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A B S T R A C T

The movement of populations between locations and activities can result in complex transmission dynamics,
posing significant challenges in controlling infectious diseases like COVID-19. Notably, networks of care homes
create an ecosystem where staff and visitor movement acts as a vector for disease transmission, contributing to
the heightened risk for their vulnerable communities. Care homes in the UK were disproportionately affected by
the first wave of the COVID-19 pandemic, accounting for almost half of COVID-19 deaths during the period of
6th March – 15th June 2020 and so there is a pressing need to explore modelling approaches suitable for such
systems. We develop a generic compartmental Susceptible - Exposed - Infectious - Recovered - Dead (SEIRD)
metapopulation model, with care home residents, care home workers, and the general population modelled as
subpopulations, interacting on a network describing their mixing habits. We illustrate the model application
by analysing the spread of COVID-19 over the first wave of the COVID-19 pandemic in the NHS Lothian health
board, Scotland. We explicitly model the outbreak’s reproduction rate and care home visitation level over time
for each subpopulation and execute a data fit and sensitivity analysis, focusing on parameters responsible for
inter-subpopulation mixing: staff-sharing, staff shift patterns and visitation. The results from our sensitivity
analysis show that restricting staff sharing between homes and staff interaction with the general public would
significantly mitigate the disease burden. Our findings indicate that protecting care home staff from disease,
coupled with reductions in staff-sharing across care homes and expedient cancellations of visitations, can
significantly reduce the size of outbreaks in care home settings.
1. Introduction

The outbreak of the SARS-CoV-2 induced disease (COVID-19) pan-
demic has had a profound impact, causing 3.7 million deaths by early
June 2021 and global economic shocks (World Health Organisation,
2021). In the UK, the care home population suffered a disproportion-
ate amount of COVID-19 related deaths. From the week ending 13th
March 2020 to the week ending 26th June 2020 (the ‘‘first wave’’),
54,510 deaths were associated with COVID-19 in the UK, 40% of which
were among care home residents (Bell et al., 2020). The COVID-19
pandemic has highlighted the vulnerability of care homes to epidemics,
as their resident population is elderly and often suffers from several
co-morbidities (Social Care Working Group (SCWG) for the Scientific
Advisory Group for Emergencies, 2021), their systems have not been
developed with infection prevention and control (IPC) in mind, and
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their IPC guidelines have been borrowed from hospitals - a completely
different setting (Nguyen et al., 2020b).

Networks of care homes are ecosystems connected by staff working
across facilities, and these connections can increase the risk of COVID-
19 ingress into care homes, and to protect their vulnerable community,
we need to understand the ecosystem dynamics. We find it natural to
describe this using a heterogeneous patch size metapopulation model
framework.

Very few models explore COVID-19 transmission at a community
level and explicitly include the unique dynamics in care homes. For
example, in Smith et al. (2020) and Nguyen et al. (2020a) agent-
based models (ABMs) of single homes are used to investigate the
impact of testing strategies on the disease burden. A report by Nguyen
et al. (2021b) uses an ABM to investigate the impact on care home
residents of various vaccine coverage, and reducing the weekly testing
vailable online 5 July 2024
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of staff. However, the models in Nguyen et al. (2020a) and Nguyen
et al. (2021b) do have an external force of infection (FOI) from the
community, based on prevalence data, representing staff interaction
with the community and visitors. These models (Smith et al., 2020;
Nguyen et al., 2020a, 2021b) do not assess the relative impact of the
different COVID-19 pathways into care homes. Nguyen et al. (2021a)
extend (Nguyen et al., 2020a, 2021b), using a hybrid ABM-System
Dynamics model, to explore the conditions under which visitation,
heterogeneous care homes sizes, and the cohorting of residents impacts
COVID-19 outbreak severity.

Roselló et al. (2021) model an individual care home with a stochas-
tic compartmental model, using multiple forces of infection to capture
COVID-19 pathways, including visitors, hospital discharges, staff work-
ing at other homes, and staff infections from the community. They
find that importations of infections by staff from the community are
the main driver of outbreaks, and importation by visitors or from
hospitals is rare, but do not explicitly model disease spread throughout
a network of care homes. In Overton et al. (2020) individual care homes
and the general public are independent, deterministic SEIR models,
with a stochastic external FOI connecting the general public to each
home. This FOI depends on the prevalence of COVID-19 in the general
public, and the size of each home. Transmission rates in homes and
in the general public do not vary over time. In Oberhammer (2020),
two weakly-coupled SEIR sub-models with time-dependent transmis-
sion rates define the dynamics; one sub-model describes the general
public and one describes all care home residents in Stockholm as a
single homogeneous group. Again, a single FOI acts on the residents to
capture infections from staff and visitors. These models (Overton et al.,
2020; Oberhammer, 2020) do not differentiate between, and there-
fore allow comparison of, the COVID-19 pathways into care homes.
Bunnik et al. (2021) use a compartmental metapopulation model to
explore the trade-offs between increasing protection for a ‘‘vulnerable’’
population and relaxing restrictions for the ‘‘non-vulnerable’’ after the
first lockdown in Scotland. They use time-dependent transmission rates
with three metapopulation groups; vulnerable, shielders and general
public. We extend and apply the methodology of Bunnik et al. (2021)
in our model, investigating protection to a vulnerable group (care home
residents) in ways other than shielding.

In this paper, we develop a generic 𝐒𝐄𝐈𝐑𝐃 compartmental metapop-
lation model to capture the transmission dynamics which arise due to
opulation movement between locations and activities. We illustrate
he model application by analysing the first wave of COVID-19 in a
egional health board in Scotland. The population is divided into groups
f care home residents, staff, and the general public, who interact
n a network describing their mixing habits. Our care home resident
roup are not a single homogeneous unit as in Oberhammer (2020)
nd Bunnik et al. (2021), they are separate units (homes), creating a
efined spatial/geographic structure. These homes are not independent
s in Overton et al. (2020) but are linked by a visitation and staff-
haring network, which, to our knowledge, is unique. We calibrate this
odel to 2020 data from the NHS Lothian Health Board and explore

he sensitivity of the results to changes in key parameters. We assess
he impact of inter-subpopulation mixing patterns on the spread of
OVID-19 into and throughout the susceptible care home community
o identify potential mitigation strategies to minimise the impact of
uture outbreaks. We investigate patterns controlling the importation
f infections by staff from the community, visitation and staff-sharing.

. Materials and methods

.1. Mathematical model

Care homes and their residents are enclosed societies, isolated to
ome extent from the general population. Their connection to broader
ociety primarily consists of interaction with staff and visits from the
eneral population. Care home staff could play an important role in
2

COVID-19 introduction and spread throughout the care home popu-
lation. Firstly, staff exposure to infection from the general population
can establish an outbreak in a home. Secondly, some staff work across
multiple homes - a concept we refer to as staff-sharing. Staff act-
ing as a bridge between care homes and the general population and
staff-sharing induces a network, connecting care homes in a given
community via their workers. This creates the potential for COVID-
19 to spread from one home to another; hence, investigation of this
pathway is important.

We develop a deterministic SEIRD compartmental metapopulation
model with heterogeneous subpopulation sizes. Each subpopulation
consists of a host human population, categorised further into five
compartments of COVID-19 infection status: Susceptible (S), i.e., ev-
eryone who is not infected; Exposed (E), those exposed to the virus
(and infected) but not yet infectious; Infectious (I), infected individuals

ho can infect others; Recovered (R), those who had COVID-19 and
ecovered; and Dead (D), those who died from their illness. We do not
istinguish between symptomatic and asymptomatic individuals. This
odel is illustrated in Fig. 1(a).

