can be challenging, especially for complex 323 

systems involving multiple connections and diverse boundary conditions. To simplify the 324 

solution, the speed of sound 𝑐 is introduced with the Newton–Laplace equation 𝑐2 =
𝜕𝑝

𝜕𝜌 
, 325 

decoupling the pressure and the density from the system of equations. The system then 326 

becomes strongly hyperbolic with two eigenvalues, reported in equation ( 3 ), that are always 327 

real, since 𝑢2 + 4𝑐2 > 0 ∀𝑢, 𝑐. 328 

𝜆1 =
𝑢−√𝑢2+4𝑐2

2

𝜆2 =
𝑢+√𝑢2+4𝑐2

2

 ( 3 ) 329 

Equation (2) is therefore simplified into equation (4) 330 

{

𝜕𝑝

𝜕𝑡
+ 𝑐2 𝜕𝜌𝑢

𝜕𝑥
= 0

𝜕𝜌𝑢

𝜕𝑡
+

𝜕(𝜌𝑢𝑢+𝑝)

𝜕𝑥
= 𝑆𝑥

 ( 4 ) 331 

When neglecting the convective term in the momentum equation and applying the 332 

incompressible flow condition, the system reduces to a classical water hammer formulation. 333 
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To compute the dissipation term, the source term is evaluated with the step method [36]. In 334 

detail, the source term is equal to: 𝑆𝑥 =  −
1

8
𝜙𝜌𝑓 𝑢 |𝑢|, where 𝑓 is the Darcy friction factor 335 

and is determined using the Colebrook-White equation( 5 ): 336 

1

√𝑓
= −2 𝑙𝑜𝑔 (

𝜀

3.7𝐷ℎ
+

2.51

𝑅𝑒√𝑓
) ( 5 ) 337 

Where the ratio 
𝜀

𝐷ℎ
 is the relative roughness and 𝑅𝑒 is the Reynolds number. 338 

The numerical solution is progressed through an explicit finite volume method. The 339 

algorithms used a MUSCL scheme with a slope limiter to guarantee a TVD scheme, second 340 

order in time and space. This method has been previously implemented for the water 341 

hammer equation [29], showing good agreement with the experiment, even with the discrete 342 

cavity model. Differently from Zhou et al. [29], the code was developed to consider the change 343 

in the density and the speed of sound with the amount of volume fraction of generated 344 

vapour [37]. The description considers a homogeneous flow with two phases, liquid and gas, 345 

as a single fluid. 346 

To reach the complete numerical solution, three different steps are performed. 347 

•� Cell Boundary extrapolation: a first-order reconstruction value is used considering the 348 

slope function given by the slope limiter 𝑈𝑖
𝑅,𝐿 = 𝑈𝑖 ±

𝑥−𝑥𝑖

Δ𝑥
Δ𝑈𝑖, where 𝑥𝜖 [𝑥

𝑖−
1

2

; 𝑥
𝑖+

1

2

]. 349 

•� Evolution: half-time step evaluation �̅�𝑖
𝑅,𝐿 = 𝑈𝑖

𝑅,𝐿 −
1

2

Δ𝑡

Δ𝑥
[𝑓(𝑈𝑖

𝑅) − 𝑓(𝑈𝑖
𝐿)] 350 

•� Riemann solution: solving the Riemann problem. 𝑈
𝑖+

1

2

(𝑥) =  {
𝑈𝑖+1, 𝑥 > 𝑥

𝑖+
1

2

𝑈𝑖, 𝑥 < 𝑥
𝑖+

1

2

 351 

The solution without the source term is then performed for all pump sections independently. 352 

The source term is introduced using the fractional-step method [34]. This strategy allows the 353 

solution of the homogenous formulation of the system and the resulting system of the 354 

ordinary differential equation (ODE). To achieve good accuracy, a Runge-Kutta 4th order is 355 

used. 356 

To address the cavity formation, a revisited Discrete Gas Cavity Model (DGCM) with 357 

compressibility already used by Rizzuto et al. [37] is considered. This method required an even 358 

mesh number to evaluate the lumped gas/vapour cavity. When the pressure of the fluid is 359 
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calculated below the vapour pressure, the algorithm calculates the amount of the second 360 

phase formed across two boundaries and sets the pressure value at the two cells equal to the 361 

vapour pressure. At the same time, in the background, the pressure that the system should 362 

have computed is stored and compared with the vapour pressure value. The differences 363 

between the two pressure values (calculated and the vapour pressure) are used to evaluate 364 

the amount of vapour cavity formation and distribution across two cells, as shown in Figure 365 

