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A B S T R A C T

During power system cascading disturbances it becomes crucial to quickly identify the vulnerable transmission
interconnections. Understanding the impact of a triggering outage on these critical interconnections is
important for enhancing situational awareness and taking targeted control actions. This paper proposes a
new machine learning (ML) based graph-theoretic approach for learning the dynamic functional connectivity
(DFC) between power system buses with respect to their vulnerability to cascading failures (CF). The learnt
DFC graph is then used to characterise vulnerable regions of the power-system using complex network theory
based indices. A key feature of the proposed DFC graph is that it takes into account detailed power system
dynamics and the action of protection devices when deriving the DFC, going beyond a static representation of
the power system graph based on electrical admittances. Multiple operational scenarios for load and renewable
generation are also considered when doing so. The proposed algorithm is validated for a dynamic model of
the IEEE-10 machine 39 bus system with Type IV wind generation.
1. Introduction

Interconnected power systems operating closer to their limits as well
as large-scale integration of renewable energy resources have intro-
duced significant complexities and uncertainties in the power systems;
requiring the future power system to be not only resilient to failures but
also capable of being steered to a desired state through targeted power
system control. Of particular concern for power system operators is the
possibility of cascading failures (CF) – a quick succession of multiple
component failures usually triggered by one or more disturbance events
such as extreme weather, equipment failure, or operational errors [1].
This may also lead to a blackout causing huge economic and social
costs. The outage process in cascading failures can be divided into two
phases: the slow cascade and fast cascade phases [2,3]. The latter phase,
often driven by the transient dynamics of the system, may result in
power system collapse or major load shedding. However, it is possible
for the system operators to take preventive remedial actions to arrest
their propagation and possible manifestation into blackouts. Detection
of vulnerable power system components and their spatial location is
thus critical for resiliency of modern power systems.
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1.1. Literature review

Investigating the vulnerability of renewable-integrated power sys-
tems to CF using a high fidelity dynamic model incurs huge compu-
tational burden which often increases exponentially with the number
of components [4]. Cascading events in power systems exhibit non-
local propagation patterns which makes the purely structural analysis
of failures unrealistic [5]. Moreover, it is evident from post-mortem
analysis of several blackouts triggered by cascading failures, that the
effect of complex (rotor angle, voltage and frequency) dynamics, their
typical dynamic controllers and discrete protection devices need to
be taken into account for accurate representation of CFs [6]. There
are various techniques present in literature, which model and analyse
the underlying interactions among power system components with
respect to CF. While the knowledge of these interactions are important
to characterise vulnerable spatial locations, this may not be readily
available from mere knowledge of power system physical models and
topology. Such techniques can be broadly classified as those based
on power system time-domain simulation [7], deterministic analytical
models [8,9], probabilistic models [10], and graph-based models [11–
13]. Among these categories, graph-based methods have attracted a
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lot of attention due to their natural applicability to a power system
network. Many graph-based models were developed with vulnerability
indices based on the physical topology of the power system (whereby
the connections among the graph nodes represent the actual physi-
cal connections among the components of the power system) [14].
Nonetheless the studies in [5,15] showed the lack of strong connection
between the physical topology of the system and cascading failure
propagation in power systems. These influences and component in-
teractions during the cascade process may occur both locally and at
distance due to the physics of power flow as well as other functional
dependencies among power system components [9]. Studies to re-
veal these complex and hidden interactions are focused on extracting
the underlying graph of interactions among the components of the
system [13]. Extended topological indices [16–19], i.e., integrating
specific physical behaviours of power system into the complex network
theory based approaches, based on admittance, current, and line-flow
graphs have been proposed. For example, [20] introduces the capacity
of transmission lines and generators to improve the maximum flow
approach. In summary most of the works proposed in literature make
use of the structural power-system graph while few others proposed
metrics calculated using a power-flow based graph but their edges are
weighted by the average value of power-flow. These weighted graphs
include no temporal information, which might be crucial in analysing
CF. Albeit, there are few works present in literature that make use of
graph-theoretic approaches based on dynamic connectivity of power
system generators or loads, they make use of a reduced power system
graph for studying different pathways to failure [21,22]. In addition
to this, another challenge is to include the effect of operating states
of the power system (i.e., renewable generator output and load levels)
which may change before the cascading outage occurs. In different
operating states, the vulnerable locations of power systems may be
different and it may be very time-consuming and impractical to assess
all possible initial boundary conditions in operational planning/real-
time applications, hence the premise of machine learning (ML) for such
inference tasks is of interest.

