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A B S T R A C T

The complex structure and harsh operating environment of wave energy converters can result in various faults in
transmission components. Environmental noise in practical operating situations may obscure the effective in-
formation in collected vibration signals, significantly increasing the difficulty of fault diagnosis. This paper
presents a fault diagnosis model for the gearbox of the point absorber wave energy converter. The model in-
tegrates a convolutional neural network with long short-term memory to realize efficient extraction of local
features from signals and enhance the performance in time-series analysis. Moreover, the model incorporates the
Adaptive Moment Estimation algorithm to address the situations where gradients within tensors exhibit unstable
changes in the model. A rigid-flexible coupled dynamics simulation model is developed to simulate vibration
signals used to train and verify the fault diagnosis model. Experimental tests of the proposed model on a vi-
bration dataset acquired from real vibration experiments demonstrate its efficacy in diagnosing various types of
faults under interference of operating conditions. Comparative studies with other models demonstrate the su-
periority of the proposed model in terms of fault feature extraction, learning convergence efficiency, and
diagnostic accuracy, indicating that the proposed model can achieve faster and more accurate fault diagnosis of
wave energy converter gearboxes.

1. Introduction

1.1. Background

The world is moving toward the usage of clean and renewable energy
sources to fulfill energy demand and reduce carbon emissions [1,2].
Renewable energy is expected to become the main source of global en-
ergy consumption by 2050, with its share in power generation expected
to experience a significant increase [3,4]. Mainstream renewable energy
options include wind power, solar energy, hydropower, bioenergy and
geothermal power [5,6]. Among the various renewable energy sources,
wave energy is attracting increasing attention due to its vast potential
[7]. The global reserves of wave energy are estimated to be as high as 10
TW [8]. The exploitable wave energy resource is estimated to be 29,500
TWh per year [9], which exceeds the global electricity consumption in
2022. The advantages of wave energy over other renewable resources,
such as solar and wind, include higher power density, longer operable
time, and less impact on marine environment [10].

Despite the promising potential, wave energy converter systems

remain in the demonstration phase. Challenges still exist in transforming
the concept into a consolidated industrial technology [11]. For example,
wave-to-wire models play an important role in the development of wave
energy converters, which can be classified into frequency-domain
models, time-domain models and Computational Fluid Dynamics
(CFD) models. The computational efficiency of these models decreases
in the sequence, while the fidelity increases [12]. Balancing efficiency
and accuracy in the development of models presents a significant chal-
lenge in the design of wave energy converters. For another example, the
optimal design of wave energy converters is determined under a speci-
fied set of conditions, which is a challenging process due to the inter-
action among stochastic wave climates, nonlinear hydrodynamics,
optimal control strategies, non-ideal Power Take-Off (PTO) dynamics
[13].

Wave energy converters can be generally categorized into oscillating
water column devices, oscillating body devices and overtopping devices
[11]. The functioning of the oscillating water columns is based on the
principle of wave-induced air pressurization. As the free water surface
rises and falls, the air trapped within the air chamber is compressed and
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expanded, inducing a pressure difference from that outside the chamber
and driving the turbine at the airflow passage to rotate and generate
electricity [14]. Overtopping devices produce electricity by utilizing the
difference between the high-water level in the reservoir and the
low-water level at the exit, forcing fluid through a low-head turbine
coupled to a generator [15]. Oscillating body devices are floats oscil-
lating under the excitement of incident waves and capture their energy,
which is then converted into electrical energy using PTO [16]. Oscil-
lating body devices are further categorized into point absorbers, atten-
uators, and terminators. Among the classifications, the point absorber
wave energy converter has advantageous characteristics including small
dimensions, ease of fabrication and installation, and cost-effective
maintenance, which is gaining increasing attention in recent years [7,
17]. For clarity purposes, subsequent references to wave energy con-
verters in this paper specifically refer to point absorber wave energy
converters.

Wave energy converters can also be categorized based on the tech-
nologies suitable for shoreline, nearshore, and offshore deployment. The
water depth influences the design architecture and operating conditions
of wave energy converters [18]. The potential fault types are possibly
related to the different operating environment. Shoreline devices are
situated in the shoreline. The gears in the PTO system primarily suffer
from risk of wear due to random mechanical motion. Nearshore con-
verters are installed a few hundred meters from the shore in moderate
water depths. The structure withstands the stress caused by passing
waves. In this case, gears may develop pitting faults due to immersion in
seawater.

As a complex offshore structure, the wave energy converter consists
of buoy systems, PTO systems, pre-tensioning systems and anchoring
systems, operating in harsh and variable offshore environments [19,20].
In offshore waters, the average wave height is usually higher than in
nearshore waters. The wave period is between 10 s and several tens of
seconds. Wave energy converters are placed in deep waters (more than
40 m), far from the shore, where their structure endures very high loads.
In this environment, the wave energy converter suffers from negative
environmental influences, such as salt spray erosion, huge waves, and
typhoons [21]. These environmental impact causes various types of
external and internal damage to the system and seriously restrict the
operation of wave energy converters. For instance, gears may experience
broken tooth fault due to intense wave impacts [22]. Once a fault occurs,
performing maintenance in the marine environment is costly and
time-consuming [23,24,62].

1.2. Literature review

The fault diagnosis of wave energy converters is a challenging task
because the operational data of faulty components collected are often
accompanied by noise interference and waveform distortion, which
makes it difficult to extract information about the fault features of the
critical component directly from the spectrogram of the collected
signals.

In recent years, there have been studies addressing the fault analysis
of wave energy converters. In past research [25,26], simulation models
of the test component were built based on real-world cases, and the
sensitivity of fault detection on the wave energy converter was analyzed
using structural analysis. Authors of [27] used the Operation and
Maintenance (O&M) simulation tool to derive an estimate of the failure
rate of different wave energy converter components. Authors of [17]
applied an approach that combines parametric finite element analysis
modeling, response surface modeling, and reliability analysis to build a
reliability assessment framework for the floating system of the wave
energy converter, which identifies the key components of the floating
system and its fault features. In Ref. [28], the authors performed
real-time and smoothing estimates for fault diagnosis by using predicted
and measured wave height data for damping subsystems. The afore-
mentioned studies focus on the fault analysis of the overall wave energy

converter, but they do not consider the critical components whose
failures could trigger a chain reaction throughout the entire system.

When studying the fault diagnosis in specific components of wave
energy converters, past research mainly focused on control systems. In
Ref. [29], a fault diagnosis approach was proposed to effectively detect
sensor and actuator faults in real-time, aiming to maximize energy
production. A fault diagnosis method was proposed where an unknown
input observer was designed to estimate the fault in real time, which is
robust against model uncertainties [30]. Although the gearbox in the
PTO system is the key component with the highest failure rate and risk
priority according to the experience of wind turbines [31,32], the
research focusing on fault diagnosis of wave energy converter gearboxes
still lacks.