4. 366 

 367 

Figure 4 – Visual explanation of the cavitation grid formation 368 

When all the cavity formation is performed, a piecewise linear function is used to evaluate 369 

the amount of the second phase formed across all the pipe sections. 370 

At this point, both the density and the speed of sound of the mixture are calculated with the 371 

equation (6) used already by Rizzuto et al. [37] and described in detail by Brennen [38]. 372 

𝜌𝑚 = [𝜌𝐿(1 − ∑ 𝛼𝑖
𝑁
𝑖 ) + ∑ 𝛼𝑖

𝑁
𝑖 𝜌𝛼𝑖

] 

1

𝑐𝑚
2 = 𝜌𝑚 (

∑ 𝛼𝑖
𝑁
𝑖

𝑘 𝑝 
+

1−∑ 𝛼𝑖
𝑁
𝑖

𝜌𝐿𝑐𝐿
2 )

 ( 6 ) 373 

Where 𝑝 is the pressure; 𝑘 the polytropic index, which is equal to 1 for an isothermal 374 

expansion; 𝑁 the number of gas phases present in the mixture; and 𝛼𝑖 is the volume fraction 375 

of the gas 𝑖. The speed of sound for pure water is calculated from the bulk modulus equation 376 

and the formulation given in [39]. However, the variation in the speed of sound due to the 377 

fluid-structure interaction is almost negligible due to the high stiffness of the thick pipe wall. 378 
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To summarize, the PDE is solved with the MUSCL scheme, while the ODE with the explicit 379 

formulation uses the Runge-Kutta method. This approach calculates the derivative of the 380 

function once in the initial and final time step and two times in the mid-step (
Δ𝑡

2
). The 381 

combination of these four time points gives the unknown variable at the next time step 382 

allowing for the introduction of the dissipation terms in the system. 383 

Mechanical component model 384 

To provide a complete representation of a positive displacement pump, the auxiliary 385 

components which interact with the diaphragm also need to be accounted for. For this 386 

reason, modelling of the valves, hydraulic accumulators as well as pistons must be performed. 387 

This section provides the description and the models of these components. 388 

Valve Model 389 

Positive displacement pump valves are designed to be self-acting components. The motion of 390 

the valve is dependent on the upstream and downstream pressures, the fluid motion itself, 391 

the spring, and the preload force. The motion of the valve is important because it will control 392 

the flow area through which the fluid is forced and therefore the velocity. To calculate the 393 

valve gap velocity the energy equation (7) is used, where: 𝑝𝑢𝑝 is the pressure upstream, 𝑝𝑑𝑜𝑤𝑛 394 

is the pressure downstream, 𝜌 the fluid density, 𝑢 the velocity of the fluid that crosses the 395 

valve, 𝜁𝑖   the losses of the valve, empirical data calculated from Thield [40] and Johnston [5], 396 

[6], and 𝑙𝑔𝑎𝑝 is the length of the gap formed when the valve is open. 397 

(𝑝𝑢𝑝 − 𝑝𝑑𝑜𝑤𝑛) +
𝜌𝑢2

2
(1 + ∑𝜁𝑖) + 𝜌

𝜕𝑢

𝜕𝑡
𝑙𝑔𝑎𝑝 = 0 ( 7 ) 398 

This equation (6) considers the control volume of the valve itself and the solution is performed 399 

with an implicit Newton-Raphson method is used. The position of the valve (xv), velocity and 400 

acceleration are calculated explicitly from the previous time step solving Newton’s second 401 

law by the Adam-Bashforth leapfrog technique[41]. The forces considered to evaluate the 402 

valve motion are given in equation (8): 403 

𝐹𝑝 + 𝐹𝑚 + 𝐹𝑝𝑟𝑒 + 𝐹𝐷 + 𝐹𝑠 = 𝑚𝑥�̈�  ( 8 ) 404 

Where the pressure force, 𝐹𝑝 is calculated as 𝐹𝑝 = ψAV(𝑝𝑢𝑝 − 𝑝𝑑𝑜𝑤𝑛) where 𝐴𝑉  is the area 405 

of the valve where the pressure is acting, and ψ is the pressure force coefficient calculated 406 

from Johnston’s work and Thiel [5], [6], [40]. The spring force, 𝐹𝑠, is related to the explicit 407 
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position of the valve multiplied by the spring stiffness. 𝐹𝑚 is the gravity force, the spring 408 

preload force, 𝐹𝑝𝑟𝑒, meanwhile 𝐹𝐷 is the damping force due to the fluid surrounding the valve 409 

itself. To calculate the flow rate across the valve, the area of the gap is computed 410 

geometrically from the valve characteristic (seat angle) and the valve position.  411 