1.2. Key contributions

In this work we utilise spatio-temporal graph convolutional net-
works (st-GCN) for predicting whether an operational scenario and
initial failure will lead to CF or not, while also learning an improved
connectivity matrix leveraging post-fault dynamic power system fea-
tures and network topology in the form of bus admittances. Building
on our previous work [23], the graph induced by this learnt connec-
tivity matrix is sparsified and this graph is referred to as the dynamic
functional connectivity (DFC) graph. The DFC graph is further used
to calculate complex network theory based indices and systematically
compared against the indices obtained for a static admittance based
graph. Inferences are then drawn on how the DFC graph can provide
complementary and additional insights to better characterise vulner-
able regions of the power system with respect to CFs. The proposed
algorithm is validated for a dynamic model of the IEEE-10 machine 39
bus system with Type IV wind generation and protection devices.

Remainder of the paper is structured as follows: Section 2 briefly
introduces graph-theoretic modelling of power system and the proposed
methodology of learning DFC graph. Section 3 showcases the numerical
case studies while Section 4 discusses the results. Finally Section 5
includes conclusion and future work.

2. Methodology

This work proposes learning a functional connectivity graph per-
taining to dynamic CF using spatio-temporal power system features
under different operational scenarios and initial contingency. First,
power system spatio-temporal graphs are introduced and then spatio-
temporal graph convolution (st-GC) operation is defined on them.
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Next, the training of st-GCN based learning framework with an edge-
importance matrix is enumerated. The learning framework uses st-GC
in each layer and models the importance of graph edges in the decision
process across layers. Finally, the process of creating DFC graph from
edge-importance matrix is discussed in this section.

2.1. Spatio-temporal power system graphs

Conventionally, the power system is modelled as a weighted, undi-
rected graph, , whereby nodes,  are represented by power system
buses. The edges of graph,  are represented by transmission lines
and transformers. Let  ∈ (𝑛𝑔 , 𝑛𝑙) be the number of buses equipped
with generator and load respectively. The spatial connectivity between
different nodes of the graph is represented by the weighted adjacency
matrix, 𝐴. In this work, it is assumed that each bus is equipped with a
phasor measurement unit (PMU) and time-varying voltage magnitudes,
𝑉 𝑚𝑎𝑔(𝑡) at each bus are captured. The presence of features at all 𝑁
buses (no missing values) ensures a good learning outcome for a 𝑁 ×
𝑁 sized system, but practically speaking, the current framework can
also utilise a reduced dimension power system graph, for example
with features present at only generator buses. Specifically, 𝑉 𝑚𝑎𝑔(𝑡) =
𝑣𝑚𝑎𝑔𝑡,𝑖 |𝑡 = 1, 2,… , 𝑇 ; 𝑖 = 1,… , 𝑁

}

represent a set of voltage magnitudes
assumed to be collected from 𝑁 PMUs and for 𝑇 time points. The
spatio-temporal graph is constructed in two steps. First, nodes of the
spatial graph at one time instant are connected with edges according
to 𝐴 as in a conventional power system graph. Then each node in
the spatial graph is connected to the same node for the consecutive
time instant. For the spatio-temporal graph thus formed, the edge-set is
composed of two subsets: the first subset depicts the intra-power system
connection at each time instant, denoted as 𝐸𝑆 =

{

𝑣𝑡𝑖𝑣𝑡𝑗 |(𝑖, 𝑗) ∈ 
}

nd the second subset contains the inter-time edges, which connect the
ame nodes at consecutive time instants as 𝐸𝑇 =

{

𝑣𝑡𝑖𝑣(𝑡+1)𝑖
}

. Therefore
all edges in 𝐸𝑇 for one particular node 𝑖 represents its trajectory over
time. The goal of st-GCN based graph learning algorithm is to utilise the
spatio-temporal graph to compute latent relationship between power-
system buses for the CF problem. In this paper, this relationship is
termed as power system DFC and the graph induced by it is referred to
as the DFC graph. This has been illustrated in Fig. 1 which represents
a high-level framework of the proposed scheme.

