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to a 100 kW charger (while it could only receive around 50
kW) and a Volkswagen ID.4 (with a maximum charging rate
of 130 kW) is connected to a 50 kW socket. In this situation,
the overall charging durations would increase due to the
non-ideal usage of station resources, which negatively affects
customer satisfaction. In addition, grid constraints typically
enforce station capacity planning to be made following peak-
hour spare capacity. This approach safeguards grid assets but
limits EV charging during off-peak hours [5]. To address
the aforementioned issues, the fast charging manufacturer,
Kempower, has introduced a distributed approach to control
the charging power at a site (see [6]. The power modules are
centrally located in a cabinet that shares the charging power
with different charging plugs (see satellite solution [6]).

This approach is gaining traction in the industry with other
manufacturers, such as Eko Energetyka. The fast charging sta-
tion is built from multiple identical power modules (e.g., each
with a 25/40/50 kW rating [7]). The charging management
software then assigns one or more power modules to each
arriving customer to meet various customer demands shaped
by the charging capabilities of individual EVs.

In this paper, we propose a stochastic model of such a fast
DC charging station, which assigns multiple power sockets
to different EV groups (or classes) which are differentiated
based on charging capabilities (e.g., 50 kW vs. 100 kW, etc.)
and arrival/departure patterns. The model is based on a multi-
rate Erlang Loss system, and the goal is to compute the
probability of meeting customer demand based on different
station settings. The proposed methodology is rooted in mul-
tidimensional loss systems in teletraffic engineering, where the
goal is to provide statistical quality of service guarantees to
customers with different demand profiles.

Markov chain modelling of charging stations is increasing
in the literature. In [8], a charging station composed of AC
and DC chargers is modelled as a Markov chain, and an
optimal pricing policy is introduced to maximize station profit.
A similar modelling approach is presented in [9]. This work
further includes on-site renewable generation and Vehicle to
Grid capabilities. In several literature surveys (see [10] and
[11]), EV charging station and load modeling is presented,
which can provide wider technical explanation on the stochas-
tic models used.

Abstract—Fast DC charging stations are becoming increasingly 
necessary for wider electric vehicle uptake. In standard DC 
chargers, each charging unit has its own charging power and 
cannot be shared with another electric vehicle. Depending on 
the electric vehicle type, the maximum DC charging power
varies (e.g.50 kW for small sedans and ≥ 100 kW for SUVs)
in parallel to battery chemistry and capacity. If the charger
power is higher than the maximum charging capacity of an EV, 
then, charging resources are wasted for other vehicles which 
can accept high charging currents. On the other hand, recent 
advances in power electronics enable centralized inverters to 
supply power to multiple DC chargers and shift the load between 
them dynamically. To that end, we propose a stochastic model 
for a fast charging station in which the charging power modules 
are centrally located and electric vehicles are connected via 
external charging sockets. The charging station serves multi-
class customers based on their charging power, random arrival 
and service durations. The system is modelled with a multi-rate 
Erlang loss system and a methodology to calculate the probability 
of meeting customer demand is presented. Case studies are 
presented to provide insights on how the station performs under 
varying station settings.

I. INTRODUCTION

The widespread deployment of fast DC charging stations is 
a critical step in overcoming the challenge of charging electric 
vehicles (EV) and moving towards a deeper decarbonization 
of road transport. Fast DC charging is often characterized by 
a charging rate of more than 50 kW [1] and supports EV 
adoption to compete against petrol stations. Depending on the
EV and charger type, these chargers can add up to 100 miles 
of range in less than half an hour. As a consequence, the 
number and coverage of fast DC charging stations have been 
increasing. In the United States, the number of DC charging 
stations reached 8200 distinct locations in 2024, one DC
charging station for every 15 gas stations [2]. In the UK, nearly
20% of all chargers are fast DC (50+ kW rating) chargers [3], 
while similar patterns are observed in many other Western
European countries and China [4].

Two key challenges related to deploying fast charging sta-
tions are grid constraints and the mismatch between the EV’s
maximum charging capability and the fast charger’s capacity. 
For instance, consider a case where a Nissan Leaf is connected
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Fig. 1. Generic Station Model. There are K customer classes, each requesting
different amount of charging resources.

II. PROBLEM FORMULATION

A. System Description

We consider a fast DC charging station that serves multi-
class EV demand categorized by the charging rate. AC / DC
conversion is facilitated through P identical power modules
(e.g., 25 kW each). The charging station serves K distinct
customer cases determined by their arrival and departure
processes, as well as their charging speeds. EVs in class
k ∈ 1, 2, ...,K use Pk number of power modules during
charging. Furthermore, the number of charging modules is
higher than each charging demand, that is, P ≫ Pk, ∀k. In
addition, it is assumed that the power conversion efficiency is
close to 1, and the station capacity is denoted by C and has
a unit in kW. Also, note the following linear relationship be-
tween the station capacity and the number of power modules:
C = P × capacity of each module. Therefore, C and P are
used interchangeably in the rest of the paper.