Accumulator Model 412 

The accumulator is a hydraulic component used to smooth pressure fluctuations by absorbing 413 

the fluid energy in a compressible gas or spring and returning it when needed. It is a self-414 

adjusting system, and it normally consists of two compartments created by a bladder, piston, 415 

disc, or diaphragm that separate the hydraulic fluid from the retained energy mechanism. 416 

Considering for instance the bladder gas accumulator, the accurate modelling of this 417 

apparatus should consider the compressibility of the gas and the rigidity of the diaphragm. 418 

The compressibility of the gas can be modelled as an ideal gas as a first approximation, 419 

although differences due to high pressure could occur [42]. This approach produces 420 

inaccuracy when the volume of the gas is at its minimum or maximum. When the accumulator 421 

pressure reaches the maximum, no more mass inflow can occur, and the gas or the spring 422 

cannot further compress. To prevent discontinuities, this consideration must be translated 423 

into a continuous function that diminishes the amount of fluid permitted inside the volume 424 

as the fluid reaches the maximum volume allowed by the compressibility of the system. If not 425 

properly modelled an artificial spurious interruption of the fluid could create unphysical 426 

waves in the system and mislead the results. Similar behaviour must be considered when the 427 

maximum volume of the gas or the elongation of the spring is reached. In this condition, no 428 

fluid is stored in the hydraulic system and a zero-mass flow rate boundary must be included. 429 

Therefore, an accurate model of the accumulator is complex and requires significant 430 

computational effort to be simulated correctly. In addition, to simplify the accumulator model 431 

a range of pressures where the ideal gas formulation (9) can be considered valid overall is 432 

assumed. Corrections functions are implemented when these limits are overtaken.  433 

𝑝𝑔𝑎𝑠(𝑉𝑡𝑜𝑡 − 𝑉𝑓𝑙𝑢𝑖𝑑)
𝐾

= 𝑝𝑔0
𝑉𝑡𝑜𝑡

𝑘  ( 9 ) 434 

The accumulator is connected to the suction and discharge pipe with a tee junction where the 435 

information on the mass flow rate and the pressure is calculated. The shared information 436 
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across the pipe is developed according to the continuity formulation and the wave travel 437 

information.  438 

Pump Piston Model 439 

The pump piston is modelled as a velocity boundary condition and the volume displaced from 440 

the piston motion is neglected. This assumes column fluid theory and simplifies the system, 441 

allowing the velocity of the fluid to be the same as the piston, 𝑥�̇�. This simplification is valid 442 

until the fluid wave speed is significantly higher than the piston speed and will require the 443 

pressure wave dynamics to be accounted for. This piston speed is well below the fluid wave 444 

speed hence the pumped mass flow rate is calculated using the piston velocity given by 445 

equation ( 1 ) times the piston area and the fluid density calculated at the piston. 446 

Stability Condition 447 

To guarantee the convergence of the solution, the numerical stability must be checked. For 448 

an explicit scheme, a necessary but not sufficient condition is the Courant inequality, CFL [31], 449 

where the relation between the speed of sound, the time and the space grid must be less or 450 

equal to one: 
𝑐 Δ𝑡

Δ𝑥
≤ 1. This inequality guarantees that the information wave travels inside the 451 

time-space grid and does not distort the information. In addition, a stability check must be 452 

provided for all solution methods used to solve the system. In detail, the integration scheme 453 