2.2. Network architecture for spatio-temporal graph convolution learning

To define convolution on spatio-temporal graphs, the concept of
spatial and temporal neighbourhoods which refers to data of neigh-
bouring nodes and at neighbouring time instants, introduced by [24]
is utilised. The spatio-temporal neighbourhood of node 𝑣𝑡𝑖, denoted by
𝛬
(

𝑣𝑡𝑖
)

is defined as

𝛬
(

𝑣𝑡𝑖
)

=
{

𝑣𝑞𝑗 |𝑒(𝑣𝑡𝑗 , 𝑣𝑡𝑖) ⩽ 𝑆, |𝑞 − 𝑡| ⩽ |T∕2|
}

(1)

here 𝑆 defines the size of the spatial neighbourhood (i.e., spatial
ernel size), T the temporal neighbourhood(i.e., temporal kernel size)
nd 𝑒(𝑣𝑡𝑗 , 𝑣𝑡𝑖) denotes the minimum length of any path from 𝑣𝑡𝑗 to 𝑣𝑡𝑖.

Next, st-GC operation on node 𝑣𝑡𝑖 with respect to a convolutional kernel
𝑤(.) and a normalisation factor 𝑡𝑖 which is equal to the cardinality of
the corresponding sub-set, is given as

𝑓𝑜𝑢𝑡
(

𝑣𝑡𝑖
)

= 1
𝑡𝑖

∑

𝑣𝑞𝑗∈𝛬(𝑣𝑡𝑖)
𝑓𝑖𝑛

(

𝑣𝑞𝑗
)

.𝑤
(

𝑣𝑞𝑗
)

(2)

dopting a similar implementation as in [25], the spatio-temporal
onvolutional kernel is approximated by decomposing it to a spatial
raph convolutional kernel 𝑊𝑆𝐺 ∈ 𝑅𝐶×𝑃 represented in the spectral
omain and a temporal convolutional kernel, 𝑊𝑇𝐺 ∈ 𝑅𝑀×T. It is
larified that 𝑓𝑡 ∈ 𝑅𝑁×𝐶 denotes the 𝐶 types of input features (𝐶 = 1
or the current work as only bus voltage magnitude features are used)
f the 𝑁 nodes at the 𝑡th frame, 𝑓 ′ ∈ 𝑅𝑁×𝑃 denotes the 𝑃 output
𝑡
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Fig. 1. Proposed st-GCN framework for learning dynamic functional connectivity whilst classification of scenarios which lead to cascading events.
features. It is important to note that the current framework of spatio-
temporal GCNs which benefits from the topology information, does not
support complex features such as voltage phasor, hence either voltage
magnitude or voltage phase angles can be used. The spatial graph
convolution at time 𝑡 is then defined with respect to the symmetrically
normalised graph Laplacian matrix, 𝐿 = 𝐷− 1

2 𝐴̃𝐷
1
2 , using the aforemen-

tioned weighted adjacency matrix with self-loops, 𝐴̃ (where 𝐴̃ = 𝐴+ 𝐼)
as

𝑓 ′
𝑡 = 𝐷− 1

2 𝐴̃𝐷− 1
2 𝑓𝑡𝑊𝑆𝐺 (3)

Next, the temporal convolution is performed on the resulting features.
Standard 1D convolution 𝑓 ′

𝑡 ⊙ 𝑊𝑇𝐺 ∈ 𝑅T×T is performed to derive
the final output of st-GC for 𝑣𝑖. The output of the last st-GC layer is
fed to a global average pooling and its output vector is transformed to
class probabilities by a fully connected SoftMax layer with a sigmoid
activation.

2.3. Edge-importance matrix

To determine the importance of spatial graph edges in defining
class probabilities, a positive and symmetric ‘‘edge importance’’ matrix,
𝑀 ∈ 𝑅𝑁×𝑁 is integrated into the model. This matrix is shared across
all st-GC layers by replacing 𝐴̃ in (3) by 𝐴̃◦𝑀 where ◦ denotes the
element-wise product. While performing spatial graph convolution on
node 𝑖, the contribution from its neighbouring nodes, as defined by
spatio-temporal neighbourhood, 𝛬(𝑣𝑡𝑖) will be re-scaled according to
the importance weights learned in the 𝑖th row of 𝑀 . Finally the
model is trained in an end-to-end manner by back-propagation using
stochastic gradient descent (SGD).