The metapopulation structure represents the population of the NHS
othian health board in Scotland, but could be applied to other ap-
ropriate scenarios. We distinguish between care home residents, care
ome workers and the general population, modelling the 𝑚 = 109 care
omes for older adults in NHS Lothian (Burton et al., 2020). The 𝑗th
ome has a resident subpopulation, 𝐶𝑗 , with a corresponding care home
orker subpopulation, 𝑊𝑗 . The general population is encapsulated by

he subpopulation 𝐺 (Fig. 1b). Each care home includes the same
umber of residents, a simplifying assumption made due to lack of
ublicly available data on care home sizes in Lothian. We also assume
he worker and resident subpopulations are the same size (Knock et al.,
021).

Each node of the network, 𝑖 ∈ 𝑋 ∶= {𝐶1, 𝐶2,… , 𝐶𝑚,𝑊1,𝑊2,… ,𝑊𝑚,
𝐺} is described in terms of the SEIRD compartmental model with
equations:
𝑑𝐒𝑖
𝑑𝑡

= −𝐒𝑖𝛷𝑖

𝑑𝐄𝑖
𝑑𝑡

= 𝐒𝑖𝛷𝑖 −
𝐄𝑖
𝛼

𝑑𝐈𝑖
𝑑𝑡

=
𝐄𝑖
𝛼

−
𝐈𝑖
𝜏

𝑑𝐑𝑖
𝑑𝑡

= (1 − 𝜇𝑖)
𝐈𝑖
𝜏

𝑑𝐃𝑖
𝑑𝑡

= 𝜇𝑖
𝐈𝑖
𝜏

(1)

Susceptibles in subpopulation 𝑖 (𝐒𝑖), are introduced to a force of
infection 𝛷𝑖, and moved to the exposed class (𝐄𝑖). After a non-infectious
latent period of 𝛼 days, they become infectious, and move to the class
𝐈𝑖. After 𝜏 infectious days, a proportion 𝜇𝑖 of the infected population
(𝐈𝑖) die and the rest (1 − 𝜇𝑖) recover. For simplicity, and considering
the model describes a short period of approximately 3 months, non-
COVID-related deaths are not considered. For similar reasons, we do
not include a birth rate or admission of new residents to care homes
from the general population.

The parameters 𝜏 and 𝛼 describe the infectious period and latency
period, respectively, and are assumed to be the same across all sub-
populations. Mortality rates, 𝜇𝑖, vary by subpopulation, reflecting the
positive association of serious outcomes of COVID-19 with age (McK-
eigue and Colhoun, 2020). We assume two constant and unique death
rates in our model: one for residents (𝜇𝐶 ) and one for the general
population (𝜇𝐺). We assume care home staff have the same death rate
as the general population. As we are modelling over a period of 4
months (approx. first wave), and immunity after COVID-19 infection
lasts as long as 5 months (Ripperger et al., 2020; Dan et al., 2021), we
do not consider a transition from Recovered to Susceptible.

A number of parameters in our model are time-dependent; we
assume they are higher in the pandemic’s initial phase than the latter.
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Fig. 1. Schematics for the compartmental and metapopulation structure. (a): SEIARD compartmental structure of the model; (b): Time-share network of interaction amongst
subpopulations. Directed edge weights are 𝑝𝑖𝑘, the proportion of people from subpopulation 𝑖 who travel to mix at effective population 𝑘.
We use the function 𝑓
(

𝑡, 𝛺𝑥
)

, taking the shape of a sigmoidal logistic
curve, to describe their behaviour. The function uses the set of input
parameters 𝛺𝑥 = {𝜔𝑥

𝑒𝑛𝑑 , 𝜔
𝑥
𝑟𝑎𝑡𝑒, 𝜔

𝑥
𝑙𝑜𝑤, 𝜔

𝑥
ℎ𝑖𝑔ℎ} which are all individually ≥0,

and is defined below:

𝑓
(

𝑡, 𝛺𝑥
)

=
(𝜔𝑥

ℎ𝑖𝑔ℎ − 𝜔𝑥
𝑙𝑜𝑤)

(

1 + exp
(

𝜔𝑥
𝑟𝑎𝑡𝑒

(

𝑡 − 𝜔𝑥
𝑒𝑛𝑑

))) + 𝜔𝑥
𝑙𝑜𝑤, (2)

The function 𝑓
(

𝑡, 𝛺𝑥
)

is decreasing with 𝑡 ≥ 0, and under our as-
sumptions, when 𝑡 = 0, we have exp

(

𝜔𝑥
𝑟𝑎𝑡𝑒

(

𝑡 − 𝜔𝑥
𝑒𝑛𝑑

))

≈0. Therefore,
over time the function drops from 𝜔𝑥

ℎ𝑖𝑔ℎ to 𝜔𝑥
𝑙𝑜𝑤 at a time controlled

by 𝜔𝑥
𝑒𝑛𝑑 , such that when 𝑡 = 𝜔𝑥

𝑒𝑛𝑑 , we have that 𝑓
(

𝑡 = 𝜔𝑥
𝑒𝑛𝑑 , 𝛺𝑥

)

=
(𝜔𝑥

ℎ𝑖𝑔ℎ+𝜔
𝑥
𝑙𝑜𝑤)∕2. The 𝜔𝑟𝑎𝑡𝑒 parameter changes the gradient of the descent

at 𝑡 = 𝜔𝑒𝑛𝑑 .
Interaction across subpopulations is heterogeneous and is described

in terms of time-sharing, determining proportions of subpopulations
mixing in groups with each other. In the 𝑖th subpopulation there are
𝑁𝑖(𝑡) = 𝐒𝑖(𝑡) + 𝐄𝑖(𝑡) + 𝐈𝑖(𝑡) + 𝐀𝑖(𝑡) + 𝐑𝑖(𝑡) active individuals who can
mix with others. The proportion from subpopulation 𝑖 who travel to,
and mix with, subpopulation 𝑘 is 𝑝𝑖𝑘. The effective population size
of subpopulation 𝑘, given that others have travelled to it and some
people from 𝑘 have left, is 𝑁̂𝑘(𝑡) =

∑

𝑗∈𝑋 𝑝𝑗𝑘𝑁𝑗 (𝑡). We assume these
effective populations, 𝑁̂𝑘(𝑡), are well mixed, so people who travel to
each population can meet all others there.

Our specific time-share assumptions are described in the follow-
ing paragraphs and represented visually by a directed, weighted net-
work in Fig. 1(b). The corresponding weighted adjacency matrix, the
travel/time-share matrix, 𝑻 is described in Appendix B. There are
two types of effective population: the care homes and the general
population. Care home 𝑗, comprises 𝑁̂𝐶𝑗

(𝑡) people: its residents, its
working staff, staff from other care homes, and visitors. The general
population consists of 𝑁̂𝐺(𝑡) people; this includes all the staff not at
work and the non-visiting general population.