Adam-Bashforth (AB) used for the motion of the valves, the Runge Kutta fourth-order (RK4) 454 

method for the ODE and the MUSCL scheme algorithm for the PDE. The Adam-Bashforth is a 455 

linear multistep method meanwhile the Runge-Kutta method is a multi-stage method. Both 456 

methods can be rewritten as a function of the previous time steps. 457 

𝑈𝑛 = ∑ θ𝑖𝑈
𝑛−1 𝑘

𝑖 + Δ𝑡 ∑ (Ω𝑖𝑓(𝑈𝑛−𝑖))𝑘
𝑖  (10) 458 

The multi-stages increase stability with the order of accuracy, differently, the linear multistep 459 

methods decrease stability by increasing the order of accuracy [41] therefore the stability 460 

condition could be performed only for AB, since the RK4 will be stable accordingly. The 461 

stability condition of these methods is determined by the solution of its characteristic 462 

polynomial |𝑃(𝑈)| ≤ 1 that is always verified since the explicit MUSCL scheme requires a 463 

smaller time step than for the other algorithms. Therefore, the CFL condition is more 464 

restrictive than the other stability condition. 465 
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Test Setup 466 

Model validation was performed with two different test rig configurations: a single-467 

diaphragm pump actuated by a hydraulic piston and a three-chamber diaphragm pump each 468 

actuated hydraulically by a mechanical piston like the configuration in Figure (1).  469 

A single diaphragm pump is the simplest configuration available where no suction and 470 

discharge chamber interaction occurs. 471 

 472 

Figure 5 – Test rig for single chamber pump, where in red circle are highlight two piezo resistance sensors (at the suction 473 

and the discharge valves) and in green the piezoelectric sensor for the chamber pressure value.  474 

The test rig for the single pump network can be seen in Figure 5. The system consists of a 475 

closed loop where the discharge pressure can be increased by the closure of different valves 476 

and orifices in a choke station. A schematic view of the pump loop is reported in Figure 6. 477 

Three pressure sensors were used to collect data: two Sensortec A-105 piezo resistance 478 

sensors, one mounted before the suction valve and the other after the discharge valve (red 479 

circle in Figure 5 ), while the third was a Kistler 6005 piezoelectric sensor with a 5011B 480 

amplifier positioned in the chamber (green circle in Figure 5). In addition, the position of the 481 
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piston and the diaphragm were measured by an Omega linear position sensors embedded in 482 

the piston connecting rod.  483 

 484 

Figure 6 – Single chamber pump pressure loop 485 

The system was controlled, and data were collected by the Supervision Control Data 486 

Acquisition (SCADA) system. The acquisition was performed at 9600 Hz (three times faster 487 

than the highest system frequency) to ensure the capture of wave reflection and possible 488 

cavity collapse. The fluid pumped was clean water (with an estimated speed of sound of 1250 489 

m/s) meanwhile the propelling fluid was mineral oil (with an estimated speed of sound of 490 

1300m/s). Four suction pressure conditions, from 1 to 4 bar, and three different piston 491 

speeds, strokes per minute (SPM), were investigated for a total of 12 sets of test data.  492 

Increasing the SPM increases the velocity of the fluid especially across the suction valve 493 

(reducing the static pressure) increasing the eventuality of cavitation formation. With the 494 

same idea, we change the suction gauge pressure at the tank, relative to the vapour pressure 495 

to increase the cavitation behaviour. Although pumps are not likely to work in a condition 496 

where high SPM and low suction pressure are performed, this condition was performed as a 497 

challenge validation. For clarify, the compression phase occurs between 0 and 180 degrees 498 

and the suction phase from 180 to 0 degrees. 499 

20

An improved positive displacement pump model accounting for suction cavitation

����

�����
����

�����
����

����
�����
������

�����
�����
�����

�����
�����
����

���

�������

�����
������

�������
���������

�������



Due to the difficulties in experimentally evaluating the magnitude of the vapour phase, 500 

especially in the three-chamber configuration, the calculation and the performance of the 501 

cavity formations are inferred indirectly by pressure measurement. The pressure at the 502 

upstream side of the suction valve must drop lower than the downstream to lift the valve 503 

itself and suck the fluid in the chamber. The pressure at this stage can reach the vapour 504 

pressure stays almost constant at this value until a recovery pressure phase is reached. This 505 

condition occurs during the initial phase of the suction. The collapse of the cavity will produce 506 

a rapid decrease in bubble size resulting in an intense localized pressure increase [38], [43], 507 