2.4. DFC graph : graph sparsification via 𝜅 - neighbourhood

A salient feature of the proposed framework is that an edge-
importance matrix is integrated into the model and learnt end-to-end as
an additional trainable parameter within the st-GCN framework. Thus,
the edge-importance matrix (or learnt adjacency matrix) takes into ac-
count information from both topology and dynamic behaviour of power
systems. Incorporating this, not only leads to superior performance in
terms of the downstream task of classifying scenarios leading to CF but
this matrix can also be projected as a dynamic functional connectivity
specific to cascading events [23]. It is a positively weighted, symmetric
and dense (fully-connected) matrix. Using this matrix it is possible
to produce a weighted graph representation of the most buses of the
power network (and the dynamic components connected to them) with
respect to their vulnerability to CF. The fully connected graph may
be used to derive a sparse graph (similar to topological power system
3

graph but re-weighted) using the 𝜅 - neighbourhood sparsification
scheme [26]. To achieve this we keep the original nodes of the network
and retain only the links with weights over a user-defined threshold 𝜅
in the learnt matrix 𝑀 .

𝐷𝐹𝐶 =
{

𝑚𝑖𝑗 𝑚𝑖𝑗 < 𝜅
𝑚𝑖𝑗 = 0 𝑚𝑖𝑗 ≥ 𝜅

(4)

where 𝑚𝑖𝑗 represents the weight of the edge connecting nodes 𝑖 and 𝑗
in the graph induced by 𝑀 . The threshold 𝜅 is chosen such that the
number of edges remains the same as in the topological graph.

3. Case studies

In order to predict the occurrence of fast CF in a comprehensive
manner there is a need for detailed modelling of power system dy-
namics. It is also imperative to consider multi-time scale dynamics, the
operation of protection devices, initial operating conditions governed
by dispatch of generators and appropriate representation of system load
and renewable generation for an accurate vulnerability assessment. In
this work, root-mean square simulation (RMS) of a dynamic model
for modified IEEE 39 bus 10 machine New England system with Type
IV wind generation and protection devices is used to generate bus-
voltage magnitude trajectories. The modified IEEE 39 bus 10 machine
test case has been shown in Fig. 2. These time-domain trajectories
known as power-system features are suitably pre-processed and resam-
pled to a typical PMU reporting rate of 10 ms [27]. These features
are then used for the creating spatio-temporal graphs as described in
Section 2.1. Detailed modelling assumptions and choice of dynamic
parameters for the test system are adapted from [28]. Three phase
faults on transmission lines are simulated as initiating events, while
considering load and RE variations to capture realistically, a number of
operating conditions which lead to different dynamic response, when
large perturbations such as line-trips are encountered. Faults on all
34 lines and step changes in load (ranging from 0.7 to 1.2 p.u. in
steps of 0.1 p.u.) and wind energy generation (ranging from 0 to 1
p.u. in steps of 0.2 p.u.) leads to 44 064 independent scenarios, out
of which dynamic CF are reported in some cases, which are labelled
as unsafe, while others are labelled as safe. In this work, a simple
undersampling strategy is followed and a balanced dataset containing
all unsafe cases and an equal number of safe cases, is created out
of the total scenarios. It may be important to note that importance
sampling techniques such as [29] may further be used to effectively
sample important scenarios for CF, further enriching the learning set,
which however is not the focus of the current work. The input weighted
adjacency matrix, 𝐴 for the st-GCN model is derived based on power-
system bus admittance matrix, 𝑌𝑏𝑢𝑠 as the graph Laplacian matrix.
As a common assumption for high-voltage transmission networks, the
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Fig. 2. Modified IEEE 10 machine 39 bus system with Type IV wind generation.

resistance of the lines is ignored and only susceptances are considered
in 𝑌𝑏𝑢𝑠. The input dataset is a three-dimensional tensor consisting of
voltage magnitude recorded at 𝑁 = 39 buses for 11 000 cases and
for 𝑇𝑤 = 10 seconds window. The output vector is of the size [𝑌 ] =
[11 000 × 1]. In order to make the learning process robust and less
prone to overfitting, stratified k-fold cross validation for 𝑘 = 5 splits is
used for different splits of training and testing data. With the prepared
database and optimised filter parameters the st-GCN model is trained
for learning the augmented connectivity (i.e. edge-importance matrix)
as well as simultaneous binary classification of CF. Standard libraries
in Pytorch [30] are used to implement the proposed st-GCN pipeline.
To reduce uncertainty in the estimation caused by SGD, training is
repeated over 20 independent runs and the average edge importance
matrix over these independent runs is derived as the final outcome. In
this work, all learning computations were performed on a Intel Xeon
3.90 GHz machine with 128 GB RAM, and an NVIDIA RTX A6000 GPU.