We assume that each resident has one visitor per day, up until
13th March 2020 (Nguyen et al., 2020a) when the policy changed
to essential visitation only. The visitation rate, the proportion of the
general population who travel and mix at the 𝑖th home each day, is
described by

𝑝𝐺,𝐶𝑖
=

𝑁𝐶𝑖
(0)

𝑁𝐺(0)
𝛾(𝑡) =

𝑁𝐶𝑖
(0)

𝑁𝐺(0)
𝑓 (𝑡, 𝛺𝛾 ). (3)

Therefore, we model visitation by multiplying the constant propor-
tion of the general population, 𝑁𝐶𝑖

(0)∕𝑁𝐺(0), that visit each care home,
and the duration of the visit, 𝛾(𝑡), measured as a proportion of a day.
The duration of the visit, 𝛾(𝑡), is described by Eq. (2) under the input
3

parameters 𝛺𝛾 = {𝜔𝛾
𝑒𝑛𝑑 , 𝜔

𝛾
𝑟𝑎𝑡𝑒, 𝜔

𝛾
𝑙𝑜𝑤, 𝜔

𝛾
ℎ𝑖𝑔ℎ}. Before 13th March 2020, we

assume the duration of the visit, 𝛾(𝑡), equals 𝜔𝛾
ℎ𝑖𝑔ℎ and afterwards it

quickly (𝜔𝛾
𝑟𝑎𝑡𝑒 = 3) drops to zero (𝜔𝛾

𝑙𝑜𝑤 = 0), reflecting the policy change
to essential visitation only (Burton et al., 2020; Cabinet Secretary for
Health and Sport, 2020). Furthermore, since there are 𝑚 care homes,
the proportion of the general population not visiting care homes is
𝑝𝐺,𝐺 =1 − 𝑚𝛾(𝑡)

𝑁𝐶𝑖 (0)
𝑁𝐺 (0)

.
Workers spend a constant proportion of their time, 𝛿, at care homes.

With 𝛿 = 0.5, a worker compartment, 𝑊𝑖, spends half of their time at
care homes, 𝐶𝑖, over the course of a day. This is equivalent to care
homes splitting staff into two 12 hour shifts. Workers thus spend the
rest of their time, 1 − 𝛿, mixing in the general population, 𝐺. Care
homes operate with staff under differing working schedules and require
a minimum number of staff to maintain adequate levels of care. This
places constraints on feasible values of 𝛿. We assume this minimum
value to be 𝛿 = 0.2. This value equates to staff being split into five shifts
throughout the day. Other possible shifts include care homes having a
day and night shift (𝛿 = 0.5) or three 8-h shifts (𝛿 = 0.33).

During the first wave of COVID-19 in Scotland, there was both
intra-organisational staff-sharing between homes (i.e., staff who work
at multiple homes belonging to the same care provider), as well as inter-
organisational staff-sharing (use of bank or agency staff) (Reilly et al.,
2020; Office For National Statistics, 2020). Therefore, a constant pro-
portion of each homes’ assigned workers, 𝜀, were exchanged between
homes every day. We refer to this as staff-sharing. We have made the
simplifying assumption that the staff-sharing network has a topology of
a circle, whereby the shared staff for home 𝑗 are split evenly between
homes 𝑗 −1 and 𝑗 +1 (Fig. 1b). We also assume care home residents do
not leave their homes (𝑝𝐶𝑖 ,𝐶𝑖

= 1).
In summary, staff from the 𝑖th care homes mixing patterns across the

network are described by the proportions 𝑝𝑊𝑖 ,𝐺 = 1−𝛿, 𝑝𝑊𝑖 ,𝐶𝑖
= (1−𝜀)𝛿,

and 𝑝𝑊𝑖 ,𝐶𝑖−1
= 𝑝𝑊𝑖 ,𝐶𝑖+1

= 𝜀𝛿
2 .

Disease transmission in the model is assumed to be frequency-
dependent. The FOI integrates which infections occur to whom, from
whom and where the infection takes place, as in Rǎdulescu et al. (2020)
and Calvetti et al. (2020). The FOI acting on subpopulation 𝑖, 𝛷𝑖 (see
Eq. (4)), accounts for the mixing that subpopulation 𝑖 does in a day with
all other subpopulations. It is most easily understood by considering
𝛷𝑖𝐒𝑖:

𝛷𝑖𝐒𝑖 =
∑

𝑘 𝑠.𝑡. 𝑁̂𝑘(𝑡)≠0

𝛽𝑘(𝑡)𝑝𝑖𝑘𝐒𝑖
𝑁̂𝑘(𝑡)

∑

𝑗∈𝑋
𝑝𝑗𝑘𝐈𝑗 (4)

At effective population 𝑘, 𝑁̂𝑘(𝑡), there is 𝑝𝑖𝑘𝐒𝑖 susceptible individuals
from 𝑖. At 𝑘 there will also be 𝑝 𝐈 infectious people from 𝑗 who have
𝑗𝑘 𝑗
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Table 1
Parameter definitions, alongside their base case values and source. Units are given where appropriate in the Value column.

Parameter Description Value Source

𝜀 Staff-sharing 0.4 Maximum likelihood estimation
𝛿 Proportion of time workers spend at care homes 0.5 Assumptiona

𝜇𝑖∈{𝐶1 ,…,𝐶𝑚} = 𝜇𝐶 Death rate for residents 0.25 Estimated (Burton et al., 2020; Ladhani et al., 2020; Graham
et al., 2020; Byambasuren et al., 2020)

𝜇𝑖∈{𝐺,𝑊1 ,…,𝑊𝑚} = 𝜇𝐺 Death rate for general public (and workers) 0.017 Estimated (Dickson et al., 2021; Public Health Scotland,
2020; National Records of Scotland, 2019, 2020)

𝜏 Infectious period 7 days He et al. (2020)
𝛼 Latent period 5.8 days McAloon et al. (2020)
𝑚 Number of care homes 109 Burton et al. (2020)
𝑁(0) =

∑

𝑖 𝑁𝑖(0) Total initial population 907,580 National Records of Scotland (2019)
𝑁𝐶𝑖

(0) Initial resident subpopulation size 48 Burton et al. (2020)
𝑁𝑊𝑖

(0) Initial worker subpopulation size 48 Knock et al. (2021)
𝑁𝐺(0) Initial general public subpopulation size 897,116 National Records of Scotland (2019), Burton et al. (2020)

and Knock et al. (2021)
𝜔𝐶
𝑒𝑛𝑑 Timing of 𝑅𝑡 descent for care homes 36.086 days Maximum likelihood estimation

𝜔𝐶
𝑟𝑎𝑡𝑒 Rate of descent of 𝑅𝑡 for care homes 0.220 Maximum likelihood estimation

𝜔𝐶
𝑙𝑜𝑤 Post-descent 𝑅𝑡 for care homes 0.6 Assumptionb

𝜔𝐶
ℎ𝑖𝑔ℎ Pre-descent 𝑅𝑡 for care homes 5.241 Maximum likelihood estimation

𝜔𝐺
𝑒𝑛𝑑 Timing of 𝑅𝑡 descent for general population 23.656 days Maximum likelihood estimation

𝜔𝐺
𝑟𝑎𝑡𝑒 Rate of descent of 𝑅𝑡 for general population 6.627 Maximum likelihood estimation

𝜔𝐺
𝑙𝑜𝑤 Post-descent 𝑅𝑡 for general population 0.6 The Scottish Government (2020)

𝜔𝐺
ℎ𝑖𝑔ℎ Pre-descent 𝑅𝑡 for the general population 4.503 Maximum likelihood estimation

𝜔𝛾
𝑒𝑛𝑑 Timing of descent for visitation 10 days Burton et al. (2020) and Cabinet Secretary for Health and

Sport (2020)
𝜔𝛾
𝑟𝑎𝑡𝑒 Rate of descent of visitation 3 Burton et al. (2020) and Cabinet Secretary for Health and

Sport (2020)
𝜔𝛾
𝑙𝑜𝑤 Post-descent value for visitation 0 Assumptionc

𝜔𝛾
ℎ𝑖𝑔ℎ Pre-descent value for visitation 0.155 Maximum likelihood estimation

𝐻𝑠𝑒𝑒𝑑𝑒𝑑 Number of homes seeded 9 Maximum likelihood estimation
𝐸𝐺(0) Initial general population infections (exposed) 44.937 Maximum likelihood estimation

a We assume workers spend a half day at work, and the other half mixing in the general population. Alternatively, workers do 12-h shifts.
b We assume the reproductive rate for every sub-population drops to the Scottish government’s (The Scottish Government, 2020) estimated 𝑅𝑡 after lockdown (so 𝜔𝐶

𝑙𝑜𝑤 = 𝜔𝐺
𝑙𝑜𝑤).