[44]. Therefore, the cavitation period which occurs during the suction phase can be discerned 508 

experimentally between the minimum pressure reached and the highest peak reached 509 

immediately after. The series of pressure spikes after the first one can be considered 510 

unrelated to cavitation formation. 511 

The one-chamber pump was tested in a controlled closed-loop test rig, where load pressure 512 

and suction pressure were easily controlled. Differently, the three-chamber diaphragm pump 513 

data acquisition was performed in an industrial application where the pump was part of a 514 

bigger network. Here, the SPM could be adjusted, differently the suction and the discharge 515 

pressure were dictated by the all-network system. The three-chamber pump configuration is 516 

shown in Figure 7. In addition, in this context, due to commercial confidentiality, the 517 

maximum pressure and mass flow rate cannot be given and thus the data have been provided 518 

normalised with maximum pressure and pump speed. 519 

All experiments were repeated 60 times to have a wide range of repeatability and average 520 

data, in addition, data are presented with a red band within which the experiment is 95 per 521 

cent consistent, and a red solid line for the average value. For the sensors their sensitivity is 522 

10 pC/bar.  523 
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 524 

Figure 7 – Three chamber pump system schematic. 525 

Results and discussion  526 

The simulations, encompassing both single and three-chamber pumps, were executed on 527 

hardware equipped with an i7-6560U CPU @ 2.20 GHz and 16 GB of RAM. To ensure the 528 

numerical stability of ordinary differential equation integration, the Courant number was set 529 

to 0.9 in accordance with[37]. The initial condition for the non-dissolved gas was established 530 

with a volume fraction, denoted as 𝛼𝑔, set to 1e-7. The speed of sound in water was calculated 531 

based on the bulk modulus and allowed to vary with pressure, while for oil, a constant velocity 532 

of 1500 m/s was assumed. These computational settings and initial conditions were chosen 533 

to facilitate accurate and stable simulations of the pump system dynamics. Experimental and 534 

numerical simulations are correlated with the linear Pearson correlation factor reported in 535 

equation 11. 536 

𝑟𝑥𝑦 =
∑ 𝑝𝐸𝑥𝑝𝑖

𝑝𝑁𝑢𝑚𝑖
𝑛
𝑖 − 𝑛𝑝𝐸𝑥𝑝𝑖

̅̅ ̅̅ ̅̅ ̅ ∙ 𝑝𝑁𝑢𝑚𝑖
̅̅ ̅̅ ̅̅ ̅̅

√∑ 𝑝𝐸𝑥𝑝𝑖

2 − 𝑛 ∙ 𝑝𝐸𝑥𝑝𝑖
̅̅ ̅̅ ̅̅ ̅𝑛

𝑖
2

 √∑ 𝑝𝑁𝑢𝑚𝑖

2 − 𝑛 ∙ 𝑝𝑁𝑢𝑚𝑖
̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖
2

 (11) 537 

One chamber pump 538 

The one-chamber pump was simulated for all different conditions, to evaluate the possible 539 

scenarios, from absent to high cavitation conditions.  540 
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Due to the small size of the piston and diaphragm chambers, the time grid size to simulate 541 

the pumps and satisfy the stability condition is in the order of 10−6 sec. That translates into 542 

a significant computational effort for long components. To mitigate the time requirements, 543 

the long discharge line was truncated before the choke station, and the water reservoir was 544 

not included. In other words, the load due to the orifice and the pipes are not simulated. The 545 

simulated pressure used as a boundary condition is directly set from the pressure sensor 546 

positioned before the choke station. Regarding the water tank, the entire reservoir was 547 

neglected, and the suction pressure value was set at the entrance of the accumulator. This 548 

simplification affects the reflection and attenuation of the waves due to the short length of 549 

the pipe and the changing area across the pipe and tank. However, from a numerical point of 550 

view, this approach should not drastically change the system behaviour since the pressure at 551 

the reservoir remains almost constant. As reported in Iannetti et al. [2], [3] neglecting the 552 

tank and the entire suction line, the results are still in good agreement with the experimental 553 

data even for multi chambers pump. 554 

 555 

Figure 8 - Chamber pressure cycle of one chamber pump for SPM 75% and 2 bar of pressure, where the red line is the 556 

experimental data, the blue line is the simulation, and the green line is the second phase volume fraction overall produced.  557 
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Figure 8 shows the experimental and simulation chamber pressure comparison in terms of 558 

crank angle. The simulation considers 75% of the maximum stroke speed and 2 bar of suction 559 

pressure. The experiment and the numerical pressure profile match Pearson’s correlation 560 

factor of 𝑅𝑥𝑦 = 0.998. The numerical calculation of the vapour phase formation, (green line) 561 

in Figure 8 agrees with the observed peak-to-peak experimental pressure between 155 and 562 