3.0.1. Model performance
After training the model, its performance on the test dataset is

observed to confirm the credibility of the edge-importance matrix.
Our findings show that the model achieves an accuracy of 97.10 ±
1.03% at the 95% confidence level, assuming independent trials. This
is significantly improved from 92.89 ± 7.11%, when the M-matrix was
not being used at all.

3.0.2. Computational requirements
Major computational burden for the proposed framework involves

that due to RMS time domain simulations of the modified test case
and training of the st-GCN framework. Under the current simulation
set-up in Digsilent Powerfactory, RMS time-domain simulation of each
scenario with no CF takes an average of 22 s while a scenario with
CF takes around 86 s. With increase in the number of buses (and
effectively the number of dynamic components) the computational bur-
den increases exponentially [4]. Nevertheless, with highly specialised
high-performance computing architectures and parallelised simulation
sub-routines this time has been shown to decrease [9,31]. The compu-
tational complexity of st-GCN approximately scales as 𝑂(𝑇), where 𝑇
represents the length of time sequence and  denotes the number of
edges of the spatial power system graph [32]. For the IEEE 10 machine
39 bus case study, the computational complexity in terms of floating
point operations (FLOPs) is 4.86 × 109. The training time is 1.1 min
4

and inference times (per example) is 0.17 ms. The training time of st-
GCN model (although expected to be performed offline), is expected
to increase linearly with system size, thereby suitable for practically
large power systems. The inference times per example are also well
within the PMU sampling time of 10 ms, thereby making the learning
framework suitable for real-time inference too.

3.0.3. DFC graphs
The trained edge-importance matrix, is thus projected as DFC, in

terms of vulnerability to CF. A sparse DFC graph (shown in Fig. 3(a))
is created from the fully-connected DFC graph after applying the
sparsification technique discussed in Section 2.4, using 𝜅 = 0.57.
For comparison, a graph based on bus-admittance connectivity is
also shown in Fig. 3(b). Here, the sky-blue solid circles representing
the nodes of graph correspond to power system buses, denoted by
[𝐵01, 𝐵02....𝐵39], while the edges connecting the nodes correspond to
lines, whose weights are given by the adjacent colourbar. It may not be
appropriate to discuss the accuracy of learnt M-matrix because there
is no ground truth about how the connectivity structure should be
in order to maximise performance for the task of classifying cascad-
ing events. It is however, found to be correlated with the electrical
connectivity (based on 𝑌𝑏𝑢𝑠) [23].

3.0.4. Complex network theory based centrality indices
In addition to superior performance on the downstream classifica-

tion task, a key contribution of the proposed framework is that the
learnt DFC graph is used to characterise vulnerable spatial locations
of the power-system using complex network theory based centrality
indices. These centrality indices are commonly used to understand and
identify structural conditions that favours an edge or node to affect
the behaviour of other elements. In this work node-centrality measures
like degree, betweenness, closeness, and eigen-vector centrality [15]
- briefly defined below, are calculated for the DFC graph and bus-
admittance graph respectively. These node centrality indices are then
used to infer the importance ranking of each node, with respect to their
vulnerability to CF.

