
Automation in Construction 166 (2024) 105633

A
0

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

3D reconstruction and measurement of concrete spalling using near-field
Photometric stereo and YOLOv8✩

Hamish Dow ∗, Marcus Perry, Sanjeetha Pennada, Rebecca Lunn, Stella Pytharouli
Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK

A R T I C L E I N F O

Keywords:
Automated inspections
Angled illumination
Directional lighting
ALICS
Defect detection

A B S T R A C T

Current concrete spalling detection and measurement methods are sparse; despite recent research and com-
mercial offerings using laser scanners, manual measurement is still the industry standard. This paper presents
a spalling 3D reconstruction and measurement method. The method uses images illuminated with angled and
directional lighting and three neural networks for photometric stereo 3D mesh generation and spalling volume
measurement. The proposed method was benchmarked on a laboratory dataset of spalled concrete slabs against
a high-resolution laser scanner, yielding an average height error of 0.0 mm and a standard deviation of 1.3 mm.
Volume comparisons showed that with manual input, the method achieved a mean absolute percentage error of
22%. Finally, the proposed technique was compared to manual measurements and benchmarked on a spalled
concrete structure against a Trimble X12 laser scanner. This research can provide inspectors with increased
data interpretability and reduced imaging time for concrete defect mapping.
1. Introduction

Spalling is the deterioration of the concrete surface layer, char-
acterised by chipping, flaking, or large pieces breaking away. This
deterioration results in depressions that expose the underlying aggre-
gates [1]. Poor construction methodologies, excessive loading cycles, or
environmental changes can cause spalling. Spalling reduces concrete
cover and allows corrosive agents to reach reinforcement faster. If
left unnoticed and unrepaired, spalling can become severe and lead
to exposed reinforcement, further accelerating corrosion and creating
more spalling [2].

Identification of spalling has traditionally used the human eye,
with findings recorded using photographs or sketches. Measurement
of spalling area and depth usually involves basic tools such as a tape
measure and is conducted manually, resulting in many errors [3].
Emerging research and commercial developments have shown the po-
tential of laser scanners for assessing concrete structures and locating
spalling [4,5]. However, these devices are costly, slow, and produce
data that requires pre-processing by a trained individual [6–8].

Concrete defect detection research using images has primarily fo-
cused on crack detection, leaving few novel and innovative methods for
spalling imaging severity analysis. A recent publication by McAlorum
et al. [9] showed that images illuminated with angled and directional
lighting can increase the accuracy of crack detection. The directional
lighting images utilised by McAlorum et al. are similar to those used in
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photometric stereo - a method for producing normal and depth maps us-
ing a series of images illuminated from different lighting sources [10].
This paper proposes an angled and directional lighting method for
spalling 3D reconstruction and volume measurement that uses a hy-
brid neural network photometric stereo and YOLOv8 object detection
network approach. The technique combines the transparency and ease
of understanding of images with the comprehensive data provided by
3D meshes. To the authors’ knowledge, this is the first system for
spalling identification and volume quantification using only standard
Red, Green and Blue channel (RGB) images captured from a fixed
position.

A review of the relevant literature is first conducted in Section 2.
Following this, Sections 3 and 4 describe the hardware and software
components of the proposed method, respectively. The testing method-
ology is then detailed in Section 5. Section 6 evaluates the performance
of the proposed method by comparing it to a highly accurate laser
scanner in a controlled laboratory environment. Finally, to assess real-
world applicability, the method is tested on a challenging spalling
sample found on a concrete structure.

2. Background

2.1. Concrete spalling detection

Image-based concrete defect detection falls into two categories:
black-box and white-box techniques [11]. White-box techniques are
vailable online 24 July 2024
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image-processing mathematical operators applied to an image. They are
transparent and modifiable. Black-box techniques are neural-network
deep learning approaches. They use machine learning models trained
on large amounts of data to conduct tasks such as detection, classifica-
tion and segmentation.