120 deg. The discharge phase behaves as a second-order underdamped system disconnected 563 

from the suction circuit thanks to the choke station valves. The repeatability of the 564 

experiment shows a narrow band of error. Both experimental and numerical data show a 565 

pressure profile that stays constant at low pressure for the entire suction phase. Differences 566 

start to appear around 40 degrees where higher pressure fluctuations are present in the 567 

experiment. The authors believe that the effect is a potential drawback due to the lack of tank 568 

dynamic simulation. This peak pressure value is not interpreted as a cavitation phenomenon, 569 

since the velocity and the working suction pressure are in the specification of the pump 570 

performance. In the discharge phase, the pressure and the pulsation agree with the 571 

experiment. However, the pulsation dissipation is not as high as the experimental. This 572 

difference could be caused by the lack of a series of orifices used to create the pressure load, 573 

neglected in the simulation (red square in Figure 6). In addition, a further limitation could be 574 

given by the lack of a complex friction dissipation model, since the fluid model uses the 575 

simplified Darcy–Weisbach equation further investigation will be performed.  576 

The frequency analysis for the same experiment agrees with the experiment as shown in 577 

Figure 9 where the red circle represents the experimental chamber intensity pressure value 578 

and the blue line the experimental. The algorithm predicts the harmonics correctly in terms 579 

of frequency and intensity, therefore even from the spectral analysis of view this algorithm 580 

proves its potential.  581 
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 582 

Figure 9 - Frequency pressure analysis for SPM 75% and pressure 0.25 of the maximum for of one chamber pump. The blue 583 

line is the numerical response, and the red dots are the experimental, meanwhile, the two light blue lines refer to the 584 

accumulators and the green to the pump frequency. 585 
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 586 

Figure 10 - Chamber pressure cycle of one chamber pump cycle for SPM 87.5% and 2 bar of pressure, where the red line is 587 

the experimental data, the blue line is the simulation and the green line is the second phase volume fraction overall 588 

produced. 589 

Increasing the stroke speed of the pump to 87.5% of the max, the pressure response 590 

compares favourably as shown in Figure 10. The pressure pulsation at discharge is 591 

overestimated, highlighting once more the lack of dissipation phenomenon. The pressure in 592 

the suction pipe is similar, for most of the duration and the first peak at 125 degrees was 593 

depicted correctly, although the difference in the value is noted. The pressure profile, after 594 

the gas void collapsing follows the experimental trend. The pressure stays almost constant at 595 

the vapour pressure value until 120 degrees, a phenomenon reported also in Figure 8. The 596 

experimental data uncertainties show a wider band for the suction showing a more difficult 597 

repeatability in the high-speed pump. 598 

 599 
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 600 

Figure 11 – Chamber pressure cycle of one chamber pump for SPM 100% and 1 bar of pressure, where the red line is the 601 

experimental data, the blue line is the simulation and the green line is the second phase volume fraction overall produced. 602 

Significant differences occur when void formation affects the discharge phase. In Figure 11, 603 

the differences in the predicted and experimental pressures are shown. In the experimental 604 

data, the vapour is generated throughout all the suction phases where the pressure is 605 

constant well beyond the 180 degrees of the crankshaft. The cycling profile is strongly 606 

affected by the vapour-phase formation resulting in a series of collapses and high peak 607 

pressure. The experimental suction phase (red line) starts around 170 degrees, and the 608 

pressure is at the vapour pressure for the entire suction phase. When the discharge phase 609 

occurs and the piston changes direction (20 degrees) the collapse of the bubble occurs due to 610 

mechanical compression, resulting in pressure fluctuations and creating high peak pressure. 611 

These effects are not predicted by the algorithm, that underestimates the cavities produced 612 

limiting its cavitation performance range. Therefore, this methodology is unfeasible in 613 

extreme cavity conditions. However, it should be pointed out, that pumps should never run 614 

at this level because structural failure can occur.  615 
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An overall comparison of predicted and tests can be achieved by examining the pump 616 

efficiency. Using the Tackett formulation 10 [45], the value of the efficiency is calculated as 617 