• Degree Centrality: For weighted power system networks, its de-
gree centrality is related with how many links it connects and the
connecting strength of each link. For a graph,  = (𝑉 ,𝐸), where
𝑉 represents the set of nodes and 𝐸 the set of edges, 𝑛 is the total
number of nodes, Laplacian , the degree centrality of a node 𝑣,
𝐶𝑑 (𝑣) is defined as

𝐶𝑑 (𝑣) =
‖(𝑣, 𝑗)‖
𝑛 − 1

(5)

• Betweenness Centrality: This measure emphasises the distance of
a vertex to all others in the network by focusing on the shortest
distance from each vertex to all others. The betweenness of a node
𝑣, 𝐶𝑏(𝑣) is defined as the number of shortest paths between pairs
of other vertices that run through 𝑣:

𝐶𝑏(𝑣) =
∑

𝑖≠𝑣≠𝑗∈𝑉 𝜎𝑖𝑗 (𝑣)∕𝜎𝑖𝑗
(𝑛 − 1)(𝑛 − 2)∕2

(6)

where 𝜎𝑖𝑗 depicts the number of shortest paths from 𝑖 to 𝑗 and
𝜎𝑖𝑗 (𝑣) is the total number from the mentioned paths that pass
through vertex 𝑣.

• Closeness Centrality: It is the average geodesic distance (i.e.,
shortest path length) between a vertex 𝑣 and all the other vertices
reachable from it:

𝐶𝑐 (𝑣) =
∑

𝑗∈𝑉 ∖𝑣 𝑑(𝑣, 𝑗)

𝑛 − 1
(7)

with 𝑑 being the shortest path length between vertices 𝑣 and 𝑗.
However, this definition measures how ‘‘far away’’ a node is from
the rest of the network instead of its closeness. Therefore a more
appropriate quantity, 𝐶 ′

𝑐 (𝑣) is defined by its reciprocal

𝐶 ′
𝑐 (𝑣) =

𝑛 − 1
∑ (8)
𝑗∈𝑉 ∖𝑣 𝑑(𝑣, 𝑗)
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Fig. 3. Modified IEEE 10 machine 39 bus test-system (a) DFC graph (b) 𝑌𝑏𝑢𝑠 (ignoring
line conductances) based graph.

• Eigen-vector Centrality: It is a measure of the importance of a
node in a network according to its adjacency matrix. Given a
graph , its adjacency matrix 𝐴, its eigenvalue 𝜆, and the cor-
responding eigenvector 𝑥 satisfying 𝜆𝑥 = 𝐴𝑥, then the centrality
of a node 𝑣 is defined as the 𝑣𝑡ℎ entry of the eigenvector 𝑥
corresponding to the largest eigenvalue 𝜆𝑚𝑎𝑥

𝐶𝑒(𝑣) =
1

𝜆max

𝑛
∑

𝑗=1
𝐴(𝑣, 𝑗)𝑥𝑗 (9)

The rank Spearman correlation between the two sets of centrality mea-
sures is also calculated to observe if complementary and/or additional
insights about vulnerability to CF can be drawn based on proposed DFC
graphs.

4. Results and discussion

As noted in the Introduction, Y-bus based connectivity may not be
a reliable metric for vulnerability assessment in the event of a CF in-
volving fast failures due to tripping of protection devices and dynamic
response of the power system. The vulnerability patterns derived using
the proposed DFC graph on the other hand are consistent with the
results of time-domain simulation using a full-dynamic model with the
action of protection devices. A preliminary observation from the graphs
5

based on DFC and Y-bus based connectivity as visualised in Fig. 3(a)
and (b) respectively, is that there are more light-coloured links in the
DFC graph which indicate higher edge-weights and hence higher num-
ber of strong connections than the Y-bus based graph. These indicate
important connections in terms of propagation of CF. The dashed circles
in Fig. 3(a) and (b) represent the buses/lines to which the components
most frequently tripped are connected. For example, in the DFC graph
shown in Fig. 3(a), links with higher edge-weights (i.e. strong links)
surround those buses where highest number of cascading events take
place. These buses (or at most their 1-hop and/or 2-hop neighbours) are
linked together with strong edges in the DFC graph. On the contrary,
the Y-bus based graph shown in Fig. 3(b), only detects two of these
sub-graphs (around 𝐵16 and 𝐵05) amongst the five sub-graphs where
highest number of cascading events occur. It is important to note that,
in addition to the sub-graphs where most number of failures take place,
the DFC graph also reveals few other strongly connected sub-graphs
which might not be captured by the simulation dataset but may be
vulnerable from the perspective of cascading events. This additional
information obtained from the DFC graph may be useful to harden
vulnerable subgraphs for mitigating cascading events. Based on time-
domain simulations and [28] the most frequently occurring sequence of
CF and the reason for activation of a protection device associated with
it are also recorded at the end of the time-domain simulation exercise
used for generating the features for the proposed learning scheme
(Section 3). A snapshot of most commonly occurring CF sequences are
shown in Table 1. As an example, the behaviour observed in the second
most common pattern, i.e. the disconnection of wind farm 𝑁𝑆𝐺2 due
to overvoltage followed by the disconnection of 𝐺1 due to out of step
protection, is linked to the graphs shown in Fig. 3(a). In Fig. 3(a), 𝐵16
(directly connected to 𝑁𝑆𝐺2) and 𝐵30 (directly connected to 𝐺1), are
strongly connected with higher edge-weight paths in the DFC graph,
but this is not the case in Y-bus based graph, as shown in Fig. 3(b).
This further validates the usefulness of DFC graphs for characterising
vulnerability to CF.