There has been extensive research on fault diagnosis across various
fields, such as renewable energy [64] and transportation engineering
[63]. These approaches can be applied to wave energy converters as well
[33]. One of the most common methods is the machine learning method
[34,35]. Numerous studies have been conducted to address fault diag-
nosis of gearboxes in wind turbines using machine learning methods
[36]. An artificial neural network (ANN) model with a back propagation
network was first used for fault diagnosis in wind turbine gearboxes in
Ref. [37].

With the continuous iteration and improvement of machine learning
methods, the ANN algorithm is found to have a single network structure
with poor expressive and fitting capabilities. Authors of [38] proposed a
fault diagnosis model for gearboxes based on Convolutional Neural
Network (CNN), where the CNN increases the depth of the network by
adding convolutional layers to enhance the learning ability for fault
features. The input vibration signals are decomposed to improve the
robustness of the CNN when dealing with uncertain fault output scales
[39]. In order to deal with faulty health indices with time-series re-
lationships, a Recurrent Neural Network (RNN) was used for fault
verification of a simulated drive train of a gearbox, which can prove the
effectiveness of this approach [40]. In Ref. [41], in order to overcome
the problems of gradient vanishing and gradient explosion of RNN, a
faster converging Long Short-Term Memory (LSTM) was used to accu-
rately categorize the types of faults in the gearbox. By adding cosine loss
to the conventional structure of LSTM, elimination of the effect of signal
strength to improve the accuracy of fault diagnosis can be realized [42].
A CNN-RNN fault diagnosis model was proposed by unifying the ca-
pacity of CNN in extracting high-level local features and the excellent
performance of RNN in learning the contextual dependencies of vibra-
tion signals [43,44]. In Refs. [45,46], CNN and residual learning was
utilized for local feature extraction and dimension reduction, and then
LSTM is used to deal with the long-range temporal dependencies.

1.3. Contributions of this paper

The above research has proven that the deep learning method has a
powerful ability to identify the fault features and shows great potential
in terms of accuracy and efficiency of fault diagnostics. To the best of the
authors’ knowledge, although the deep learning method has been
applied in fault diagnosis for various systems, no research before
introduced it to deal with fault diagnosis problems in wave energy
converter gearboxes. The utilization of deep learning in fault diagnosis is
expected to enhance the performance and reliability of wave energy
converters.

Compared to other rotating machinery, there are challenges existing
in the current fault diagnosis of wave energy converter gearboxes: (1)
The wave energy converter gearbox is subject to the corrosive effect of
seawater and the abrasive effect of wave impact. The gearbox suffers
from multiple interrelated fault modes, and the ambient noise compli-
cates the extraction of fault features from vibration signals. (2) Previous
research lacks vibration experiments and datasets for the wave energy
converter gearbox. The practical effects of this deficiency cannot be
adequately addressed by relying solely on simulation data and publicly
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available datasets. This gap hinders testing the performance of fault
diagnosis models in real-world scenarios.

Considering the above challenges, in this paper, a fault diagnosis
model based on the CNN-LSTM method is proposed. In addressing the
issue where the frequency component of environmental noise overlaps
with the frequency range of faulty gear vibration signal, the proposed
model utilizes the convolutional and pooling layers to encode the spatial
information of the data, so as to realize the efficient extraction of local
features from vibration signals. Considering the deficiency of CNN
method in learning long-term dependence in vibration signals, the forget
gate structure of LSTM is introduced to enhance the performance of the
model in time-series analysis. Moreover, the model based on end-to-end
automatic learning feature extraction is improved by adding the Adap-
tive Moment Estimation (Adam) optimization algorithm, which calcu-
lates an adaptive learning rate for each parameter. The issue of unstable
gradient changes in tensors can be effectively addressed, enhancing the
stability and efficiency of the diagnostic model. The fault diagnosis
model is trained using the vibration signal data derived from the
simulation of gearbox multibody dynamics modeling. The performance
of the model is subsequently verified by the dataset generated by the
numerical simulation and validated by the dataset collected from the
vibration experiment on the gearbox of a point absorber wave energy
converter. Additionally, the performance of the trained model is
compared and analyzed with the other neural networks.

In summary, the contributions of the paper are.

(1) A fault diagnosis model based on CNN-LSTM is presented for the
point absorber wave energy converter gearbox, addressing the
challenge of distinguishing vibration signals under various fault
modes. To the best of the author’s knowledge, this is the first
paper using the deep learning method for the fault diagnosis of
the wave energy converter gearbox.

(2) The network structure is improved by using Adam algorithm to
calculate the adaptive learning rate for each parameter, elevating
the performance of the fault diagnosis model.

(3) A rigid-flexible coupling dynamics simulation model is estab-
lished considering four gears in different conditions (i.e., normal,
broken tooth, pitting, cracked). The simulation model generates
simulated vibration signals corresponding to different fault
modes, effectively serving as a dataset for training and verifying
the fault diagnosis model.

(4) A vibration experiment is conducted to acquire vibration signals
of gear under different fault modes. This real dataset is used to
validate the effectiveness of the fault diagnosis model in handling
environmental noise interference. To the best of the author’s
knowledge, this is the first paper where a real experiment is
performed to collect vibration signals from the wave energy
converter gearbox and validate the fault diagnosis model.

1.4. Outline

The remainder of this paper is organized as follows. Section 2 pro-
vides the relevant preliminary theoretical knowledge used in the model.
Section 3 shows the network architecture of the model and the process of
fault diagnosis. In Section 4, the simulation model of the gearbox is
established, and the CNN-LSTM fault diagnosis model is trained based
on the simulation dataset. Section 5 shows the experimental validation
of the model, and comparative studies with other neural network models
are also presented. Finally, the conclusions and further work are shown
in Section 6.

2. Theoretical background

In this section, the theoretical background of CNN and LSTM is
elaborated respectively. This study combines the advantages of CNN in
data feature extraction and the excellent performance of LSTM in

processing the vibration signal of the wave energy converter gearboxes
with temporal features [47]. The original information and temporal
features in the vibration signal are retained to achieve excellent fault
diagnosis effect and generalization ability to the maximum extent.

2.1. Convolutional neural network

A one-dimensional convolutional layer is used for feature extraction
of the time-series vibration signals in this model. The original vibration
signal is pre-processed by normalization and sample segmentation and
then used as input to the fault diagnosis model. In other words, the in-
ternal features of the original vibration signals are extracted directly by
the neural network.