2.1.1. White-box image analysis methods
German et al. [12] proposed an algorithm for pixel-level segmenta-

tion of spalling using local entropy-based thresholding. Their algorithm
provides details on spalling and exposed reinforcement size and was
benchmarked against manual methods. Depth can also be provided, but
this is only relative to reinforcement cover and will not yield results
if reinforcement is not exposed. Dawood et al. [13] used a series of
image processing techniques (thresholding, gaussian 3D filter, and edge
detectors) to segment spalling, with a regression analysis on the pixel
intensities to estimate depth. Their method provided promising results
but required human input to select a thresholding value for segmen-
tation. The analysis of their method did not consider the accuracy of
depths. Yao et al. [14] developed a spalling detection method that uses
pixel variances and a second-moment operation to conduct pixel-level
segmentation of spalling. While effective on smooth concrete surfaces,
the algorithm is not robust to noise, and the testing dataset was of
limited size.

2.1.2. Black-box image analysis methods
The semantic segmentation network U-net has shown spalling seg-

mentation results with more robust performance in terms of reliance
to noise and data variation in comparison to white-box methods [15].
Black-box approaches can also be multi-class, allowing the same net-
work to detect various defects simultaneously (e.g. spalling, cracking,
corrosion and efflorescence) [16]. While effective, pixel-level segmen-
tation approaches are limited to a 2D space and can only provide
information on the spalling area, width, and size.

Variations of the ‘‘You Only Look Once’’ (YOLO) object detection
model have been extensively used in concrete defect detection [17].
The YOLO version 8 (YOLOv8) model proposed by Jocher et al. [18] is
very appropriate for fast and accurate concrete defect detection [19].
Rouf et al. [20] demonstrated that YOLOv8 could provide superior
crack and spalling detection results in comparison to other competing
object detection models (Faster RCNN, MobileNet-SSD et al.). However,
object detection models provide little information on spalling severity
other than the approximate surface area.

2.1.3. 3D reconstruction methods
Yang et al. [21] developed a method that used Red, Green, Blue

and Depth channel (RGB-D) images and Simultaneous Localization
and Mapping (SLAM) to position defects in a 3D space. However,
their method did not provide metrics on spalling depth and volume.
Other studies have utilised point cloud data (PCD) to calculate spalling
volume; Zhang et al. [22] did so using PCD obtained from photogram-
metry, but it was not an automated solution as manual intervention was
required to pre-process the data for noise. There was no ground truth
comparison to find the accuracy of their method. Zhang and Xia [23]
proposed a method for identifying corner spalls in PCD by fitting a
plane to surfaces. This method required human input and accuracy was
not analysed. Zhou et al. [24] proposed an automated spalling detection
system using laser scanners; ground truth comparisons only considered
spalling area. Kong et al. [25] used a smartphone Light Detection and
Ranging (LiDAR) scanner to obtain point cloud data of concrete defects.
They used rectangular-shaped synthetic spalling formed with concrete
blocks as volume ground truths and found their method to have an
average error of 5%; however, it was not an automated solution, and
the ground truths did not capture the complex shapes and sizes of
spalling. Marchisotti and Zappa [26] trialled time of flight (ToF) sensors
2

mounted to a drone to manually record spalling. Despite long data
acquisition and processing times, ground truth comparisons with a laser
scanner for height error yielded a standard deviation of 2.5 mm.

Beckman et al. [27] proposed an RGB-D camera method that used
a Faster RCNN network to localise spalling and fit a plane to calcu-
late its volume using respective heights of the depth channel. While
the methodology is robust, the algorithm produced over- and under-
estimations of volume on various samples; this was not taken into
account in their analysis and meant that overestimations in some sam-
ples compensated for underestimations in others, skewing performance
results. Furthermore, their ground truths were manually found using
water and a ruler for volume and depth, respectively, and the analysis
did not consider the produced mesh shape. Mondal et al. [28] proposed
a similar RGB-D method; spalling volume ground truth comparisons
were made, but the ground truths were from the same RGB-D sensor
to analyse the method’s segmented spalling area.

As noted by [29,30], RGB-D cameras also pose several issues for
automated inspections of concrete such as:

• inability to work outdoors as sunlight can overwhelm the infra-
red (IR) sensor;

• the reflectance of IR light can change with different materials;
• resolution of depth measurement is considerably smaller than

RGB image resolution; and,
• less control of hardware, e.g. lenses.