In to validate the effectiveness of proposed DFC graphs, node-
centrality indices are calculated and visualised in Fig. 4(a)–(d). From
Fig. 4(a) it can be observed that for both types of graphs, 𝐵16 has
highest degree centrality as fault on lines connected to 𝐵16 (specifically
Line 16–19) always leads to cascading events across the network. This
is in line with the definition as nodes with high degree centrality act
as failure-spreading nodes. A key difference here is that for the DFC
graph, a large amount of centrality can be shifted into a small number
of nodes in the system, e.g., the first 10 most important nodes based
on the degree centrality take more than 97% of the system’s total
centrality. This is however not the case with degree centrality of the
Y-bus based graph. The betweenness centrality of graph in Fig. 4(b)
shows that node 𝐵16 is the most important node. Nodes having high
betweenness centrality are the nodes that are on the shortest paths
between a large number of pair of nodes and hence are crucial to the
communication in a graph [33]. This is in line with the observation
from time-domain simulations that initial fault on lines connected to
node 𝐵16 would lead to CF in almost one-third (≈31.67%) of the cases,
out of which tripping of Line 16–19 leads to CF in 100% of cases.
There also seem to be few other bridge nodes in both types of graphs,
such as 𝐵04 and 𝐵26, where the betweenness centrality tends to be
higher. An exception is 𝐵39 which has a high betweenness centrality
for the DFC graph which can be correlated to high number of fail-
ure cases involving 𝐺1 and under-voltage tripping of wind generator,
𝑁𝑆𝐺2 due to fault on Line 1–39. This information is not evident
from th Y-bus based node-centrality indices. The closeness centrality
of nodes (𝐵14, 𝐵16, 𝐵17, 𝐵18) and (𝐵02, 𝐵03, 𝐵04) are highest followed
by nodes (𝐵25, 𝐵26, 𝐵27) and (𝐵01, 𝐵39). These nodes constitute the
load-rich regions and thus vulnerable to loss of demand as a result
of CF. Lastly, eigen-vector centrality depicts node-importance in terms
of the importance of its neighbours. The eigen-vector centrality of the
DFC graph shows a distribution similar to degree centrality, but a
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Table 1
Most frequently occurring sequence of cascading events.

Event sequence #pattern appeared

[(‘‘NSG2’’a , ‘‘OverVoltage’’)] 2219
[(‘‘NSG2’’, ‘‘OverVoltage’’), (‘‘G1’’b , ‘‘Out of step’’)] 336
[(‘‘NSG2’’, ‘‘OverVoltage’’), (‘‘NSG1’’, ‘‘OverVoltage’’), (‘‘G1’’, ‘‘Out of step’’)] 279
[(‘‘NSG2’’, ‘‘OverVoltage’’), (‘‘G1’’, ‘‘Under-Speed’’), (‘‘NSG3’’, ‘‘UnderVoltage’’)] 243

a NSG1, NSG2, NSG3 represent wind generators.
b G1, G4, G5 represent synchronous generators.
Fig. 4. Complex network theory based centrality indices for 𝑌𝑏𝑢𝑠 and DFC graph (a) Degree centrality (b) Betweenness centrality (c) Closeness centrality (d) Eigen-vector centrality.
Fig. 5. Network showing eigen-vector centrality (a) DFC graph (b) 𝑌𝑏𝑢𝑠 graph.