Equals 0 to reflect the policy change to essential visitation only (Burton et al., 2020; Cabinet Secretary for Health and Sport, 2020), and to avoid the complication of modelling
nd-of-life visitation.
ravelled to 𝑘. The transmission rate between individuals mixing in
ffective population 𝑘 is 𝛽𝑘(𝑡), therefore
𝛽𝑘(𝑡)𝑝𝑖𝑘𝐒𝑖

𝑁̂𝑘

∑

𝑗∈𝑋
𝑝𝑗𝑘(𝐈𝑗 + 𝐀𝑗 )

s the number of new daily infections in 𝑖 which occur in the effective
population 𝑘.

There are two types of effective populations; the general population,
and the care homes. We assume the transmission rate within each ef-
fective care home population is the same and equals 𝛽𝐶 (𝑡). The general
population transmission rate equals 𝛽𝐺(𝑡). The transmission rates 𝛽𝑘(𝑡)
allow us to represent heterogeneous interaction patterns of individuals
and incorporate the transmission dynamics of COVID-19 changing over
time and location, for example, through lockdowns or other changes in
behaviour (Rǎdulescu et al., 2020). We write 𝛽𝑘(𝑡) =

𝑅𝑘(𝑡)
𝜏 , describing

the transmission rate 𝛽𝑘(𝑡) between individuals in effective population
𝑘, with the reproduction rate, 𝑅𝑘(𝑡), divided by the infectious period,
𝜏. The reproduction rate 𝑅𝑘(𝑡) is the average number of infections
that infected individuals mixing only in effective population 𝑘 would
cause over the duration of their infectiousness, and it captures both
contact rate and infection probability between susceptible and infected
individuals.

The transmission rates are described by:

𝛽𝐶 (𝑡) =
𝑓
(

𝑡,
{

𝜔𝑐
𝑒𝑛𝑑 , 𝜔

𝑐
𝑟𝑎𝑡𝑒, 𝜔

𝑐
𝑙𝑜𝑤, 𝜔

𝑐
ℎ𝑖𝑔ℎ

})

𝜏
=

𝑅𝐶 (𝑡)
𝜏

,

𝛽𝐺(𝑡) =
𝑓
(

𝑡,
{

𝜔𝐺
𝑒𝑛𝑑 , 𝜔

𝐺
𝑟𝑎𝑡𝑒, 𝜔

𝐺
𝑙𝑜𝑤, 𝜔

𝐺
𝑙𝑜𝑤, 𝜔

𝐺
ℎ𝑖𝑔ℎ

})

𝜏
=

𝑅𝐺(𝑡)
𝜏

. (5)

The reproduction rates, 𝑅𝑘(𝑡), are modelled using the function 𝑓 (𝑡, {.})
(Eq. (2)) with different parameter sets.
4

2.2. Model calibration process

We used data from the network of care homes in NHS Lothian (Bur-
ton et al., 2020) complemented by Public Health Scotland Open Data,
breaking down COVID-19 cases and deaths per health board (Public
Health Scotland, 2020; National Records of Scotland, 2020), to inform
and calibrate our model. Parameters were found using a mixture of
methods, as indicated in Table 1. Some were estimated directly from
a combination of evidence and assumptions from a literature search,
and the remaining free parameters were estimated using maximum
likelihood.

2.2.1. Data
NHS Lothian is the second-largest health board in Scotland NHS

Lothian (2021), providing public health services to an estimated
907,580 people (2019 mid-year population estimate National Records
of Scotland, 2019). The daily confirmed positive tests of COVID-19
cases reported across the entire health board were taken from the
Public Health Scotland Open Data (Public Health Scotland, 2020).
This data does not delineate which cases occurred in care homes,
and thus, we retrieved the subset of cases in care homes from Burton
et al. (2020), which reports a 7-day average of confirmed cases in
care home residents. Weekly COVID-19 deaths at the NHS Lothian
health board level come from National Records Scotland (National
Records of Scotland, 2020). Care home resident deaths are a subset
of these and are published in Burton et al. (2020). Both death data are
weekly counts of registered deaths where COVID-19 is mentioned on
the death certificate (either as the underlying cause or as a contributory
factor) (National Records of Scotland, 2020).
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Fig. 2. Surveillance data and fitted model outputs. Surveillance data are shown by black lines: (a) deaths per week for all NHS Lothian inhabitants (care home residents, workers
and the general population); (b) deaths per week in NHS Lothian care home residents; (c) reported cases per week for all NHS Lothian inhabitants (care home residents, workers
and the general population); (d) reported cases per week in NHS Lothian care home residents. Panels (a) and (b) show the death count data used during maximum likelihood
estimation and fitted count estimates from the model, i.e., the model with parameter values in Table 1. The estimate of reported cases in panels (c) and (d) were derived by
assuming that a constant proportion of the new individuals that become infectious in each population will test positive — see Appendix A.
2.2.2. Parameters set from evidence and assumptions
In this section, we outline our parameter estimates for some of the

parameters responsible for inter-subpopulation mixing (𝜔𝛾
𝑟𝑎𝑡𝑒, 𝜔

𝛾
𝑙𝑜𝑤, 𝛿),

and seeding infection in the model, as well as the death rates.
We assume that 𝑡 = 0 in the model corresponds to March 4th,

2020, the first day with a reported COVID-19 case in NHS Lothian. We
make several assumptions about the population initially infected with
COVID-19. In the general population, we assume an equal amount of
exposed and infectious individuals, i.e., 𝐸𝐺(0) = 𝐼𝐺(0). In our model,
care homes were seeded with infections via the parameter 𝐻𝑠𝑒𝑒𝑑𝑒𝑑 =
|{𝐶𝑗 ∈ {𝐶1,… , 𝐶𝑚} ∶ 𝐸𝐶𝑗

(0) > 0}|. These exposed individuals represent
any introductions that could have taken place prior to the start of the
simulation, such as through visitors or hospital discharges. Since there
were reported cases in the data for care home residents by March the
9th, 2020, we assume for all 𝑗 ∈ {1,… , 𝑚}, 𝐼𝐶𝑗

(0). To account for the
delay in infections at the start of the pandemic in care homes compared
to the general population, as seen in the data Fig. 2, we assume for all
𝑗 ∈ {1,… , 𝑚}, 𝐼𝐶𝑗

(0) = 𝐴𝐶𝑗
(0) = 0. Initially infected homes were seeded

equally spaced on the circular staff-sharing structure (see Fig. 1(b)). If
a home is seeded then we assume 𝐸𝐶𝑗

(0) = 1, and if not, 𝐸𝐶𝑗
(0) = 0.

In terms of the visitation parameters, 𝛺𝛾 = {𝜔𝛾
𝑒𝑛𝑑 , 𝜔

𝛾
𝑟𝑎𝑡𝑒, 𝜔

𝛾
𝑙𝑜𝑤, 𝜔

𝛾
ℎ𝑖𝑔ℎ},

we set the rate that levels fell 𝜔𝛾
𝑟𝑎𝑡𝑒 = 3 and the timing 𝜔𝛾

𝑒𝑛𝑑 = 10 to
reflect the rapid visitation policy changes in care homes (Burton et al.,
2020; Cabinet Secretary for Health and Sport, 2020). We have made the
simplifying assumption that the post-lockdown visitation level 𝜔𝛾

𝑙𝑜𝑤 =
0, to avoid the complications of modelling end-of-life visitation in
care homes. We estimate the proportion of each visitor’s day (pre-
lockdown), 𝜔𝛾

ℎ𝑖𝑔ℎ, spent at homes using maximum likelihood, discussed
below. For simplicity, we assume that all homes operate under two 12-h
shifts per day, i.e., 𝛿 = 0.5. Other shifts are explored in the sensitivity
analysis.