2.2. Photometric stereo

Photometric stereo, first proposed by Woodham et al. in 1980, is an
image processing technique used to estimate the surface normals of ob-
jects in a scene by observing those objects under lighting from different
angles and directions [10]. Further processing of the surface normals
allows the estimation of a 3D surface mesh. While the traditional
photometric stereo method is a white-box technique, advancements in
computer power and camera technology have allowed the development
of black-box neural network alternatives. Most recently, Lichy et al.
proposed a fast lightweight photometric stereo capable of handling
nearby lighting sources [31]. Photometric stereo has been used in
research and industrial applications for defect detection of many mate-
rials [32–37]. Most concrete surfaces are non-reflective (Lambertian),
making them suitable for use with photometric stereo [38]; however, to
the author’s knowledge, only one study exists for applied photometric
stereo concrete defect detection. Tao et al. [39] utilised photometric
stereo for air void detection using surface normals. They proposed two
methodologies, one using surface normals and another using 3D depth
maps. Their method was successful but only considered the area of the
voids, not the volume.

2.3. Gaps in literature and contributions of this research

This review has discussed three related topics: (i) 2D spalling de-
tection methods, (ii) 3D spalling detection methods and (iii) lack of
utilisation of photometric stereo for concrete defect detection. 3D
spalling detection methods can provide more information on defects;
however, current approaches have long data acquisition and processing
times, require manual noise removal, and must be operated by a trained
individual. Furthermore, previous literature proposing novel spalling
3D reconstruction and measurement methods has overlooked compar-
isons to ground truths. With fast data acquisition/processing using
user-friendly and easily interpretable images, recent advancements in
photometric stereo can provide a solution to these research gaps. The
contributions of this paper are as follows:

• demonstration of photometric stereo for concrete spalling 3D
reconstruction;

• use of a YOLOv8 object detection neural network for spalling

bounding box location for mesh volume measurement;
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Table 1
Machine vision camera variables and respective values.
Camera variable Value

Exposure time 200,000 μs
Aperture f4
Gain 9
Working distance 150 mm
Image resolution 2,448 × 2,048 pixels

• quantitative comparison of proposed methodology’s heights and
volumes against a laboratory dataset; and,

• quantitative analysis of the proposed methodology against man-
ual measurements and a state-of-the-art commercially available
laser scanner on a spalled concrete structure.

3. Hardware

The hardware for this study uses a smaller and more lightweight
version of the Adaptive Lighting for the Inspection of Concrete Struc-
tures (ALICS) device introduced in [9]. The device, dubbed mini-ALICS
and shown in Fig. 1, consists of a ‘‘low-poly’’ dome, which houses light
emitting diode (LED) strips and blocks ambient light. The LEDs are
manually placed at angles of 50 and 30 degrees incident to the surface
at a proximity of 150 mm.

At the centre of this dome is a FLIR Chameleon 1∕2 inch sensor
machine vision camera paired with a FUJI DF6HA-1S 6 mm lens.
Table 1 shows the consistent camera settings used for image acquisition
throughout this research.

Mini-ALICS is a contact inspection device. To capture directional
lighting images with no ambient lighting from the surrounding envi-
ronment, the device is placed on a concrete surface. In this work, the
system is deployed handheld. However, the lightweight dome design
allows for potential remote contact deployment. This could be achieved
with robotically deployable contact inspection systems, such as un-
manned aerial vehicles (UAVs) (e.g. [40,41]) or wall climbers/crawlers
(e.g. [42–44]).

The camera and LEDs are actuated by an onboard Raspberry Pi 4B,
which is remotely controlled by a separate master computer. A single
5 V, 2.5 A power supply powers the entire device.

4. Software

The flowchart in Fig. 2 shows the inputs (directional lighting images
of a spalled area) and outputs (3D mesh with spalling located) of the
proposed method. A detailed description is given in Sections 4.1–4.4.

4.1. NFPS

This research employs the fast near-field photometric stereo (NFPS)
method proposed by Lichy et al. [31]. The model involves two neural
networks — one for predicting surface normals and a second for
predicting depth when given these surface normals.

A complete, detailed description of the NFPS method can be found
in the original authors’ publication and supplementary material. How-
ever, to summarise:

• The surface normals estimation network:

– Uses reduced-resolution input images illuminated with an-
gled and directional lighting.

– Utilises ‘‘per-pixel lighting’’ maps to generate a feature vec-
tor at a quarter of the input resolution.

– Performs max pooling on the features of all input images,
resulting in a combined feature.