sparser one. Similar to closeness centrality, eigen-vector centrality of
DFC graph shows that the subgraphs formed by buses (𝐵02, 𝐵03, 𝐵04),
(𝐵14, 𝐵16, 𝐵17), (𝐵25, 𝐵26, 𝐵27) and (𝐵37, 𝐵38, 𝐵39, 𝐵01) exhibit high
eigenvector centrality indices. The eigen-vector centrality of nodes for
the DFC graph and admittance based graph respectively are further
visualised in Fig. 5(a)–(b). From Fig. 5(a) it is observed that the eigen-
vector centrality of the DFC graph exhibits distinct clusters, typical of
spectral clustering observed due to the dynamic phenomena than eigen-
vector centrality of Y-bus based graph (Fig. 5(b)) which is dispersed
‘‘flatly’’ across nodes. Thus, the ‘‘close’’ clustering of buses with high
6

eigen-vector centrality in Fig. 5(a) can be used to discover latent clus-
ters for the power system, with respect to their vulnerability to CF. To
summarise, the DFC graph shows more detailed cascading information
and more importantly identifies few key subgraphs (comprising around
10% of edges) which are only captured with the DFC graph. In order
to compare the ranking of important (vulnerable) nodes — at which
centrality measures are high, a more systematic approach based on
rank Spearman correlation between DFC graph and Y-bus based graph
is conducted as shown in Fig. 6(a)–(d). For each pair, the Spearman
correlation coefficient, 𝑟 and associated 𝑝-value [34], 𝑝 is also shown
on the plots. A high value of 𝑟 signifies high rank correlation between
the different centrality measures and 𝑝-value close to zero signifies high
probability of refuting the null-hypothesis that the centrality measures
are uncorrelated. It is evident from Fig. 6(a)–(d) that the ranks of
betweenness and closeness centrality measures are highly correlated
(and with a high probability), which corroborate the findings from
Fig. 4(a)–(d). On the other hand, the ranks of degree and eigen-vector
centrality measures are less slightly correlated. Furthermore, high stan-
dard deviation in rank correlation (shaded blue region on either side of
the regression line) moving towards higher value of centrality measures
in Fig. Fig. 6(a) and (d) also depict the dissimilarity in DFC and Y-
bus based centrality measures, thereby questioning the credibility of
vulnerability analysis solely based on Y-bus.
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Fig. 6. Rank correlation between complex network theory based centrality indices for
𝑌𝑏𝑢𝑠 and DFC graph.

5. Conclusion

This work proposes a spatio-temporal graph-theoretic framework for
learning an augmented power system graph to assess the spatial vulner-
ability of power systems to cascading events. Different from those based
on quasi steady-state models, the proposed graph considers the impact
of collective transient dynamics of the entire system on the sequence of
cascading failures. In addition to the temporal evolution of failures, the
proposed framework also takes into account the topological (electrical)
power system connectivity for learning — an edge-importance matrix
as well the probability of occurrence of cascading events in an end-to-
end manner. The learnt edge-importance matrix is further projected as
power system DFC, akin to the topological connectivity. The proposed
method when tested for different operational scenarios of load and RE
generation on a modified IEEE 10 machine 39 bus test system, with
detailed dynamic modelling including wind generation and the action
of protection devices, predicts the occurrence of CF before their onset
with a mean accuracy of about 97.10% and low variance. Using the
learnt DFC graph it is further observed that vulnerable power system
spatial locations are not only local but multi-hops away to the line
where the initial triggering fault occurred. Complex network theory
based indices calculated for both the DFC graph and bus-admittance
based graph show good agreement (in identifying vulnerable regions)
for closeness centrality. On the other hand differences between the
two graphs become implicit when comparing betweenness, degree and
eigen-vector centrality. This demonstrates that the proposed approach
can locate vulnerable spatial locations in terms of CF while taking
into account the detailed dynamic phenomena. Such a graph when
learnt using the proposed model utilising more types of spatio-temporal
power system features such as voltage phase angles could offer valuable
insights that can support better monitoring and informed decisions
for system operators, in terms of mitigating cascading events. In the
operational time-scale, inferences drawn using the proposed method,
about spatial vulnerability to dynamic cascading failures can be used
for creating better 𝑁 − 𝑘 contingency lists than random events. Due to
its fewer trainable parameters than time-series based learning methods,
the usage of current framework for near real-time situational awareness
also seems promising.
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