Using a combination of data and assumptions, we derive estimates
for the constant resident and general population death rate parameters
(𝜇𝐶 , 𝜇𝐺). The details are contained in Appendix A. We first derive
estimates of reporting rates, which we define as the proportion of
COVID-19 infections which are identified by a positive test. We assume
5

the reporting rate differs for the care home resident and the general
population and is given by 𝑟𝐶 and 𝑟𝐺, respectively. Then, using the
numbers of reported cases and deaths in each population in NHS Loth-
ian over the study period, we estimate the true number of infections
and, therefore, the death rate for each population (𝜇𝐶 , 𝜇𝐺).

2.2.3. Maximum likelihood estimation
While some model parameter values can be found based on the

external data and literature, as shown in the previous section, the
remaining parameters 𝜃 were estimated using maximum likelihood
methods, Table 1. We attempt to reproduce the dynamics of COVID-19
deaths over the first wave by estimating the set of parameters 𝜃 that
maximises the log-likelihood (LL) of observing the weekly numbers of
reported deaths for the care home residents and total population in NHS
Lothian. The set of parameters to be estimated is

𝜃 = {𝜔𝐶
𝑒𝑛𝑑 , 𝜔

𝐶
𝑟𝑎𝑡𝑒, 𝜔

𝐶
ℎ𝑖𝑔ℎ, 𝜔

𝐺
𝑒𝑛𝑑 , 𝜔

𝐺
𝑟𝑎𝑡𝑒, 𝜔

𝐺
ℎ𝑖𝑔ℎ, 𝜀, 𝜔

𝛾
ℎ𝑖𝑔ℎ,𝐻𝑠𝑒𝑒𝑑𝑒𝑑 , 𝐸𝐺(0)}. (6)

We assume the weekly counts of reported COVID-19 deaths are Poisson
distributed, and let 𝑌𝑅 = {𝑌𝑅1, 𝑌𝑅2,… , 𝑌𝑅𝑛} and 𝑌𝑇 = {𝑌𝑇 1, 𝑌𝑇 2,… , 𝑌𝑇 𝑛}
be the observed death counts for the resident and total population,
respectively. There are 𝑛 = 15 weeks of death counts. The first week
starts on March the 9th, 2020, and the last week starts on June the 15th,
2020. We let 𝛬𝑅(𝜃) = {𝜆𝑅1(𝜃), 𝜆𝑅2(𝜃),… , 𝜆𝑅𝑛(𝜃)} and 𝛬𝑇 (𝜃) = {𝜆𝑇 1(𝜃),
𝜆𝑇 2(𝜃), ..., 𝜆𝑇 𝑛(𝜃)} be the expected weekly death counts for the resident
and total population (i.e., general, staff and residents) produced by our
model. The log-likelihood function is given by

log𝐿(𝜃|𝑌𝑅, 𝑌𝑇 ) = log𝐿𝑅(𝜃|𝑌𝑅) + log𝐿𝑇 (𝜃|𝑌𝑇 ), (7)

where

log𝐿𝑅(𝜃|𝑌𝑅) =
𝑛
∑

𝑖=1

(

𝑌𝑅𝑖 ⋅ log(𝜆𝑅𝑖(𝜃)) − 𝜆𝑅𝑖(𝜃) − log(𝑌𝑅𝑖!)
)

and

log𝐿𝐺(𝜃|𝑌𝑇 ) =
𝑛
∑

(

𝑌𝑇 𝑖 ⋅ log(𝜆𝑇 𝑖(𝜃)) − 𝜆𝑇 𝑖(𝜃) − log(𝑌𝑇 𝑖!)
)

.

𝑖=1
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Table 2
The search space explored by the genetic algorithm for each parameter in 𝜃.

Parameter Description Range

𝜔𝐶
𝑒𝑛𝑑 Timing of Rt descent for care homes [30, 50]

𝜔𝐶
𝑟𝑎𝑡𝑒 Rate of descent of Rt for care homes [0, 10]

𝜔𝐶
ℎ𝑖𝑔ℎ Pre-descent Rt for care homes [3, 5.5]

𝜔𝐺
𝑒𝑛𝑑 Timing of Rt descent for general population [15, 30]

𝜔𝐺
𝑟𝑎𝑡𝑒 Rate of descent of Rt for general population [0, 3]

𝜔𝐺
ℎ𝑖𝑔ℎ Pre-descent Rt for general population [3, 5.5]

𝜀 Staff-sharing [0, 0.5]
𝜔𝛾
ℎ𝑖𝑔ℎ Pre-descent value for visitation

[

0, 4
24

]

𝐻𝑠𝑒𝑒𝑑𝑒𝑑 Number of homes seeded with infection [0, 20]
𝐸𝐺(0) Initial general population infections (exposed) [0, 200]

We maximise the combined log-likelihood function (Eq. (7)) with re-
spect to the parameter set 𝜃 (Eq. (6)) using numerical optimisation
methods. Specifically, we implemented a parallelised genetic algorithm
using the ga package in RStudio (Flasch, 2012), configured with 4000
iterations, to search for the maximum likelihood estimators. To ensure
convergence of the genetic algorithm (GA) to the same maximum, and
gain confidence the maximum is global, we performed five separate
runs of the GA with randomised initial conditions. The search space
explored by the genetic algorithm for each parameter in 𝜃 is shown in
Table 2.

2.3. Sensitivity analysis

We measured the change in total care home resident deaths for
different combinations of pairs of the time-share parameters (𝜔𝛾

ℎ𝑖𝑔ℎ,
𝛿, 𝜀), keeping all other parameters at the base case. The results were
stored in a 50 × 50 grid and visualised using heat maps to assess the
mixing patterns that spread COVID-19 into and throughout care homes
and identify potential mitigation strategies.

3. Results

In this section, we first show how the model captures the NHS
Lothian data for cases and deaths in the period from March to June
2020, and then show how sensitive the results are to changes in key
parameters.

3.1. Data fit

The fitted model captures the key features of the COVID-19-related
deaths in both the care home resident and total population in NHS
Lothian, Fig. 2. The maximum likelihood estimators found by the
genetic algorithm search are shown in Table 2. The corresponding
maximum log-likelihood was −92.9, with our model predicting 726
total COVID-19-related deaths in total, including 413 in care home
residents, compared to the 709 and 423 recorded by the data (Fig. 2).
Additionally, investigation of the sensitivity of log-likelihood to per-
turbations in the parameters estimated by the GA confirms that the
algorithm found a maximum, Appendix C Fig. 5.

The recorded number of COVID-19 deaths per week in NHS Lothian
rose slowly from the second week in March, reaching over 100 by the
first week of April, Fig. 2a. The weekly deaths were similarly high for
the next two weeks before gradually falling back towards zero by the
third week in June. Recorded COVID-19 care home residents deaths
were ≈0 each week in March before rising sharply in the first week of
April, which we note is a delayed and sharper rise as well as a later
fall than the total death count in NHS Lothian, Fig. 2b. The resident
death count was then ≈75 per week from the second week in April
until the first week of May, before gradually falling back to none by
mid-June. The model estimates a gradual rise in resident deaths per
week from mid-March, which peaks in the third week of April, Fig. 2b.
6

The steepness of the rise and width of the peak relative to the data are
both underestimated slightly. Similarly, the model underestimates the
total deaths in the first week of April, otherwise matching the wave of
COVID-19 deaths in NHS Lothian between March and June 2020.