84%, since this formulation is not condition dependent. This formulation does not consider 618 

backflow formation, leakage and cavitation. The function considers only the maximum and 619 

the minimum pressure, the fluid bulk modulus, the ratio of total volume and displacement 620 

volume, and valve losses (estimated at 3%).  621 

𝜂𝑣𝑜𝑙 𝑇𝑎𝑐𝑘
= 1 − (𝑝𝑀𝑎𝑥 − 𝑝𝑀𝑖𝑛)𝛽𝜌 + 𝑉𝐿  ( 6 ) 622 

The simulated pump gives similar values, as reported in Table 2, albeit doubts about the 623 

validity of case 12 arise due to the high cavity formation. In detail, the simulation considers 624 

all possible backflow, compressibility and losses due to cavitation.  625 

Table 2 - One chamber pump volumetric efficiency 626 

# Case 𝜂𝑣𝑜𝑙  

1 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  4 𝑏𝑎𝑟, 𝑆𝑃𝑀 =  100%  82.59 

2 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  3 𝑏𝑎𝑟 , 𝑆𝑃𝑀 =  100%  82.52 

3 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  2 𝑏𝑎𝑟, 𝑆𝑃𝑀 =  100%  82.18 

4 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  1 𝑏𝑎𝑟, 𝑆𝑃𝑀 =  100% 82.16 

5 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  4 bar 𝑆𝑃𝑀 =  87.5% 82.27 

6 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  3 bar 𝑆𝑃𝑀 =  87.5% 82.36 

7 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  2 bar 𝑆𝑃𝑀 =  87.5% 82.08 

8 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  1 bar 𝑆𝑃𝑀 =  87.5% 82.09 

9 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  4 bar 𝑆𝑃𝑀 =  75% 82.09 

10 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  3 bar 𝑆𝑃𝑀 =  75% 82.27 

11 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  2 bar 𝑆𝑃𝑀 =  75% 82.33 

12 𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛  =  1 bar 𝑆𝑃𝑀 =  75% 80.93 

 627 

Three chamber pump 628 

From a computational point of view, multiple chamber pumps are challenging. The need to 629 

initialise correctly each component of the chambers and their mutual interaction is the major 630 

issue. A one-chamber pump can be initialized as completely steady, for multiple-chamber 631 

pumps that is unfeasible. Considering a three-chamber pump with a 120-degree shift 632 

between the chambers implies a different starting condition. When one chamber is at the 633 
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suction phase with all valves closed, the other chamber is either compressing or 634 

decompressing, and one of the valves could also be in the open position. From a numerical 635 

point of view, this implies knowing exactly the behaviour of the pump chambers in terms of 636 

fluid velocity, temperature, density, pressure in all the cells, valve velocity and position on 637 

each chamber, and the gas pressure of the accumulator. In case of moving mesh algorithms 638 

the initialization became extreme difficult. To address this issue, there are different possible 639 

solutions, however, most of them are impractical for full three-dimensional analysis. The one-640 

dimensional analysis, on the contrary, can address this issue due to its simplicity and fast 641 

computational times. It is possible to simulate the run-up of the entire pump as in the real 642 

pump motion with reasonable computational efficiency. Figure 12 is an example of a run-up 643 

for a three-chamber pump, where the velocities of the three different pistons are depicted.  644 

 645 

Figure 12 - Example of three-chamber pump piston velocity vs crankshaft angle, where red line is the reference piston at 0 646 

degrees, the blue and the green are respectively at 120, and -120 degrees position. The black line indicates when the 647 

angular velocity reach the steady condition. 648 

Differently from one chamber pump, in this context, the experimental data are affected by 649 

multiple factors due to the more complex system network. The pump analysed here is one of 650 
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the multi-pump systems with variable boundary conditions set from the pipeline networks. 651 

These effects are seen in all the experimental results with noise and low-frequency responses, 652 

and the simulation can depict only part of them. In contrast to the single-chamber pump, a 653 

further complication on the valves is their opening and closing behaviour influenced by the 654 

out-of-phase suction and discharge on the other pumping chambers. This is due to the 655 

common suction and discharge plenum. Thus, in a multiple pumping chamber simulation, the 656 

fidelity of the simulations is more sensitive to the entire system dynamics. 657 

 658 

Figure 13 – Chamber pressure cycle of three chamber pump for SPM 100% and 4 bar of suction pressure, where the red line 659 

is the experimental data, the blue line is the simulation and the green line is the second phase volume fraction overall 660 

produced.  661 

Figure 13 shows the pressure history for chamber 1 for a high-speed and low-pressure suction 662 

test. The simulated behaviour did not capture the pressure fluctuations in the discharge 663 

phase. On the contrary, mutual interaction in the discharge is predicted with high fidelity at 664 