(1) Convolutional layer

The convolutional layer implements the function of information
mining and feature extraction from the input data, which is essentially a
mapping of local features from the upper layer to multiple filters in the
lower layer, also known as convolutional kernels [48]. The process of
feature extraction operation inside the convolution kernel can be rep-
resented as [49]:

Cn
j = σ

(
wn
j ∗ C

n− 1
i + bnj

)
(1)

where Cn
j is the jth feature mapping of the nth convolutional layer; σ( ⋅) is

the non-linear activation function; ∗ denotes the convolution operation;
wn
j is the jth weight matrix of the nth convolutional layer; Cn− 1

i is the ith
feature output of the (n-1)th convolutional layer; bnj is the jth bias vector
of the nth convolutional layer.

The architecture of a CNN is a stack of one-dimensional convolu-
tional layers and max pooling layers, which extracts sequence segments
from the input sequence to be dotted with a convolutional kernel and
output [50], as shown in Fig. 1. When combined with the LSTM, it is
placed at the front end of the LSTM layer as the input.

(2) Pooling layer

The concept of pooling layer is similar to the convolutional layer in
that its purpose is to reduce the number of elements to be processed in
the feature map. Additionally, it expand the observation window of
successive convolutional layers, which refers to the proportion of the
original layer covered by the window. This expansion allows down-
sampling the feature map, effectively decreasing redundant information
while retaining distinct features. The max pooling process is [49]:

Fig. 1. Schematic of convolution.
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Pnj =max
(
Cn− 1
J , s

)
(2)

where Pnj is the feature output of the pooling layer; max( ⋅) denotes the
downsampling function of the maximum value; Cn− 1

J is the feature
vector of the convolutional layer output; s is the pooling size.

2.2. Long short-term memory

LSTM is an evolution of the traditional RNN. It is designed to capture
and retain a richer and more extended history of information from the
input data, which makes it highly effective for tasks involving sequential
data [51]. It addresses the drawbacks of gradient disappearance and
gradient explosion during backpropagation in traditional RNNs by
adding input, output and forget gate [52].

As shown in Fig. 2, the LSTM adds long-termmemory storage units Ct
to the short-term memory units ht and updates both the hidden units ht
and the memory units Ct during the iterative update process. The iter-
ative update process is implemented through forget gate, input gate and
output gate.

(1) Forget gate

The mathematical procedure of the forget gate, is taking the input xt
at the current moment and the output ht− 1 at the previous moment as
inputs and using the Sigmoid activation function to select whether to
forget or not. Finally, the output ft at the moment t, is obtained as follows
[53]:

ft = σ
(
wf ⋅ [ht− 1, xt ] + bf

)
(3)

where wf is the weight matrix of the forgotten gate; bf is the bias vector
of the input gate; σ( ⋅) is the Sigmoid activation function.

(2) Input gate

The process of input gate typically consists of several stages. Firstly,
ht− 1 and xt are used as inputs to determine which information to update
by outputting it through the Sigmoid activation function. Secondly, ht− 1
and xt are used as inputs to create a new vector of marquee values Ĉ
through the Tanh activation function. Finally, the output of the Sigmoid
activation function is multiplied by the vector of marquee values, and
the output of the Sigmoid activation function determines which infor-
mation in the marquee vector is important and needs to be retained.

The mathematical procedure for the output it at time t in the input
gate is as follows [53]:

it = σ(wi ⋅ [ht− 1, xt ] + bi) (4)

where wi is the weight matrix of the input gate; bi is the bias vector of the
input gate.

The mathematical procedure for a vector Ĉ of marquee values is as
follows [53]:

Ĉt = tanh(wc ⋅ [ht− 1, xt ] + bc) (5)

where wc is the weight matrix of the candidate values; bc represents the
bias vector in this operation; tanh( ⋅) represents the Tanh activation
function.

(3) Memory cell update

After completing the operations of the forget gate and the input gate
respectively, the updated value Ct of the memory cell at time t is
determined by multiplying the previous layer memory cell Ct− 1 by the
output ft of the forget gate and then adding the output value of the input
gate. The output value of the input gate is the result of multiplying it and
the candidate value Ĉ. The process of updating a memory cell is as
follows [45]:

Ct = ft⋅Ct− 1 + it⋅Ĉt (6)

(4) Output gate

The output ot is obtained by taking xt and ht− 1 as inputs using the
Sigmoid activation function and thenmultiplying it with the result of the
memory cell Ct at time t after activation by the Tanh activation function
to obtain the output ht at time t of this layer.

At moment t, the mathematical form of the output gate ot operation is
[45]:

ot = σ(wo ⋅ [ht− 1, xt ] + bo) (7)

where wo is the weight matrix of the output gate; bo is the bias vector of
the output gate.

The final output of the LSTM at time t is Ct and ht , and the operation
is as follows [45]:

Ct = ft⋅Ct− 1 + it⋅Ĉt (8)

ht = ot⋅tanh(Ct) (9)

In the data update process, the LSTM determines which relevant infor-
mation from the previous step needs to be retained through the forget
gate. The input gate determines which information in the current input
is important and needs to be added. The output gate determines what the
next hidden state should be.

Fig. 2. Structure of the LSTM network.
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2.3. Comparison indicator

Comparison indicator play a crucial role in evaluating the perfor-
mance of models, and various tasks require different metrics for evalu-
ation. In this paper, accuracy and cross-entropy loss are chosen as
comparison indicators for the fault classification task.

The accuracy is an important indicator to evaluate classification
models, which refers to the proportion of correctly predicted samples
out of the total samples. Accuracy provides a direct reflection of the
prediction performance of the model and is used to assess the fitting
effect and the generalization ability. The accuracy is calculated as:

Accuracy=
NP

Nt
(10)

where NP means the quantity of correctly classified samples; Nt signifies
the total quantity of samples.

The loss function is an evaluation indicator used to measure the
distance between the predicted probability distribution and the true
distribution. It provides guidance on the direction for model optimiza-
tion, indicating how the model should adjust its parameters to improve
its predictions. For the classification problem where the true labels are
one-hot encoding, the most commonly used loss function is the cross-

entropy loss. The cross-entropy loss is differentiable, which facilities
training using gradient descent algorithms, meanwhile, it has better
numerical stability and is less likely to cause outliers.

The cross-entropy loss is calculated as:

Cross − Entropy Loss= −
1
m

∑m

i=1
(yi log(f(xi;w))+ (1 − yi)log(1

− f(xi;w))) (11)

where m is the number of samples; f(xi;w) is the actual output of the ith
sample; yi is the expected output of the ith sample; xi is the input of the
ith sample; w is the input weight.