For comparison/validation, we show how our model would repro-
duce the dynamics of reported COVID-19 cases (positive tests), by
assuming that a constant proportion of those infected with COVID-19
are picked up by testing. The total reported cases in NHS Lothian are
shown in Fig. 2c and those only in care home residents in Fig. 2d.
The constant reporting rates used are derived in Appendix A. The
model with constant reporting struggles to reproduce the dynamics of
COVID-19 positive tests and deaths concurrently due to the underlying
dynamics of the data. For example, the timeseries of resident deaths
(Fig. 2b) rose more sharply and peaked earlier than the reported
resident tests (Fig. 2d) – most likely due to testing changes. In Scotland,
the policy from the start of March to 16th April 2020 was to test only
the first few symptomatic residents, and afterwards, was to test all
symptomatic residents (Burton et al., 2020).

The fitted reproduction rates change significantly over the period
of late April – May 2020, Fig. 3 reflecting the strict social distancing
restrictions (lockdown) implemented in mid-March. Both the general
and care home resident population reproductive rates begin to drop
at the same time (late March). The general population’s reproductive
rate drops below 1 after a few days, while the care home’s higher
reproductive rate does not fall below 1 until late April, Fig. 3.

Additionally, we investigated the sensitivity of maximum log-
likelihood (Eq. (7)) to perturbations in each fitted parameter, Ap-
pendix C. These suggest that the GA had found a maximum, while pro-
viding insight into the relative impact a unit change in each parameter
has on the quality of the fit.

3.2. Sensitivity analysis

In our model, staff catching infections from the community is con-
trolled by 𝛿 (staff time spent at homes); staff spreading infections
between homes through staff-sharing by 𝜀; and visitors bringing infec-
ions into homes from the outside community (prior to the visitation
an) by 𝜔𝛾

ℎ𝑖𝑔ℎ. We determine which combinations of these time-share
parameters have the greatest impact on the total resident deaths over
the first wave of COVID-19 using Fig. 4. This assesses mixing patterns
and helps identify mitigation strategies for the simulated epidemic.

Elimination of staff-sharing (a reduction from 𝜀 = 0.38 to 𝜀 = 0)
hile keeping the time staff spend at care homes at baseline (𝛿 = 0.5)

auses a ∼40% reduction in resident deaths, Fig. 4(a) (b). Increasing
he time staff spend in care homes to a live-in situation (𝛿 = 0.5 to
= 1), but not restricting staff-sharing (keeping at baseline 𝜀 = 0.38),
ould cause a ∼45% increase in resident deaths since it concentrates

ransmission across the network of isolated units, Fig. 4(a). However,
f staff living in care homes were not shared across them (𝛿 = 1,
= 0), this strategy would cause a reduction in resident deaths of ∼60%,

ompared to the baseline count, Fig. 4(a).
Decreases in staff-sharing (𝜀) cause a more significant reduction of

eaths compared to lowering pre-lockdown visitation levels (𝜔𝛾
ℎ𝑖𝑔ℎ),

hile holding all other parameters constant at their respective values
n Table 1, Fig. 4(b). Reducing pre-lockdown visitation from 4 visiting
ours per resident to 0 h per resident would only reduce our predicted
irst-wave deaths by about 2% of the death count in the first wave
n NHS Lothian, Fig. 4(b). However, cancelling both visitation and
taff sharing causes a ∼45% reduction in the observed resident deaths.
dditionally, if staff spend all their time in care homes (𝛿 = 1)

e.g., staff live in homes) and there was no staff-sharing (𝜀 = 0) or pre-
ockdown visitation (𝜔𝛾

ℎ𝑖𝑔ℎ = 0), there is a significant ∼75% reduction
n the observed resident deaths.

. Discussion

In this paper, we developed a generic compartmental metapopula-
ion model which allowed for the parameterisation of mixing across
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Fig. 3. Fitted time-dependent parameters. (a) Fitted reproductive numbers over time for care home residents, 𝑅𝐶 (𝑡), and general population, 𝑅𝐺(𝑡); (b) fitted visitation, 𝛾, over
time with drop highlighting the change in policy. These time-dependent parameters are described by the function 𝑓

(

𝑡, 𝛺𝑥
)

, Eq. (2), with input parameters 𝛺𝑥 = {𝜔𝑥
𝑒𝑛𝑑 , 𝜔𝑥

𝑟𝑎𝑡𝑒, 𝜔
𝑥
𝑙𝑜𝑤,

𝜔𝑥
ℎ𝑖𝑔ℎ} taken from Table 2.
Fig. 4. Sensitivity of the total resident deaths by the end of the first wave to the time-share/mixing parameters (𝛿, 𝜀, 𝜔𝛾
ℎ𝑖𝑔ℎ). Proportion of CH staff time at work is 𝛿, proportion

of staff shared between homes is 𝜀, and pre-lockdown visitation is 𝜔𝛾
ℎ𝑖𝑔ℎ. Each panel shows the percentage change in the total resident deaths over the first wave for different

combinations of two of the time-share/mixing parameters, relative to baseline, with all other model parameters fixed as the base case (Table 2). The baseline resident death count
is 413, which are those observed in the fitted model with parameter values in Table 2. The cross in each panel indicates the base case values for each parameter. The black lines
in each panel are isoclines.
subpopulations, specifying where subpopulations spend their time at
each location as a proportion of their day. This model can capture
the movement of populations between locations and activities and the
complex transmission dynamics which arise. Here, it has been used to
simulate the propagation of COVID-19 throughout care homes in NHS
Lothian, Scotland. However, this methodology can be applied in many
other contexts. For example, to model the mixing of individuals across
different locations with heterogenous levels of local transmission, such
as workplaces or prisons.

To assess the impact of inter-subpopulation mixing between care
home residents, care home staff and the general population in relation
to the spread of COVID-19 during the first wave of the pandemic, we
deployed a combination of modelling, data fit and simulations. With
this view, we find that restricting staff-sharing would be an effective
disease control measure. Additionally, the modelled strategy of staff
living in care homes with no staff-sharing would reduce COVID-related
deaths of care home residents by 65% during the first wave of the pan-
demic. Importantly, this result holds for any contact structure between
staff and care homes. Furthermore, a restriction in the movements of all
populations (no visitation, no staff-sharing, staff living in care homes)
could significantly limit disease spread, reducing cases in residents by
approximately 75%.

These results from our model indicate that protecting care home
staff from the disease, coupled with reductions in staff-sharing across
care homes and expedient cancellations of visitations, can effectively
reduce outbreak size in care homes. Additionally, our findings highlight
the need for more planning and support for care homes and their staff
in organising quick and effective responses to emerging pandemics.

In particular, our results point to a strategy of staff living-in the care
home, in conjunction with timely lowering of visitation, as an effective
pandemic response. This was implemented in France, where outbreaks
7

in care homes were reduced significantly in care homes where staff
self-confined (Belmin et al., 2020). If living within the care home is
not possible, this result may imply that the strategy of segmenting the
staff away from both care home residents and the general population
whilst they are not at work would be effective, i.e., organisation of
accommodation for care home workers (Social Care Working Group
(SCWG) for the Scientific Advisory Group for Emergencies, 2021).