– Employs a decoder neural network to produce a normal map
from the combined feature.
3

Fig. 1. (a) Mini-ALICS angled and directional lighting image acquisition hardware.
Annotations show LED face angles, camera, measured slab and LED acquisition
hardware. (b) cross-section of one side of Mini-ALICS, showcasing the projected lighting
angles and camera working distance. The actual device has LEDs on all four sides.

• The depth estimation network:

– Adopts an encoder–decoder network with ResNet architec-
ture.

– Uses normals generated from the surface normals estimation
network to produce a depth map.

The process of the surface normal network through to the depth
estimation network is iterated multiple times; with each iteration, the
image resolution (width and height) is doubled. After the first iteration,
the normal and depth maps from the previous iterations are also used
as inputs for their respective networks.

The spalling 3D reconstruction method adopts the same NFPS ap-
proach as Lichy et al. [31] using their pre-trained weights; however,
to accommodate for the higher-resolution images in this research,
the model’s initial image resolution for the recursion is increased to
256 × 256. Despite having known lighting positions, auto-calibration
is employed to calculate the light location and account for any po-
tential errors introduced from manual dome construction and LED
placement (translations in X, Y, Z and rotations in pitch, roll, yaw).
While photometric stereo typically assumes point light sources, the
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Fig. 2. Flowchart of proposed near-field photometric stereo (NFPS) and YOLOv8
spalling measurement method.

light produced by the LED strips was found to be satisfactory for this
specific application.

4.2. YOLOv8

The proposed method uses a standard, unmodified YOLOv8 object
detection neural network for region-based identification of concrete
spalling. A diagram of the model architecture and open source code
is provided by Jocher et al. [18]. The model was trained on an open-
source dataset of over 1,900 manually labelled diffused lighting images
with six different concrete defect classes (including spalling) [45]. Pre-
trained weights from a COCO dataset model were used, and the training
was completed with 50 epochs.

Each individually illuminated image is passed to the YOLOv8 net-
work to locate and classify any present defects in the form of bounding
boxes. Fig. 15 in the results section of this paper shows four of the
eight captured images. Fig. 2 shows all eight captured images and the
YOLOv8 output of one.

4.3. Defect localisation

The bounding box coordinates (produced by YOLOv8) of all spalling
regions in every angled and directional lighting image are used to lo-
calise the defect. An algorithm is used to identify clusters of overlapping
bounding boxes across the eight directionally-lit images and remove
likely false positives.

If bounding boxes overlap, they are put into a sub-category of
bounding boxes. The intersection over union (IoU) of each bounding
box in the sub-category is checked using Eq. (1); the box is disregarded
if the IoU with other boxes is less than 20%. Following this, the extreme
coordinates (top-left, bottom-left, top-right, and bottom-right) of all
4

remaining boxes in the sub-group are calculated and used as the final
bounding box. If there is only one bounding box from all input images,
this is used as the extreme coordinates. If all image inputs contain
multiple bounding boxes but none overlap, they are all disregarded.

4.4. Bounding box defect volume measurement

Similar to the technique used by Beckman et al. [27], the 2D
bounding box produced by YOLOv8 surrounding the spalling is used
to identify the X, Y, and Z coordinates that outline the perimeter of the
spalling area within the mesh. Nearest interpolation is used to estimate
the height values within the region of interest that show what the slab
would look like if no spalling was present. The non-defective mesh is
used to ‘‘cap’’ the spalling and create a mesh with a hollow volume.
The volume measurement of the resulting mesh is found using vtk, a
mesh measurement package in Python.

5. Methodology

5.1. Laboratory dataset formation

Twenty-five concrete slabs were cast, each measuring 300 mm ×
300 mm × 40 mm. To benchmark the proposed method, spalling was
intentionally created on twenty-one of these slabs using the following
methods:

• manual creation using hammer and chisel (Fig. 3a);
• accelerated corrosion of reinforcing bars (Fig. 3b);
• artificially created efflorescence (Fig. 3c); and,
• removal of 3D-printed moulds inserted during casting (Fig. 3d).

Various spalling depths and shapes were created to ensure variation in
the dataset. While all spalling occurred within the central region of the
slab for consistency, many were offset and/or displayed asymmetrical
distribution across the surface. Fig. 4 illustrates the range and frequency
of occurrence of spalling depths throughout the dataset. Spalling depths
ranged as deep as 30.3 mm, resulting in a dataset with minimum
and maximum volumes of 2,500 mm3 and 47,500 mm3, respectively.
Several concrete surface finishes and noise-inducing elements (e.g. cor-
rosion staining and efflorescence) were also utilised to ensure the
laboratory dataset closely resembled the condition of actual concrete
structures found in the built environment.