3. Proposed methodology

3.1. Model structure

The complexity and diversity of vibration signals of wave energy
converter gearboxes can lead to long training times for neural networks
and influence the final classification results. In this context, CNN is well-
suited for processing large amounts of high-dimensional and nonlinear
data. By employing a sequence of dimensionality reduction and feature

Fig. 3. Brief schematic of the overall structure of the proposed CNN-LSTM.
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extraction stages, including CNN layers, batch normalization layers,
activation function layers, and pooling layers, the vibration signals un-
dergo significant parameter reduction while preserving essential fea-
tures from the original data. Furthermore, LSTM is able to addresses
issues such as gradient explosion and vanishing gradients, making LSTM
ideal for processing time series data and performing classification tasks.
Utilizing LSTM enhances the learning performance when dealing with
time series data from gearbox vibration signals. Consequently, this paper
proposes the integration of a CNN before the LSTM to reduce data
dimensionality, forming a CNN-LSTM model. The data undergoes a
sequential process involving convolutional layers, batch normalization,
activation functions, pooling, LSTM layers, fully connected layers, and a
softmax layer, ultimately producing the desired results.

Fig. 3 briefly reveals the structure of the proposed CNN-LSTMmodel,
which consists of three parts: feature extraction, weight optimization
and fault classification.

The proposed method consists of three parts, i.e., data preprocessing,
model training, fault diagnosis. The overall process is shown in Fig. 4.

In the first part, the simulated signals are imported and the signals
with large fluctuation periods are eliminated, followed by normalization
of the data and one-hot encoding of the labels. The normalized data is
sliced and sampled using overlapping techniques. The training set,
validation set and test set are divided proportionally. Then, CNN-LSTM
model construction and compilation are carried out. Hyperparameters
are set and the number of iterations is defined, followed by the training
of the network to optimize weights and biases through backpropagation.
In the final step, the trained network preserves weight data information
and completes the diagnosis of the target data by utilizing the test set

(the data to be diagnosed). Model evaluation involves assessing the fault
diagnosis accuracy of the test samples and considering the loss value to
judge the strength of the model. The final result of the test set is pre-
sented in the form of a confusion matrix, showcasing the effect of the
classification of various types of faults.

3.2. Adaptive Moment Estimation

The traditional stochastic gradient descent method employs a single
learning rate for all weight updates. While it can yield good results in
handling shallow neural networks, it tends to suffer from slow conver-
gence and a strong reliance on learning rate parameters when dealing
with large and complex data network models. Moreover, it is susceptible
to getting stuck in local optimal solutions.

To address these issues, the Adam algorithm is introduced to enhance
model optimization and fine-tune the learning rate. The Adam algorithm
combines the strengths of adaptive gradient methods and root mean
square propagation. It efficiently explores the parameter space while
also correcting biases, all while conserving computational resources by
providing distinct adaptive learning rates for various parameters.

The first moment estimation mt and second moment estimation nt of
the gradient is as follows [54,55]:

mt = μ ∗mt− 1 + (1 − μ) ∗ gt
nt = ν ∗ nt− 1 + (1 − μ) ∗ gt2

(12)

where μ and ν are the decay rates of the moment estimates; gt represents
the gradient information.

Fig. 4. Flowchart of fault diagnosis process based on CNN-LSTM model.
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The correction process of moment estimation is as follows:

mʹ
t =

mt

1 − μt (13)

nʹ
t =

nt
1 − νt (14)

The parameter update of learning rate is as follows:

θt = θt− 1 − η mʹ
t̅̅̅̅

nt́
√

+ ε
(15)

where θ is the learning rate; ε represents the numerical stability con-
stant; η represents the initial learning rate.

The integration of the Adam optimization algorithm aims to yield
substantial improvements in the diagnosis outcomes of the gearbox fault
diagnosis model established on the CNN-LSTM neural network. Specif-
ically, Adam optimization demonstrates a pronounced ability to
dynamically fine-tune the learning rate and efficiently promote the
model convergence speed while strengthening its generalization ca-
pacity. Moreover, this algorithm manifests resilience when dealing with
noise-corrupted or data-sparse datasets. These advantages of the intro-
duced Adam optimization algorithm are anticipated to improve the ca-
pacity of the fault diagnosis model.

4. Numerical simulation

4.1. Numerical model of gearboxes

Drawing from an extensive collection of fault information related to
point absorber wave energy converters, components are categorized
based on their functional modules and environmental loads, and a
Failure Mode and Effects Analysis (FMEA) method [56] is used to
identify that the gearbox is the critical components with the highest risk
priority.

The gear exhibits the highest failure rate and a wide range of fault
modes, making it the most critical factor affecting gearbox reliability.
Therefore, this paper analyzes the common fault modes of gears in
gearboxes. Typical gear fault modes include broken gear tooth, gear
pitting and cracked gears. Table 1 concludes the percentage of various
types of gear faults, with a notably high occurrence of broken tooth and
pitting faults.

In this study, the rack and pinion transmission gearbox of a point
absorber wave energy converter is examined, with a consideration of the
effects of flexible deformation and changes in the gear transmission
process [57]. A rigid-flexible coupling dynamics simulation model is
constructed through three-dimensional modeling, with a focus on
addressing critical component flexibility, defining constraints and con-
tact forces, and applying driving and loading conditions [58]. The
simulation model is based on pertinent structural data parameters [7]
and is constructed at a 1:4 scaling ratio. When modeling the numerical
model of the gearbox, theWave Test Station, referred to as the prototype
in Ref. [59], operates in water depth conditions of 30m and has a wave
power density of 4 kW/m and a maximum test capacity of 3 × 100 kW.
Its PTO system has a conversion efficiency of 90 %.

Fig. 5 displays a schematic representation of the internal drive of the
point absorber wave energy converter gearbox.

The key parameters for the gears and the double-sided rack are
shown in Table 2 and Table 3, respectively.

In order to explore and analyze the vibration signal characteristics of
the gearbox under different tooth conditions, a model of the target gear

with various fault tooth conditions is developed. The modeling of the
fault condition is shown in Fig. 6. The gear fault modes are described in
detail below.

• Broken tooth refers to the phenomenon where gear teeth wear out or
develop cracks due to various factors, eventually leading to fracture.
This is a severe gear failure that significantly impacts the normal
operation of the gear mechanism. Moreover, broken gear compo-
nents can pose additional risks to other machinery, potentially
causing damage to the gearbox mechanism. Simulation of broken
tooth involves modeling the gear by stretching and softening it in the
modeling process.

• Pitting is caused by fatigue wear on the gear surface, typically
manifested as irregular depressions on the gear surface. These de-
pressions gradually enlarge and deepen, eventually leading to sur-
face fatigue failure of the gear. Simulation of pitting involves
stretching and softening irregular arcs.