Eliminating staff-sharing did not completely eliminate outbreaks in
our model simulations, suggesting that more restrictive control mea-
sures or protection for staff are needed. However, reducing staff-sharing
does significantly reduce the outbreak severity, which supports existing
literature (McMichael et al., 2020; Reilly et al., 2020). This conclusion
is limited due to our assumption of the circular contact structure,
which in turn reflects limited data availability regarding the contact
structure of the care home in Scottish Health boards (Nguyen and
Megiddo, 2022) (most likely due to commercial sensitivity). A different
contact structure could result in staff-sharing leading to changes in the
exportation of infection from care homes with outbreaks. A more thor-
ough examination on the contact-structure of this system and how that
impacts disease spread dynamics would be an important contribution
to current literature.

One way to achieve this would be to consider an addition of highly-
connected hubs (Barabási and Bonabeau, 2003), which we expect
would increase the effect of staff-sharing. In our simulations, staff-
sharing has an effect when there exists a non-uniform distribution of
infections in worker sub-populations. Worker sub-populations acting as
hubs would acquire disease quicker and skew the distribution of infec-
tion amongst worker sub-populations. However, the general population
strongly connects all nodes in the network, and dominates the impact
of the staff-sharing network on disease spread, as we assume a single
general population with full mixing. At the geographical scale modelled
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here (a health board) this is an appropriate assumption, although it
would not hold for larger scales, e.g., the national level (Scotland).
Furthermore, our results from considering no staff-sharing (𝜀 = 0) will
e the same for any contact structure . Thus, it is important to note that
he significant impact of the strategy of staff living in care homes with
o staff-sharing, is independent of contact structure.

A reduction in visitation reduces predicted resident deaths, as specu-
ated in Social Care Working Group (SCWG) for the Scientific Advisory
roup for Emergencies (2021), and our model supports findings that
isitation was not the driving cause of infection in care homes (Comas-
errera, 2020). Since visitation was banned, the evidence for visitation
ausing outbreaks is limited. Investigation into continuing visitation
uring lockdown or similar would be necessary to see how the outcome
ould be different if visitation did not change at all; this was not the

ocus of our investigation.
One of the model’s limitations is that it does not explicitly ac-

ount for the variation in susceptibility with age (Davies et al., 2020),
nd is only implicitly addressed by considering different values of 𝛽

within and outwith of care homes, while keeping the staff and general
population homogeneous. Due to the unavailability of data regarding
care home worker infections, we assumed the resident-resident and
resident-worker transmission rates were equal. However, contacts be-
tween care-giving staff and residents are likely more frequent and closer
than between residents. On the other hand, there may be more adher-
ence or better knowledge of how to use PPE among staff. Additionally,
contact between residents could be reduced more easily during the pan-
demic (Social Care Working Group (SCWG) for the Scientific Advisory
Group for Emergencies, 2021). Furthermore, we do not explicitly model
self-isolation or any behavioural change after infection.

In our model, we assume a uniform home size in order to keep the
model generic. As a result (and since the model is deterministic) the
risk of staff and visitors bringing in infections is the same for all care
homes, which may result in an underestimation of the initial rate of
spread. An obvious extension of the paper would be to consider various
sources of heterogeneity, including size. The size of individual care
homes is believed to be the main factor that influences the likelihood
of a care home outbreak (Reilly et al., 2020; Burton et al., 2020, 2021).
However, larger homes typically have more staff and therefore a higher
chance of experiencing an outbreak before the smaller ones. In general,
we expect larger care homes to receive an increased force of infection
from all sources, proportional to its increased size, and therefore an
increased outbreak risk. This in turn could increase risk for smaller
homes directly connected to the larger ones through staff-sharing and
visitations, and the overall outbreak risk. However, this effect could be
balanced by a lowered risk associated with small care homes, with the
total population size kept constant.

The National Records Scotland death data used were the dates of
death registration, not the actual date of death. This is limiting, as we
are an average of three days behind in the prediction of deaths (Na-
tional Records of Scotland, 2020). The data for care home resident
deaths includes deaths in hospitals, including nosocomial infections,
which we do not take into account in our model. We expect this not to
limit the interpretation of our results, as hospital deaths of care home
residents were approximately only 5% of the total care home resident
deaths (National Records of Scotland, 2020).

We focused our analysis on the mixing patterns of patient-facing
care home workers and have not considered the impact of non-care
staff. From a study on care homes in Norfolk during April and May 2020,
the number of non-care staff in homes was found to be the most sta-
tistically significant predictor of COVID-19 entry into homes (Brainard
et al., 2020). We do note, however, that this study did not consider the
role of staff-sharing. A valuable extension of our model would include
non-care worker subpopulations with different contact structures to
other homes compared to patient-facing staff.

Data regarding care home outbreaks were limited due to the com-
8

mercial nature of care home organisations in Scotland. Making this data
available would allow for additional modelling approaches. Adding
further heterogeneity into the system by including a distribution of
home sizes and types would further improve the modelling approach.
Including a stochastic component to this model could lead to more
insight into ‘‘super-spreader’’ events in care homes (Majra et al., 2021)
and their effect on epidemic response.
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Appendix A. Parameter assumptions and estimates

In this section, we derive estimates for the resident and general
population death rate parameters. To do so, we first derive estimates
of reporting rates, which we define as the proportion of COVID-19
infections which are identified by a positive test. We assume the report-
ing rate differs for the care home resident and the general population
and are given by 𝑟𝐶 and 𝑟𝐺, respectively. Then, using the numbers of
reported cases and deaths in each population in NHS Lothian over the
study period, we estimate the true number of infections and, therefore,
the death rate for each population (𝜇𝐶 , 𝜇𝐺).

A Scottish population study between 10th April to 15th June (Dick-
son et al., 2021) estimated a combined adjusted seroprevalence across
their study period (first wave = 10th April to 15th June) of 4.3% (95%
CI 4.2%–4.5%). As of the week beginning 15th June 2020, there had
been 18,077 positive tests (Public Health Scotland, 2020), which as
a percentage of Scotland’s population (2019 census National Records
of Scotland, 2019) is ∼0.33%. We use this information to assume a
constant reporting rate in the first wave for the general public of 𝑟𝐺 =

0.33∕4.3∼0.077.

https://doi.org/10.1016/S2666-7568(20)30012-X
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https://doi.org/10.1016/S2666-7568(20)30012-X
https://github.com/ewanmct/COVID-care-homes
http://www.archie-west.ac.uk


Epidemics 48 (2024) 100781M. Baister et al.
Fig. 5. Log-likelihood profiles. Log-likelihood is plotted as a function of each individual parameter fitted using maximum likelihood estimation, all other parameters are held at
the values in Table 2. (a) Initial general population infections (exposed), 𝐸𝐺(0); (b) number of homes seeded with infection, 𝐻𝑠𝑒𝑒𝑑𝑒𝑑 ; (c) staff-sharing, 𝜀; (d) pre-descent value for
visitation, 𝜔ℎ𝑖𝑔ℎ

𝛾 ; (e) pre-descent Rt for care homes, 𝜔ℎ𝑖𝑔ℎ
𝐶 ; (f) timing of Rt descent for care homes, 𝜔𝑒𝑛𝑑

𝐶 ; (g) rate of descent of Rt for care homes, 𝜔𝑟𝑎𝑡𝑒
𝐶 ; (h) rate of descent of Rt

for general population, 𝜔𝑟𝑎𝑡𝑒
𝐺 ; (i) pre-descent Rt for general population, 𝜔ℎ𝑖𝑔ℎ

𝐺 ; (j) timing of Rt descent for general population, 𝜔𝑒𝑛𝑑
𝐺 .
In Scotland, the policy from the start of March to 16th April 2020
was to test only the first few symptomatic care home residents, and
afterwards, was to test all symptomatic residents (Burton et al., 2020).
Assuming when there is an outbreak in a home, 40% of the residents
end up infected (40% incidence) (Ladhani et al., 2020; Graham et al.,
2020). Given 48 residents per care home, until 16th of April we assume
a reporting rate of (a few tested)/(total infected) = 3/(0.4 × 48) = 5/32.
After 16th April, we assume all the symptomatic cases are reported,
giving a reporting rate of 4/5 (an estimated symptomatic proportion
of COVID-19 cases in long term aged care is 80% Byambasuren et al.,
2020). Between the start of our simulation (6th March 2020) and
16th April 2020 is a time difference of 42 days, and between 17th
April 2020 and the end of our simulation period (15th June 2020)
is a time difference of 60 days. Therefore, for 42 days, we assume a
reporting rate of 5/32, and for 60 days, it is 4/5. The weighted average
and constant CH reporting rate over the simulation period is 𝑟𝐶 =
(5/32)(42/102) + (4/5)(60/102) ∼0.53.