5.2. 3D mesh acquisition

Using the mini-ALICS hardware, eight images of each slab were cap-
tured. Each image was illuminated with lighting individually projected
from the up (U), down (D), right (R) and left (L) directions of the image
scene at angles of 50 and 30 degrees incident to the surface. The image
acquisition time takes 4 s per sample, and the device was placed on the
surface to remove ambient lighting from the indoor environment.

For each slab, the captured images were processed by the NFPS
model to generate a mesh of the image scene as per the description
in Section 4.1.

5.3. Ground truth mesh acquisition and comparison

A stepper motor-driven MICRO-EPSILON scanCONTROL 2700 laser
scanner was used to scan the concrete slabs and create a ground truth.
The scanner was operated at a rate of 25 profiles per second, capturing
1,600 profiles per scan. The stepper motor speed was set to 0.4 mm/s
over a 250 mm distance, and actuation was synchronised with the laser
scanner. Due to the scanner measurement range, each slab was scanned
in two halves, and the produced point clouds were stitched together,
resulting in one point cloud per slab. Finally, a Poisson Surface Recon-
struction with an Octree depth of 9 generated a ground truth mesh with
units in mm. The accuracy of the scanner was validated by measuring
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Fig. 3. Spalling dataset variations. (a) chisel carving, (b) reinforcement corrosion, (c)
efflorescence and (d) 3D-printed insert removal.

Fig. 4. Histogram of spalling depths throughout the entire dataset. Frequency refers
to the number of times a particular depth value (shown on the 𝑥-axis) appears in the
dataset.

the height difference between two machined steel blocks measuring
12.7000 mm (1∕2 inch) and 15.8750 mm (5∕8 inch) tall, respectively;
the manufacturer quotes the accuracy of these blocks as 0.00762 mm
(0.0003 inch). Over the 3.175 mm step, the scanner yielded an average
distance of 3.331 mm and a standard deviation of 0.122 mm.

Using Cloud Compare, a mesh analysis tool, each mesh produced by
the proposed method was aligned to its respective ground truth. The
software’s ‘‘compute mesh distance’’ tool produced a scalar field array
showing the distance from the mesh points to the ground truth.

5.4. Spalling volume ground truth and comparison

The ground truth for the spalling volume of each ground truth 3D
mesh slab dataset sample (as detailed in Section 5.3) was determined
5

Fig. 5. Probing apparatus used to obtain a manual point cloud.

using Cloud Compare by fitting a plane to the ground truth mesh slab
surface and converting it to a point cloud. This point cloud was then
cropped to a rectangular shape surrounding the spalling. After this,
Cloud Compare’s ‘‘2.5 Volume’’ tool was used to compare the ‘‘volume
removed’’ when viewing the point cloud change between the plane
and the mesh. This value was recorded and repeated for the algorithm
output and the respective ground truth of every dataset slab.

5.5. Manual spalling depths

Manual measurements of spalling depths on one dataset sample
were obtained by probing the spalling on a 90 × 110 mm grid at
10 mm intervals using a height probe. The resulting 99 data points were
converted to a point cloud and compared to the respective mesh using
the method outlined in Section 5.3. Fig. 5 illustrates the apparatus used
to probe the spalling area.

5.6. Spalling bounding box ground truth definition and comparison

Ground truths of spalling bounding boxes were obtained by manu-
ally outlining the defect area in data annotation software. Each ground
truth, 𝐵𝐵𝐺𝑇 , was compared to the respective predicted value, 𝐵𝐵𝑃 , to
calculate intersection over union (IoU) using Eq. (1).

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

=
𝐴𝑟𝑒𝑎(𝐵𝐵𝐺𝑇 ∩ 𝐵𝐵𝑃 )
𝐴𝑟𝑒𝑎(𝐵𝐵𝐺𝑇 ∪ 𝐵𝐵𝑃 )

(1)

5.7. Field trial mesh and comparison mesh acquisition

A field trial of the proposed method was conducted at a concrete
structure near Glasgow, UK. A spalled region of the concrete surface
was manually identified by eye. The mini-ALICS device was then
placed over the spalled region, and images were captured with each
individual lighting condition. As shown in Fig. 6, a Trimble X12 laser
scanner was used to record a point cloud of the spalled area. All
other data processing, analysis and recording were conducted as per
laboratory conditions. The data acquisition time of the Trimble X12
was approximately 7 min per sample.