160 degrees in the discharge phase. Similar behaviour for the suction phase is simulated, 665 

although the interference with the other chambers and system is much higher for the 666 

experimental data than in the simulation. Cavity formation seems reasonably in agreement 667 
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with the experimental pressure behaviour, although a slight phase shift is depicted. 668 

Considering the cavity formation, this system depicts a reasonable amount of vapour, which 669 

agrees with the experiment's peak-to-peak. 670 

 671 

Figure 14 Chamber pressure cycle of three chamber pump for SPM 100% and 8 bar of suction pressure, where the red line is 672 

the experimental data, the blue line is the simulation and the green line is the second phase volume fraction overall produced. 673 

Figure 14 shows the experimental result for a high suction pressure and the maximum speed 674 

of the pump. At the discharge phase, the experimental pressure is affected by a low-675 

frequency response not shown in the simulation of the accumulators. The complexity of the 676 

network, as well as pressure fluctuation in the discharge line (and in the suction line), is 677 

difficult to predict and noise is evident.  678 

Although the amount of cavitation produced cannot be identified experimentally, once more 679 

the cavitation period agrees with peak-to-peak pressure. In conclusion, Table 3 reports the 680 

Pearson correlation factor for all the experiments produced for the three-chamber pump. 681 

Despite the complexity of the system, a close correlation between the experimental data and 682 

the computational simulation (pre-normalization) has been achieved.  683 

 684 
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Table 3 – Pearson correlation factor for three-chamber pump 685 

SPM [%} Max Suction pressure Min Suction pressure 

100 0.962 0.967 

60 0.956 0.962 

40 0.962 0.958 

 686 

The overall system has required the simulation of all components including valves and 687 

accumulators. During the suction valve opening phase, the pressure velocity must increase, 688 

and the static pressure is reduced accordingly. This dynamic response is strongly dependent 689 

on the valve characteristics [8], therefore the simplification inherent in a one-dimensional 690 

approach could reduce the overall simulation performance. However, in this context as well 691 

as the one-chamber pump, the entire algorithm provides enough accuracy to be used as 692 

cavitation and performance pump prediction even in complex network. 693 

Conclusion 694 

The study has highlighted the efficacy of a one-dimensional analysis in capturing crucial 695 

aspects of positive displacement (PD) pump fluid dynamics under both normal and cavitating 696 

conditions. The algorithm exhibited a high level of fidelity in replicating experimental results, 697 

instilling confidence in its potential for practical implementation within an industrial setting. 698 

Leveraging the finite volume method with a TVD scheme, the code's simplicity, and its 699 

adaptability for various applications suggest a broad scope for extension to different types of 700 

positive displacement pumps and diverse operational environments.  701 

The results underscore that the dominant factor influencing pump phenomena is the piston 702 

motion, given the higher relative information speed compared to perturbations. However, 703 

this dynamic changes when the speed of sound becomes comparable to perturbations, 704 

particularly in scenarios with a high-volume fraction of the second phase, as observed in high-705 

cavitation environments for single pumps. Further investigation to assess this aspect should 706 

be performed. 707 

While the compressible model was employed for all scenarios, the investigation revealed low 708 

compressibility of the pure fluid under the pressure conditions examined. This limitation 709 
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implies that the algorithms were not tested across their full capability range. Further research, 710 

particularly in the context of hydraulic fracking pumps where fluid compressibility is more 711 

pronounced, is warranted. 712 

Additionally, the algorithm's evaluation of pressure pulsations in the frequency domain 713 

showcased its potential to assess harmonic responses, even in the presence of a second 714 

phase. A comparison with a three-dimensional model demonstrated that while this method 715 

offers reasonable accuracy at a faster pace, it sacrifices some local phenomena details, 716 

especially in complex systems involving valves and accumulators with intricate three-717 

dimensional interactions. 718 

Future enhancements should focus on incorporating different vapour and cavity algorithms 719 

to broaden the code's capabilities, especially in scenarios with high cavity performance. 720 

Furthermore, addressing the limitations observed in friction dissipation under quasi-steady 721 

conditions necessitates ongoing research to refine loss predictions. 722 

In summary, the algorithm aligns reasonably well with experimental results, establishing itself 723 

as a valuable design and diagnostic tool for extensive use in industrial environments. Its 724 

versatility allows for the straightforward implementation of optimization algorithms and 725 

prognostic simulations, marking it as a promising asset for advancing pump system analysis 726 

and performance optimization. 727 
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