Customer arrivals are assumed to be random and follow a
Poisson process with rates λk for customer class k. Similarly,
the charging process is assumed to follow Poisson with rates
µk. It is noteworthy that the charging and arrival rates show,
on average, the number of EV arrivals and charge completions
in unit time. The charging demand (in kWh) for customer
class k is denoted by Dk. Depending on the business model,
Dk could be equal for each customer, as the business owner
could enforce a rule (typically maximum charging demand) to
minimize waiting times and reduce peak consumption. Note
that Poisson arrival and departure processes are widely used
in the literature to model fast charging station operations [12],
[13]. Finally, it is assumed that there is no waiting space,
and customers leave the station if all resources are in use
upon their arrival. Therefore, the probability of not satisfying
a customer’s demand is a natural performance metric for this
system. An overview of the station model is depicted in Fig.
1.

B. Markov Chain Model

The fast charging station described in the previous section is
modeled as a multi-class loss system (also known as a multi-

rate Erlang model [14]), which is used to model networks
serving diverse customer classes with limited resources. As
described previously, in this system, an EV is either admitted
to the system or denied. Therefore, we are interested in
computing such probabilities for varying station parameters
such as the number of charging modules, arriving traffic
density, and fast charging rates. To visualize the station model,
a two-class Markov chain model is presented in Fig.2. In this
model, the Markov chain states are represented by the tuple
(i, j), which shows the number of EVs that the station can
host from both customer classes. For instance, in State (1, 1),
there is one EV from each class. When the station is in this
state, one of the following distinct events could occur:

• An EV finishes charging and leaves the station (with rate
µ1 for class-1 and with rate µ2 for class-2).

• A new EV arrives at the station (with rate λ1 for class-1
and with rate λ2 for class-2).

Therefore, horizontal transitions represent the arrival and
departure of class-1 EVs, and vertical transitions represent
the arrival and departure of class-2 EVs. In both cases, the
station’s population can change by one EV at a time. The
maximum number of EVs that can be charged simultaneously
is represented by N1 and N2, which can be calculated by the
equation:

N1 =

⌊
P

P1

⌋
, N2 =

⌊
P

P2

⌋
. (1)

In Fig.2, states represented with N∗
1 and N∗

2 are residual
states that could occur during the calculation of N1 and N2

in equation (1). The rightmost states in red font represent
the cases where all station resources are in use. Therefore,
computing the probabilities of being in red states will give
the probability of “not serving” a customer, which is the main
performance metric of the charging station.

C. Computation of Service Completion Probabilities

We aim to compute the service completion probabilities for
a given station setting. It is noteworthy that the sum of the
probability of “not serving” a customer (presented with red
states in Fig.1) and the probability of service completion (SC)
will always add up to one. Therefore, we will use these two
terms interchangeably as the main performance metric.

To compute the probability of customer demand met, K
independent time-reversible continuous-time Markov chains,
representing each customer class, are analyzed. As previously
discussed, the system state is defined by the number of EVs
of each type, i.e., N ≜ [NP

1 , NP
2 , . . . , NP

K ] for a given station
capacity P , and the state space is given by

Ω ≜ {N :
K∑

k=1

PkN
∞
k ≤ P}. (2)

In the above state-space equation, the number of modules P
is used instead of station capacity C to simplify the notation.
It is noteworthy that the analysis starts by assuming there are
infinitely many power modules available; hence, station states
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Fig. 2. Two class Markov chain model.

are represented by N∞. Then the state probability distributions
will be conditioned with respect to finite state capacity. The
main reason for following this approach is that the literature
presents closed-form expressions for the infinite capacity case,
which can be used to derive the case with finite capacity. Note
that due to the Poisson arrival process assumption, the mean
and variance of N∞ become

E [N∞
k ] = var [N∞

k ] = nk =
λk

µk
(3)

Similar to (1), ÑP
k represent the highest number of EVs

of type k that can be charged simultaneously. By ranking the
charging rates in descending order P1 ≥ P2 ≥ · · · ≥ PK ≥ 0,
the maximum number of EVs of each type that can be in the
system has the following relation: 0 ≤ ÑP

1 ≤ ÑP
2 ≤ · · · ≤

ÑP
K . Then the probability of being at an arbitrary state N can

be written as [15]:

π(N) =
K∏

k=1

n
N∞

k

k

N∞
k !

e−nk . (4)

In the above equation, N∞
k represents the number of EVs

of class k that simultaneously request Pk power modules. By

conditioning on a finite capacity, a generic system state N
can be calculated as follows:

π(N) =
π(N)∑

Ñ∈Ω π(Ñ)
· (5)

To calculate the probability of customer demand not met,
the related system states for customer type k can be defined
as:

Ψk = {N : P − Pk <
K∑

k=1

PkN
C
k ≤ P} (6)

Then, the probability of customer demand not met (NM)
(Pk

NM ) can be re-written as:

Pk
NM (n,P ) =

∑
s∈Ψk

π(s) = 1−
∑
s/∈Ψk

π(s) . (7)

In (7), the second term denotes the probability that the station
falls below P − Pk (instead of P ), and π(s) represents the
steady-state probability distribution. Furthermore, let us define
the function R(P,K) as:

R(P,K) ≜
∑

{N : nN ≤ P}

∏K

k=1

nNk

k

Nk!
, (8)

3



Algorithm 1 Kaufman-Roberts Algorithm [16]
Set κ(0) = 0 and κ(i) = 0 for i ∈ IR−

for i=1 to P do
κ(i) = 1

i

∑K
k=1 Pknk(k − Pk)

end for
Compute R =

∑P
i=1 κ(i)

for i=0 to P do
α(i) = κ(i)

R
end for
for k=1 to K do

Pk(n,P ) =
∑P

i=P−Pk+1 α(i)
end for

which is used to compute the probability of customer demand
not met (NM) for each class as follows

Pk(n,P ) = 1− R(P − Pk,K)

R(P,K)
· (9)

Note that set {N : nN ≤ P} in (8) hosts all system states
that correspond to zero outage events. Although (9) shows an
explicit representation for Pk, actual computation could be
computationally heavy. To that end, we follow the Kaufman-
Roberts algorithm to solve individual probabilities for each
customer class. Kaufman-Roberts algorithm is a recursion-
based solution and its details are presented in Algorithm 1.

III. RESULTS

This section presents two case studies to evaluate the system
described in the previous section. The primary goal is to
compute the percentage of customer demand that can be met
under varying station parameters such as capacity (C or P )
and customer demand (or arrival rate λk). The fast charging
station comprises power modules with an individual capacity
of 25 kW. In the first case study, the charging station capacity
is C = 250kW, hence there are P = 10 modules integrated
to serve the customer demand. For both case studies, it is
assumed that there are two customer classes. In class 1, the
fast charging rate is 50 kW (P1 = 2). This class is chosen to
mimic mainstream vehicles such as Nissan Leaf and Renault
Zoe [17]. The fast charging rate in the second customer class is
assumed to be 75 kW (P2 = 3) to mimic EVs that can accept
higher charging power. It is assumed that the charging station
operator allows all customers to charge 25 kWh, therefore,
D1 = D2 = 25 kWh. To that end, the charge rate for customer
class 1 becomes µ1 = 2 as in one hour and on average two
customers from this class can be charged. Similarly, the service
rate for the class-2 customers becomes µ2 = 3.

The input parameters for the simulation are the arrival
rates for each class (λ1 and λ2) which are varied from 0.25
EVs/hour (or one EV for every four hours) to 3 EVs/hour.
Using Algorithm 1, the percentage of satisfied demand is
evaluated for both customer classes. For ease of representation,
let us denote the percentage of satisfied demand by Pk, which
is equal to 1 − Pk. Fig. 3 shows the evaluation for Class-1
customers with 50 kW charging rate. It can be seen that under
light traffic regime (λ1 = 0.25 and λ2 = 0.25), nearly 99.99%
of the customer demand can be satisfied. At the other extreme

when λ1 = λ2 = 3, only 87.25% of the demand can be met.
This is mainly because the station utilization rate significantly
increases and more customers are “blocked” and not admitted.

Fig. 4 shows the percentage of satisfied demand for class-2
customers. The pattern and the relationship between P2 and
arrival rates are similar to the previous case. However, since
the charging rate is higher and each customer demands more
charging power, the percentage of satisfied demand is lower
than class-1 customers. For instance, when λ1 = λ2 = 3,
P2 = 0.7821 and P1 = 0.8725. The results presented in
Figs. 3 and 4 further show that a unit increase in Class-2
customer traffic has a higher impact on reducing P1 and P2.
This is because Class-2 customers occupy more resources (75
kW) compared to Class-1 customers and station resources are
utilized faster.

Fig. 3. Percentage of Class-1 EV demand met in a 250 kW fast charging.

Fig. 4. Percentage of Class-2 EV demand met in a 250 kW fast charging

As a second case study, the station capacity is increased
to C = 500 kW or P = 20. It can be seen from Figs. 5
and 6 that increasing station capacity significantly improves
system performance. For both customer classes, the percentage
of demand met increases to more than 99% for the high-traffic
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case (λ1 = λ2 = 3). This result shows that station operators
can adjust their station capacity to provide certain quality of
service guarantees for their customers.

Fig. 5. Percentage of Class-1 EV demand met in a 500 kW fast charging

Fig. 6. Percentage of Class-2 EV demand met in a 500 kW fast charging

IV. CONCLUSION

In this paper, we proposed a stochastic model for a fast
DC charging station in which power modules are centrally
located and could be used by any of the physical chargers.
The station is modeled as a multi-rate Erlang loss system
with K distinct customer classes. Each customer class is
characterized by their arrival and service rates, as well as
charging demand. The station’s performance is characterized
by the probability of meeting customer demand. Then, we
showed how to compute this probability based on different
parameters using the Kaufman-Roberts algorithm. Case studies
were presented to provide further insights on how to calculate
station capacity to provide a certain quality of service to
different customer classes.

As a future study, we will consider dynamic resource
allocation to customers and assign lower charging rates to

utilize the remaining available power. In addition, we will
update our model for limited waiting space for facilities that
allow 15-20 min waiting times.
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