Fig. 7 shows a mesh error map output of the Trimble X12 laser scan-
ner when compared to the MICRO-EPSILON scanCONTROL 2700 laser
scanner on a laboratory dataset sample. The meshes of the two scanners
are very similar, with most measurements differing by ±0.5 mm.
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Fig. 6. Trimble X12 laser scanner data acquisition on field trial sample. The red circle
highlights the spalling region.

Fig. 7. Error map of Trimble X12 laser scanner mesh compared to MICRO-EPSILON
scanCONTROL 2700 laser scanner on a laboratory dataset sample.

6. Results

6.1. Qualitative analysis

Fig. 8 shows one input image and the corresponding mesh output
(generated with eight images) for the NFPS model on one sample
concrete slab. Qualitatively, the mesh closely resembles the actual
depths of the slab, with a flat surface followed by a void in the centre of
the scene. However, notable errors occur towards the edge of the mesh
where the calculated depth is considerably lower and curved than the
actual flat surface. The thicker cracks on the slab’s surface are visible
on the mesh, but their depths are inaccurate.
6

Fig. 8. Spalling dataset sample. (a) captured image with 50-degree angle incident
lighting projected from the left direction. (b) NFPS surface normals output. (c) NFPS
mesh output; colour map shows elevation change.



Automation in Construction 166 (2024) 105633H. Dow et al.
Fig. 9. Height error map of eight dataset samples when compared to laser scanner ground truth. The colour scale is consistent across all samples and units are mm.
Fig. 10. Histogram of height errors of all dataset samples when compared to their
ground truths. Density on the 𝑦-axis represents a normalised measure of how often an
error value occurs.

Fig. 9 presents the height errors of the NFPS method on eight
of the twenty-five different dataset samples. Negative values indicate
overestimation of depth, and positive values indicate underestimation
of depth. In line with earlier analysis, the greatest errors occur at the
slab’s edges. Notably, the un-spalled slab in Fig. 9 (mesh a) shows that
this error arises even in the absence of spalling. On average, it took 40 s
per slab dataset sample to generate the surface normals and 3D mesh.

6.2. Quantitative analysis of dataset

The height errors of the NFPS method’s 3D meshes, compared to
the ground truths for the entire spalling dataset, are displayed as a
histogram in Fig. 10. Negative error indicates the NFPS mesh height
was below the ground truth (i.e. over estimation of depth); positive
error indicates the NFPS mesh height was above the ground truth
(i.e. underestimation of depth). The histogram is right-skewed, showing
7

Fig. 11. Error map of one square cropped dataset sample when compared to laser
scanner ground truth. Error units are mm.

a greater number of height errors in the negative range, indicating a
majority overestimation of depths.

Fig. 11 shows the errors of one mesh (Mesh c in Fig. 9) when
cropped to a 170 mm × 170 mm square. Cropping has reduced the
height error range as the areas towards the edge of the mesh typically
have the greatest errors.

Fig. 12 shows a histogram of the height errors of the NFPS method
across the entire dataset when cropped to this square resolution. In line
with previous analysis, this cropping has reduced the error range and
resulted in a more balanced histogram. However, the most significant
height errors are still found in the negative range. The histogram can be
fitted to a double Weibull distribution, indicating a sharp decline in er-
ror with a broad error range. This may be attributed to the randomness
of the concrete surface generating noise. The average error of 0.0 mm
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Fig. 12. Histogram of height errors of square cropped dataset. The fitting is a double
Weibull distribution. Density on the 𝑦-axis represents a normalised measure of how
often an error value occurs.

Fig. 13. Histogram of height errors when only considering the spalled regions. The
fitting is a T distribution. Density on the 𝑦-axis represents a normalised measure of
how often an error value occurs.

and the standard deviation of 1.3 mm show that the reconstructed
mesh heights are consistently accurate on average, with relatively
low variability around the mean. The method’s standard deviation of
1.3 mm is considerably smaller than the standard deviation of 2.5 mm
of the competing ToF approach by Marchisotti and Zappa [26] obtained
on a dataset with maximum spalling depth of 31.8 mm. The upper and
lower 90% confidence intervals show that height errors commonly fall
between approximately −2.1 mm and 2.1 mm.