• Cracked gear usually occur on the gear root surface or inside the
gear, mainly due to gear overload causing stress at the gear root to
exceed its fatigue limit. Gear cracks can cause increased wear on the
gear surface, further exacerbating crack propagation. They can also
cause a reduction in gear strength and negatively affect transmission
performance. Simulation of cracks involves stretching the gear
component at the root in the modeling process, cutting it in the tooth
width direction, and performing softening treatment.

The gearbox structure of the point absorber wave energy converter is
completely symmetrical on both sides of the rack. The unidirectional
motion only drives one side of the structure to produce axial rotation. To
improve the efficiency of the simulation calculation, only one side of the
gearbox structure is flexibly modelled. The completed rigid-flexible
coupling dynamics model of the gearbox is shown in Fig. 7.

A vertical simple harmonic motion is applied to the rack, with the
same amplitude as the wave height and aligned with the wave phase.
The relative motion of the PTO system at wave height H = 0.6 m and
wave periods T = 4 s and T = 6 s in the sea is taken as the displacement
change state of the rack input according to reference [59] and related
sea wave information [60]. To facilitate the normalization of vibration
signals from numerical simulation results and to align with the marine
conditions simulated by the experimental platform described in Section
5, the selected wave conditions for this study only consider average
conditions and do not account for the impact of seasonal variations on
wave energy converter performance. The step size is set to 0.001 s, and
the default solver method is used to resolve the simulation of the
rigid-flexible coupled gearbox dynamics model. The vibration acceler-
ation signal states of the gearbox are investigated for four tooth condi-
tions with periods T = 4 s and T = 6 s, including normal, broken tooth,
pitting and cracked.

Table 1
Distribution of gear fault types.

Gear fault Broken tooth Pitting Cracked Scratch Other

Proportion (%) 41 31 10 10 8

Fig. 5. Schematic diagram of the main subcomponents of the gearbox. 1 - rack;
2 - gear I; 3 - gear I; 4 - gear II; 5 - gear II; 6 - gear III; 7, 8 - ratchet.
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A time-domain plot is generated to display the acceleration signals
for different tooth conditions, as depicted in Fig. 8. The acceleration
signals for normal tooth conditions are represented in red, while those
for broken, pitting, and cracked teeth are depicted in blue. The figure
shows that the acceleration signal of the gearbox in the broken tooth
condition is more variable, and the vibration distribution is significantly
different from the normal tooth condition. The acceleration signals in
the pitting and cracked conditions show less disparity from the normal
condition. Although there are still abrupt changes in the vibration signal

in specific local areas, they contain fewer distinctive characteristics of a
fault signal compared to the broken tooth condition.

To obtain the frequency domain acceleration curves for the different
tooth conditions, the Fourier transform is applied to the acceleration
signals, as shown in Fig. 9. At each frequency order, the distribution
between normal and faulty tooth conditions appears similar. The spec-
trum of the faulty gear is distinguished by the presence of specific
sidebands, and the width of the frequency band varies slightly
depending on the tooth condition. However, the overall differences are
not highly significant.

Based on the simulation results, a database of gear acceleration and
speed signals is created. This database includes data from normal
operating conditions and three distinct fault conditions, i.e., broken
gear, pitting, and cracked gear. This database serves as a basis for
developing fault diagnosis method models. It also acts as a reference and
data comparison source for subsequent experimental verification of the
gearbox vibration signal acquisition scheme.

4.2. Data preprocessing

The training samples used are the simulated speed and acceleration
signals, each having four dimensions. These dimensions include the
acceleration signals along the X, Y, and Z axes of the gears as well as the
speed signals along these axes. All signals are generated with a simula-
tion step size of 0.001 s.

To ensure sufficient training and testing datasets, the sample size is
increased by performing overlapping slicing operations on the data. The
dataset is further split into training and validation sets, while the test set
data, which does not enter the training network, is reserved and handled
in the same way.

The simulation data exhibits irregular and large fluctuations in the
signal during the transition from the initial stage to the stable stage.
Thus, the first segment (0 s–0.2 s) of the simulation data is removed

Table 2
Key parameters of gears.

Module number
(mm)

Number of
teeth

Diameter of indexing circle
(mm)

Diameter of tooth top circle
(mm)

Degree of tooth
(mm)

Tooth thickness
(mm)

Gear I (subcomponent 2 in
Fig. 5)

2 23 46 50 20 3.14

Gear II (subcomponent 4 in
Fig. 5)

2 23 46 50 20 3.14

Gear III (subcomponent 6 in
Fig. 5)

2 20 40 44 20 3.14

Table 3
Parameters of the double-sided rack.

Modulus (mm) Number of teeth Rack length (mm) Rack width (mm)

2 78 500 20

Fig. 6. Modeling of the fault tooth condition.

Fig. 7. Rigid-flexible coupling dynamics model of the gearbox.
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before vectorization [61], and only the subsequent stable data signal is
retained. For smoother learning convergence, the original data features
need to be normalized. The mean value of all data is set to 0, and the
standard deviation is set to 1. To address the problem of label distances
in classification problems, the input labels are presented as probability
distributions. The one-hot encoding of data labels in this paper is shown
in Table 4.

The simulation data is sampled at a rate of 1 kHz. Total 2000 sets of
data points are set up, each covering a duration of 2 s in a single sample.
The data is sampled using a sliding window approach with a fixed step.

4.3. Results

Fig. 10 shows the changes in both the accuracy and loss function of
the model trained on the simulated dataset. It can be seen that the model
converges very quickly during the initial iterations. The verification
accuracy stabilizes after around 20 iterations and finally maintains at
100.00 %. The loss values show similar pattern, dropping rapidly and
then settling at a level close to zero.

For the diagnostic results of the test set, the confusion matrix ob-
tained from the test set when using the trainedmodel is shown in Fig. 11.
The results show that the proposed method shows good learning and
fitting capabilities on the simulation dataset. The fault diagnosis accu-
racy reaches 94.40 %, in which the accuracy for the broken tooth con-
dition reaches as high as 100.00 %, but there are still the cases of
misjudging the normal tooth condition.

Moreover, to address the problem of model overfitting on the vali-
dation dataset and to consider the number of rounds required to achieve
a stable validation accuracy, the Dropout algorithm is introduced to the
LSTM layer for network regularization. By comparing the confusion
matrices of the fault diagnosis test with different Dropout ratios, it is
found that the most favorable results when training the model with a
Dropout value of 0.3, as shown in Fig. 12. The fault diagnosis accuracy
reaches 99.47 %.

Fig. 8. Comparison of acceleration vibration signals of gear I under different tooth conditions.

Fig. 9. Spectrum of acceleration of gear I in the Y-axis direction under
different conditions.

Table 4
One-hot encoding of labels.