Fig. 13 illustrates the height errors of the NFPS method throughout
the entire dataset when focusing on the data points from the spalled
regions of the meshes and excluding data points from the unspalled
regions. The NFPS method demonstrated an average error of −0.47 mm
with a standard deviation of 1.92 mm. Again, this is notably less
than the 2.5 mm standard deviation observed in the ToF approach by
Marchisotti and Zappa [26].

The height differences of the NFPS method on a single dataset
sample, when compared to manual measurements, are shown in Fig. 14.
The manual measurements fall close to those of the NFPS method, with
a −3.53 mm and +1.70 mm difference range; however, the introduction
of new errors from manual measuring (i.e. human error), could be
contributing to this variation.
8

Fig. 14. Histogram of height difference for one data sample when compared to manual
measurements. Positive difference indicates the NFPS spalling depth was smaller than
the manual measurement depth. Negative difference indicates the NFPS spalling depth
was greater than the manual measurement depth. Frequency is the number of times a
value (shown on the x-axis) appears in the comparison results.

6.3. Analysis of bounding box measured defect volume

Fig. 15 shows the bounding box output of the YOLOv8 object
detection model under four of the eight different illumination methods
for one slab. While the model confidence and bounding box locations
can change depending on the lighting direction and angle, all spalling
areas have correctly been located in all eight images of this slab.
The analysed mesh with non-defective plane fittings for this sample is
shown in Fig. 16.

Fig. 17 compares the measured volume of the photometric stereo
method (when using YOLOv8 defect bounding boxes to outline the
defect) to the ground truth volume as calculated from the laser scanner
point cloud. The spalling measurements for most of the slabs fall close
to their ground truth value; however, for some slabs, the spalling
volume has been vastly underestimated, resulting in a mean average
percentage error (MAPE) of 41%. The data points highlighted as dia-
monds in Fig. 17, are from the 3D-printed cast removal spalling. Poor
volume measurement on these highlighted samples can be attributed
to the YOLOv8 object detection network failing to locate the spalling
region, likely due to its few exposed aggregates (which are usually
a common indicator of spalling) and irregular shape (e.g. Fig. 3d).
The IoU results in Fig. 17 reinforce this analysis and show that as
IoU increases, the error between the measured value and ground truth
values reduces. Fig. 18 shows a plot of measured volume compared
to ground truth volume using manually annotated bounding boxes of
spalling location. In this figure, the calculated volumes closely align
with their respective ground truth values, reducing MAPE to 22%.
This shows that the YOLOv8 model has limitations and should be
improved with further training data in order to gain more accurate
volume measurements.

The proposed approach offers the benefit of being robust to height
variations on the concrete surface that are not from spalling. Alterna-
tive methods, for example, thresholding the average height of the mesh,
would fail when elevation variations from other defects (e.g. biofoul-
ing) are present. Fig. 19 displays one dataset sample featuring multiple
pieces of moss and soil placed in the image scene. Despite the sample’s
noise, the YOLOv8 object detection network has accurately located the
spalling region. This accuracy allows effective segmentation of spalling
using the proposed method as shown in Fig. 20a. Fig. 20b shows the
result of a technique that creates a flat plane at the average height
of the mesh. Compared to the YOLOv8 approach, the average height
algorithm has resulted in poor segmentation and inaccurate volume
measurement, as the moss heights have skewed the average elevation.
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Fig. 15. YOLOv8 output of one spalling dataset sample under 30 and 50 degrees incident lighting. The text shows the respective class and detection confidence of each bounding
box.
Fig. 16. Detected spalling on a dataset sample.
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6.4. Field trial results

Fig. 21 showcases the NFPS mesh and its errors compared to the
Trimble X12 on a spalling sample found on an actual concrete structure.
The results are close to those of the laboratory tests. The depths of the
upper section of the spalling are underestimated by up to 5.33 mm.

The YOLOv8 model struggled on the field trial spalling sample, with
no bounding boxes labelled as spalling. Fig. 22 shows the output of one
of the angled and directional lighting images, where the spalled area
was instead identified as exposed rebar with 0.28 confidence. Manual
intervention was used here, and the bounding box from this image was
used for the spalling volume analysis.

The measured volume of the field trial spalling sample was 30,373
mm3 compared to the Trimble X12 volume of 37,137 mm3. The spalling
volume underestimation is likely due to depth underestimations in
the upper portion of the spalled region mesh. The proposed method
collected all data in 4 s and required an additional 40 s for processing.
The Trimble X12 laser scanner took 7 min to acquire the data, and
additional time was required to segment and process the mesh.
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Fig. 17. Comparison of measured volume to ground truth volume when using YOLOv8
bounding boxes to outline the defect location. The datapoint label numbers show the
intersection over union (IoU) for the respective dataset samples.

Fig. 18. Comparison of measured volume to ground truth volume when using manually
annotated bounding boxes to outline the defect.

7. Conclusion

This paper presented a method for 3D reconstruction and mea-
surement of concrete spalling. The method uses a small form-factor
adaptive lighting device (mini-ALICS) to capture multiple images of
a concrete surface individually illuminated from various angles and
directions. Images are input to a black-box fast lightweight near-field
photometric stereo and a multi-class YOLOv8 object detection neural
network. The resulting 3D mesh (from photometric stereo) and spalling
location coordinates (from YOLOv8) are used to estimate what the
concrete surface would look like with no spalling; this acts as a datum
for volume measurement.

The method was benchmarked with a more thorough comparison
than any previous literature, comparing outputs to a high-resolution
laboratory laser scanner on twenty-five defective concrete slabs. Re-
sults showed that the proposed method consistently delivered accurate
meshes, with an average height error of 0.0 mm and a standard devia-
tion of 1.3 mm. When considering only the spalled region of the mesh,
10
Fig. 19. 30 degree down (D) lighting YOLOv8 bounding box result. The associated text
of each bounding box shows the detected class and associated detection confidence.

Fig. 20. Detected spalling using (a) the proposed YOLOv8 bounding box approach and
(b) alternative average height method.

the average height error and standard deviation changed to −0.47 mm
and 1.92 mm, respectively. A comparison with manual measurements
yielded similar low-error results. Spalling volume measurements were
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Fig. 21. Error map of NFPS mesh output (square cropped) of a field trial sample when
compared to Trimble X12 laser scanner mesh. Error units are mm.

Fig. 22. YOLOv8 detection output of field trial spalling sample with low confidence
exposed rebar detection.

also very precise, with flaws resulting from failed bounding box detec-
tion by the YOLOv8 network, but this can be attributed to the synthetic
nature of some of the slabs. With manual bounding box inputs, the
calculated volumes had a mean average percentage error of 22% across
the entire dataset. The proposed method was further validated using a
comparison with manual measurements and an additional benchmark-
ing on a spalled concrete structure against a Trimble X12 laser scanner.
Results from this test closely matched the laboratory findings.

Compared to laser scanners, the proposed approach to spalling 3D
reconstruction and measurement allows fast data acquisition (4 s) and
transparent, user-friendly inputs that can be easily reviewed by humans
(standard image files). It is also fully automatic and requires no human
intervention for mesh repair. The method is also cost-effective as it
only requires one camera and several low-cost LEDs. Implementing this
method in industrial applications can aid the monitoring of concrete
structures, ensuring they are safe for use.

Future studies should directly compare the proposed spalling 3D
reconstruction method to other approaches, such as depth cameras and
point cloud photogrammetry. For a more accurate spalling location
using YOLOv8, a larger training set could be used. The normal and
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depth maps produced from photometric stereo could be utilised as an
input layer to the YOLOv8 model. This study focused on comparing
spalling within the central region of the images. However, future work
should investigate the method’s performance with spalling at the edge
of images and concrete column corner spalling. Future investigations
should also examine how the method performs on reflective (non-
Lambertian) polished concrete surfaces and consider errors in the X
and Y directions. Comparisons of the method’s volume analysis results
when using other object detection neural networks (e.g. Faster RCNN,
Mobilenet-SSD et al.) should also be made. This investigation also
showcased that model detection confidence would vary depending on
lighting angle and direction; this is something that should be explored
further, to find the optimum lighting angle and direction for detecting
different spalls. A limitation of the current system is the requirement for
contact with the concrete surface; further investigations should identify
the modifications to the apparatus and imaging environment required
for non-contact photometric stereo.
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