Category Tags Digital labels One-hot encoding

Normal 0 [1,0,0,0]
Broken tooth 1 [0,1,0,0]
Pitting 2 [0,0,1,0]
Cracked 3 [0,0,0,1]

J. Kang et al.
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4.4. Comparative study and discussion

In order to assess the fault diagnosis capability and demonstrate the
superiority of the proposed method, several commonly used methods,
including CNN, LSTM, RNN, CNN-RNN, CNN-Gated Recurrent Unit
(GRU), are selected for comparison with the CNN-LSTM method.

Among the various methods mentioned, CNNs are capable of auto-
matically learning fault-related features within the data and extracting
these features through convolutional kernels in the convolutional layers.
However, the pooling layer may overlook some subtle signal changes,
leading to a deterioration in the diagnosis of certain types of faults. RNN,
as a traditional and simple neural network for time series processing, can
capture dynamic characteristics within time series, which is crucial for
fault diagnosis. In RNN, due to the multiplicative effect of weights,
gradients during backpropagation may diminish or increase rapidly,
making it difficult for the network to learn long-term dependencies. This
can significantly impact the performance of fault diagnosis models
trained by RNN. GRU and LSTM networks have evolved from the
foundation of RNN. The core advantage of LSTM is its ability to learn
long-term dependencies involved in time series data, while also intro-
ducing gating mechanisms to control the flow of fault feature informa-
tion, effectively addressing the issue of gradient vanishing. However,
compared to other networks, LSTMs have higher computational
complexity. GRUs simplify the network structure of LSTM by merging
the forget gate and input gate of LSTM into an update gate. GRU also

introduces a reset gate to determine how much of the previous infor-
mation the network should forget and which parts of the state to update.
These configurations make GRU more effective when dealing with
shorter sequences or when the dataset is not very large.

CNN-RNN, CNN-GRU, and CNN-LSTM are the models that combine
convolutional and recurrent networks, integrating the powerful feature
extraction capabilities of CNN with the advantages of recurrent net-
works in handling time series data. The analysis of fault signals in
gearboxes presents challenges such as strong time-variant characteris-
tics, difficulties in fault feature extraction, and significant time series
dependencies. Compared to single neural network models, these hybrid
methods leverage the strengths of different methods, bringing about
significant potential to enhance fault diagnosis performance.

To ensure the objectivity in the comparison results, all methods are
subjected to the same optimization function, computational capacity,
learning rate and other hyperparameters. Moreover, the identical
dataset is utilized for both training and testing. The outcomes are shown
in Fig. 13 and Table 5.

The comparison results reveal that the CNN model converges faster
and achieves high diagnostic accuracy in broken tooth and pitting
conditions. However, it fails to differentiate between normal and
cracked conditions effectively. RNN and LSTM models exhibit slow
convergence during training. RNN fails to achieve stable convergence,
and the accuracy is very low. LSTM, on the other hand, provides better
training results, with a fault diagnosis accuracy rate of 74.33 %. How-
ever, it encounters challenges in accurately identifying local features of
the cracked signal.

The three convolutional-recurrent neural networks, including the
methods proposed in this paper, perform well across various aspects,
including validation accuracy, test accuracy, and the number of itera-
tions needed to reach stability. Combining CNN and RNN, two networks
that individually struggle to achieve good diagnostic results, results in
fault accuracy no less than LSTM. It ranks third in terms of convergence
speed, following the CNN-GRU and CNN-LSTM. The CNN-GRU and
CNN-LSTM have remarkably close performance. GRU, as a simplified
version of LSTM, performs well when combined with convolutional
networks but falls slightly short of the CNN-LSTM, which achieves a
diagnostic accuracy of 99.47 %.

Analysis of the different approaches employed in the study shows
that CNN is efficient in capturing local patterns and spatial relationships
through the convolutional and pooling layers. Although it may be
inadequate in capturing long-term temporal dependencies that are
necessary to differentiate between normal and cracked conditions, the
results still show that this approach has a good accuracy and outstanding
convergence speed. RNN can capture temporal dependencies, but suffers
from the vanishing gradient problem, which can make it difficult to

Fig. 10. (a) Change in accuracy with training rounds; (b) Change in loss with training rounds.

Fig. 11. Confusion matrix of CNN-LSTM on the simulation dataset.
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identify complex patterns in vibration signals correctly. This drawback
leads to the result that the performance of RNN is the worst among
different methods. LSTM networks have a specific design to model
sequential data and can leverage memory cells and gates to learn long-
term dependencies, enhancing the capacity to diagnosis fault modes.
While LSTM networks can capture temporal information, they may not
efficiently extract less spatial features that are crucial in analyzing
cracked signals, resulting in the second longest stable round. CNN-RNN,
CNN-GRU, and CNN-LSTM have achieved high test accuracy. However,
CNN-RNN may not fully exploit spatial features in vibration signals,
resulting in suboptimal performance in test accuracy compared to CNN-
GRU and CNN-LSTM. Additionally, CNN-GRU has gating mechanisms
that are simplified compared to LSTM and may limit their effectiveness
in capturing complex dependencies in vibration signal data. Its perfor-
mance in test accuracy is slightly worse than CNN-LSTM.

In summary, the CNN-LSTM model theoretically offers the best fault
diagnosis performance among the compared methods because it pos-
sesses the advantages of CNN in local feature information extraction and
the proficiency of LSTM in processing time-series signals. Comparative
results demonstrate these unique advantages of CNN-LSTM, leading to
superior learning convergence efficiency and diagnostic accuracy. It
achieves outstanding fault diagnosis results with fewer iterations. The
method outperforms others in terms of the number of iterations required
to achieve the same accuracy, as well as its performance on the test set.

5. Experimental studies

The vibration signals generated by the gearbox of the wave energy
converter in the experiment usually contain significant noise, environ-
mental information and periodic clutter generated with the driving

force. Consequently, these signals carry complex feature information,
making it essential for the fault diagnosis model to possess strong noise
reduction and feature extraction capabilities to identify fault types
accurately. Moreover, different faults may exhibit similar characteris-
tics, further complicating the task of fault classification and identifica-
tion. To validate the effectiveness of the proposed CNN-LSTM-based
fault diagnosis method in processing real signals, a gearbox vibration
signal acquisition platform is established.

5.1. Experimental setup

The gearbox of the point absorber wave energy converter, mainly
consists of a variable speed drive motor, a control circuit board, a crank
linkage mechanism and the internal transmission components of the
gearbox. The experiment uses a variable speed drive motor combined
with a crank linkage mechanism to simulate the vertical motion input of
a buoy to the rack and a speed control circuit board to achieve variable
speed regulation (rack motion cycle range of 5 s–8 s). The motion of the
rack drives the subsequent gear, and this motion is then transferred to
the output gear through the use of a ratchet overrunning clutch and a
transmission gear. To simulate the load of a generator, a fixed load is
applied at the end of the output shaft. Fig. 14 shows the experimental
platform and internal structure. To study the vibration signals of the
gearbox under different faulty gear conditions, the experiments are
equipped with faulty gear kits with different fault modes for the target
gears. The specific parameters of the gears and gear racks inside the
gearbox used in this study are consistent with the structural parameters
analyzed in the dynamics simulation.

The experimental signal acquisition equipment includes two sets of
ICP/IEPE tri-axis piezoelectric acceleration sensors of CT1010SLFP, one

Fig. 12. Confusion matrices of CNN-LSTM on the simulation dataset with different Dropout ratios.
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set of CZ400 Hall-type tachometer sensors, one set of CT5210 ten-
channel constant current adapters, and one MCC USB-1608G data
acquisition card. The specific experimental equipment and arrangement
are shown in Fig. 15.

5.2. Results

The experimental sampling frequency is set as 1 kHz, and data is
collected from seven sampling channels, including six sets of accelera-
tion vibration signals from two tri-axial acceleration sensors and a
square wave pulse signal from a speed sensor. Data collection for each
operating condition is carried out for 20 min. The sampling conditions

Fig. 13. Confusion matrices of different models on the simulation dataset.

Table 5
Performance comparison of the different models for fault diagnosis.

Models Verification accuracy (%) Test accuracy (%) Stable rounds

CNN 96.82 53.60 6
RNN 55.36 46.12 83
LSTM 99.79 74.33 52
CNN-RNN 100.00 89.00 15
CNN-GRU 100.00 95.50 12
CNN-LSTM 100.00 99.47 12
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include normal, broken, pitting and cracked gears at three different
periods of T = 5.6 s, T = 6.0 s and T = 6.7 s.

To facilitate the identification of faulty parts, they were marked
sequentially. Taking the gearbox vibration signal acquisition under
normal gear conditions as an example, the motor speed is adjusted to the
preset value using the speed control board. Signal acquisition com-
mences once the rotor had achieved stable operation. Data acquisition is
performed for a single working condition, and the collected data is
saved. The speed is then adjusted to the next speed condition for further
data collection. This process continues until data has been collected for
each cycle condition.

After collecting data for various cycle and torque conditions, torque
adjustments were made to collect data for each cycle condition under
different torques. Once data collection for different cycles and torque
conditions is completed, the gear to be measured is replaced, allowing
for signal data acquisition for different cycles and torque conditions
under different gear conditions.

The simulated and experimental acceleration vibration time-series
signals are extracted. Figs. 16 and 17 are the change curves of the
simulated and experimental acceleration vibration signals of gear I in

the same motion state in the time domain respectively. According to the
position of the peaks and valleys, it can be seen that the two signals have
the same cyclic movement pattern. The acceleration movement period,
peak values, and change trends are consistent under identical rack
movement inputs. However, it is noted that the experimental data is
influenced by noise, environmental factors, and mechanical linkages
during the acquisition process. As a result, the average amplitude of the
experimental data is higher at the same sampling rate when compared to
the simulated data. The smaller amplitude vibrations are still present
during periods of low energy, even in the experimental data.

The fault diagnosis model and parameters established based on the
simulated data are trained and verified using data collected from the
experiments under different working conditions. Fig. 18 shows the
changes in both the accuracy and loss function of the model trained on
the experimental dataset.

Fig. 19 shows the confusion matrix of CNN-LSTM on the experi-
mental dataset. The analysis reveals that the overall fault diagnosis ac-
curacy of the experimental data is 83.15 %. Examining the results from
the confusion matrix for the test set, it can be concluded that the pro-
posed method demonstrates strong fault diagnosis accuracy in normal

Fig. 14. (a) Experimental platform; (b) Internal structure.

Fig. 15. Experiment equipment: (a) CT 5200 series constant current adapter; (b) USB-1608G data acquisition card; (c) ICP/IEPE piezoelectric accelerometer; (d)
CZ400 Hall speed sensor.
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Fig. 16. Time domain diagram of simulated signals.
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Fig. 17. Time domain diagram of experiment signals.
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and cracked tooth conditions. However, its performance is less consis-
tent when diagnosing pitting and broken tooth conditions, as it may
easily confuse these conditions with other vibration characteristics.

5.3. Comparative study and discussion

The fault diagnosis results of the different models introduced in
Section 4.4 are compared using the experimental vibration signals. A
comparison of the performance of different models for fault diagnosis is
shown in Fig. 20 and Table 6. It can be seen that the diagnostic accu-
racies of all the models on the four fault conditions have decreased. The
CNN method is not capable enough to distinguish between the normal
condition and the cracked condition, achieving 90.00 % accuracy in the
diagnosis of the fault of the broken tooth. The RNN remains the worst
performing model, and the number of convergence rounds further in-
creases. The LSTM model has an overall fault diagnosis accuracy of
57.45 %, and can hardly identify the cracked condition of the faults
accurately. The overall fault diagnosis accuracies of CNN-RNN, CNN-
GRU, and CNN-LSTM are 73.67 %, 76.67 %, and 83.15 %, respectively.
CNN-RNN and CNN-GRU both have the problem of identifying a portion
of normal condition and pitting condition cases as cracked condition.
Compared to other models, CNN-LSTM has the highest accuracy in
identifying experimental faulty vibration signals affected by ambient
noise, while the number of convergence rounds is lower. The varying
results of different configurations can be attributed to the characteristics
of the model, as explained in Section 4.4.

5.4. Improvement of the model

In this section, to improve its training efficiency on real vibration
signals and increase the fault diagnosis accuracy, the CNN-LSTM model
is improved by adding Adam algorithm and improving network struc-
ture to handle complex experimental conditions. The generalization
ability and convergence speed are enhanced to improve the diagnostic
performance. The improvements of network structure focus on twomain
aspects, i.e., optimization and generalization of the deep learning
network.

As shown in Fig. 21, the impact of varying the number of channels in
the first and second convolution layers on the fault diagnosis accuracy is
explored, while keeping all other parameters constant. The color
gradient represents the accuracy of the model for different combinations
of channel numbers in the two layers. It is found that accuracy above
90.00 % is mainly achieved when using 64–92 channels in the first layer
and 92–128 channels in the second layer.

For the experimental dataset, this section adjusts the network
structure of the original CNN-LSTM model to reduce the fit of the
learning model to the training data by reducing the number of model
layers and the number of units per layer. The adjusted parameters
include the number of layers, the convolution kernel sizes of the con-
volutional layer, the convolutional step sizes, the size of the max pooling
layer, LSTM layer nodes, and the size of the fully connected layer size.

The improved CNN-LSTM fault diagnosis model is trained and vali-
dated on the experimentally collected data under different working
conditions. The training and validation accuracy and loss function
variation curves with the number of iterations are shown in Fig. 22.

The fault diagnosis results of the improved model on the test set are
shown in Fig. 23. The model achieves a fault diagnosis accuracy of over
86.00 % for each tooth condition, 96.70% for cracks and an overall fault
diagnosis rate of over 92.00 %.

It can be seen that, after the introduction of the Adam optimization
algorithm, different learning rates are calculated adaptively for the
network structure parameters of CNN-LSTMmodels. Compared with the
83.15 % fault diagnosis accuracy before optimization, the average fault
diagnosis accuracy of the improved model reaches 92.00 %. The
recognition rate for pitting faults increased from 67.00 % to 92.00 %. In
summary, the improved model enhances the convergence speed and
validation accuracy while maintaining the same training data. It sub-
stantially reduces the risk of overfitting, thus improving the general-
ization capability and fault diagnosis accuracy.

6. Conclusions and future research

The gearbox is the critical component of wave energy converters.
Efficient and accurate fault diagnosis is significant for the development
of the wave energy converter and its future large-scale application. In

Fig. 18. (a) Change in accuracy with training rounds; (b) Change in loss with training rounds.

Fig. 19. Confusion matrix of CNN-LSTM on the experimental dataset.
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this paper, a fault diagnosis model for the gearbox of the point absorber
wave energy converter is presented based on CNN-LSTM networks, with
the strengthen of the efficient extraction of local features from signals

and the effective analysis of time-series data. The Adam algorithm is
introduced to the model to address situations where gradients within
tensors exhibit unstable changes. Vibration signals from the gearbox of a
point absorber wave energy converter under different fault modes are
simulated using a rigid-flexible coupled dynamics simulation model.
These simulated vibration signals are used as training datasets and test
datasets. The performance of the fault diagnosis method is verified by
using the dataset generated. To assess the effectiveness of the CNN-
LSTM-based fault diagnosis method in processing real vibration sig-
nals, an experiment is carried out to acquire gearbox vibration signals.
The fault diagnosis performance achieved with the experimental data
across various working conditions is compared. Improvements are made
to the structure and parameters of the fault diagnosis model in response
to the experimental data. The main conclusions are drawn as follows.

Fig. 20. Confusion matrices of different models on the experimental dataset.

Table 6
The comparison of the performance of different models for fault diagnosis.

Models Time (s) Test accuracy (%) Stable rounds

CNN 70 45.38 9
RNN 1043 39.30 118
LSTM 526 57.45 73
CNN-RNN 155 73.68 22
CNN-GRU 148 76.65 18
CNN-LSTM 142 83.15 17
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(1) In the time-domain plot, it is observed that the acceleration signal
under the broken tooth condition shows a significant deviation
from normal conditions, with a distinct difference in vibration
distribution. In comparison, under pitting and cracked condi-
tions, the acceleration signal shows less difference compared to
the normal condition. Compared with broken tooth condition, the
fault signal characteristics under these two conditions are less. In
the frequency-domain plot, it is observed that the distribution
between normal and fault tooth conditions is similar, and the
width of the frequency band of fault gears varies slightly
depending on the tooth condition. However, the overall differ-
ence is not significant.

(2) The CNN-LSTM model integrates two deep learning methods to
realize efficient extraction of local features from fault signals and
enhance the performance in time-series analysis. Through com-
parisons with other network structures, i.e., CNN, LSTM, RNN,
CNN-RNN, CNN-GRU, it is observed that the proposed model has
the highest average accuracy of 99.47 % and the lowest stable
round of 12 on the simulation dataset. The CNN-GRU model and
CNN-RNN model achieves accuracies of 95.50 % and 89.00 %,
respectively. Although the LSTM model has high accuracies in
normal, broken tooth, and pitting conditions, it can hardly
recognize the cracked condition and requires a high stable round.
The CNN model has the lowest stable round of 6, but its average
fault diagnosis accuracy only reached 53.60 %. The RNN model
performs the worst among all the compared models, with the
accuracy of only 46.12 % and the highest stable round of 83.

(3) When assessing the performance of different methods by using
the experimental vibration signals, it is observed that the diag-
nostic accuracies of all the models have decreased. Among them,
the CNN-LSTM model has the highest accuracy of 83.15 % and a
stable round of 17. The CNN-GRU model and CNN-RNN model

present similar performances in fault diagnosis for different fault
modes of gears, with accuracies of 76.65 % and 73.68 %, and
required stable rounds of 18 and 22, respectively. The LSTM
model has a fault diagnosis accuracy of 57.45 % and can hardly
identify the cracked condition of faults. The CNN model cannot
distinguish between the normal condition and the cracked con-
dition, achieving an average fault diagnosis accuracy of only
45.38 %. The RNN model remains the worst-performing model
with an accuracy of 39.30 % and a stable round of 118. To
address complex experimental conditions, improvements are
further made to the CNN-LSTMmodel by incorporating the Adam
algorithm and refining the network structure. The enhanced
model achieves a fault diagnosis accuracy of over 86.00 % for
each tooth condition and an average fault diagnosis rate
exceeding 92.00 %. As a result, the CNN-LSTM model fault
diagnosis rate reaches a higher level, demonstrating its general-
izability and training effectiveness in processing complex real-
world signals.

The main implications of this study are that potential gear faults can
be diagnosed in real-time by monitoring vibration signals by using the
wave energy converter gearbox fault diagnosis model based on CNN-
LSTM. When the condition monitoring system detects fault signals, op-
erators and maintenance service providers can perform maintenance
activities within a specific weather window by analyzing and inter-
preting fault patterns, thereby avoiding further damage and long system

Fig. 21. Effect of the number of convolutional kernel channels on fault diag-
nosis rate.

Fig. 22. (a) Change in accuracy with training rounds; (b) Change in loss with training rounds.

Fig. 23. Confusion matrix of the improved model on the experimental dataset.
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downtime. The proposed method mitigates the losses and risks caused
by gearbox faults and reduces the time and cost associated with main-
tenance. This will help improve equipment reliability and maintain-
ability, enhance production efficiency, save important maintenance
resources over long-term operations, reduce cost of wave energy, and
finally benefit its development.

However, there are still limitations of the research. The vibration
signal of the gearbox of the point absorber wave energy converter has
been somewhat simplified in this paper, and the influence of the com-
plex marine environment has not been fully considered. Furthermore,
the proposed fault diagnosis method does not consider variations in fault
severity or compound faults, and the examination of fault conditions is
not comprehensive enough. These limitations should be addressed in the
future research (Table 6).
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