There are two constant death rates in our model: a resident death
rate (𝜇𝐶 ) and a general population death rate (𝜇𝐺). We assume care
home staff have the same death rate as the general population. There
9

were ∼ 899 positive tests and 423 deaths in NHS Lothian care home
residents over the study period. Using our resident reporting rate, we
estimate there were 899.1∕0.53 ∼ 1697 total residents infected with
COVID-19 over the study period. Therefore, we estimate a resident
death rate of 𝜇𝐶 = 423∕1697 ∼ 0.25. Similarly, there were 3123 total
positive tests and 709 deaths over the study period in NHS Lothian
overall. Using our general reporting rate, 𝑟𝐺, we estimate a general
population death rate of 𝜇𝐺 = 709∕(3123∕0.077) ∼ 0.017.

Appendix B. Force of infection, time-share and transmission rate
matrix representations

In this section, we derive a matrix interpretation of the model
dynamics and show how the force of infection 𝛷𝑖, Eq. (4), can be
expressed in terms of matrix multiplication. This is useful for pro-
gramming our model in code and solving the differential equations
numerically.

Our specific time-share assumptions are represented visually as a
directed, weighted network in Fig. 1(b). The corresponding weighted
adjacency matrix, the travel/time-share matrix, is 𝑻 ∈ R𝑛×𝑛, whose
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[𝑖, 𝑗]𝑡ℎ element is 𝑝𝑖𝑗 . The are 𝑛 nodes (subpopulations) in the network
nd and each row of the matrix sums 𝑻 to 1. The rows and columns of

are in the order of {𝐶1, 𝐶2,… , 𝐶𝑚,𝑊1,𝑊2,… ,𝑊𝑚, 𝐺}. 𝑻 consists of
he partitions {𝑇𝐶𝐶 , 𝑇𝐶𝑊 , 𝑇𝑊𝐶 , 𝑇𝑊𝑊 , 𝑇𝐶𝐺 , 𝑇𝑊𝐺 , 𝑇𝐺𝐶 , 𝑇𝐺𝑊 }. For exam-

ple, the submatrix 𝑇𝑊𝐶 defines the proportion of time that each worker
subpopulation spends mixing in each care home. To clarify notation:
matrix 𝑰𝑚 indicates the identity matrix of dimension 𝑚, matrix [𝑎]𝑚×𝑚
ndicates a matrix of dimension 𝑚 × 𝑚 with all entries 𝑎. Hence 𝑻 and
he subsequent sub-matrices are as follows:

=
⎡

⎢

⎢

⎣

𝑻 𝑪𝑪 𝑻 𝑪𝑾 𝑻 𝑪𝑮
𝑻𝑾 𝑪 𝑻𝑾𝑾 𝑻𝑾𝑮
𝑻𝑮𝑪 𝑻𝑮𝑾 𝑻𝑮𝑮

⎤

⎥

⎥

⎦𝑛×𝑛

, (8)

𝑻 𝑪𝑪 = 𝑰𝑚, 𝑻 𝑪𝑾 = 𝑻𝑾𝑾 =
[

0
]

𝑚×𝑚
, 𝑻 𝑪𝑮 =

[

0
]

𝑚×1
,

𝑻𝑮𝑾 =
[

0
]

1×𝑚
,

𝑻𝑾𝑮 =
[

1 − 𝛿
]

𝑚×1
, 𝑻𝑮𝑪 =

[

𝑁𝐶 (0)
𝑁𝐺(0)

𝛾(𝑡)
]

1×𝑚
,

𝑮𝑮 =
[

1 − 𝑚
𝑁𝐶 (0)
𝑁𝐺(0)

𝛾(𝑡)
]

1×1
,

𝑾 𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 − 𝜀)𝛿 𝜀𝛿
2 0 … 0 𝜀𝛿

2
𝜀𝛿
2 (1 − 𝜀)𝛿 𝜀𝛿

2 … 0 0
0 𝜀𝛿

2 (1 − 𝜀)𝛿 … 0 0
⋮ ⋮ ⋮ … ⋮ ⋮
0 0 0 … (1 − 𝜀)𝛿 𝜀𝛿

2
𝜀𝛿
2 0 0 … 𝜀𝛿

2 (1 − 𝜀)𝛿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝑚×𝑚

.

(9)

Furthermore, the transmission rates can be arranged in a matrix
𝜷 ∈ R1×𝑛 whose 𝑘th element is 𝛽𝑘(𝑡). The elements of 𝜷 are in the order
of {𝐶1, 𝐶2,… , 𝐶𝑚, 𝑊1, 𝑊2, ...,𝑊𝑚, 𝐺}. The matrix 𝜷 can be written in
terms of block sub-matrices, as shown below;

𝜷 =
[[

𝛽𝐶 (𝑡)
]

1×𝑚

[

0
]

1×𝑚

[

𝛽𝐺(𝑡)
]

1×1

]

, (10)

Recall that the force of infection 𝛷𝑖, Eq. (4) is given by

𝛷𝑖 =
∑

𝑘 𝑠.𝑡. 𝑁̂𝑘(𝑡)≠0

𝛽𝑘(𝑡)𝑝𝑖𝑘
𝑁̂𝑘(𝑡)

∑

𝑗∈𝑋
𝑝𝑗𝑘𝐈𝑗

Let 𝐒 ∈ R1×𝑛, 𝐄 ∈ R1×𝑛, 𝐈 ∈ R1×𝑛, and 𝐑 ∈ R1×𝑛 be the vectors of
usceptible, exposed, infected, and recovered individuals. The vector
f effective populations is given by 𝐍̂ ∈ R1×𝑛, defined below

̂ = (𝐒 + 𝐄 + 𝐈 + 𝐑)𝐓.

here 𝐓 is the time-share matrix discussed above. The 𝑘th element of
𝐓 ∈ R1×𝑛 gives us the total number of infectious individuals at effective
opulation 𝑘. Now, we let the symbols ⊙ and ⊘ denote element-wise
ultiplication, and element-wise division between two matrices of the

ame dimension.
The force of infection 𝛷𝑖 is given by the 𝑖th element of

𝐓)
(

𝜷 ⊙ (𝐈𝐓)⊘ 𝐍̂
)𝑇

,

here we set the NaN elements of 𝜷 ⊙ (𝐈𝐓) ⊘ 𝐍̂ equal to zero before
aking the transpose. The NaN elements arise since individuals in our
odel mix only in the care home or general effective populations, so

he staff effective populations have size zero (𝐍̂ has elements taking
alue zero).
10
ppendix C. Sensitivity of log-likelihood to perturbations in max-
mum likelihood estimates

In this section, we show the sensitivity of the estimated maximum
og-likelihood (Eq. (7)) to perturbations in each fitted parameter, Fig. 5.
hese suggest that the genetic algorithm found a maximum, while
roviding insight into the relative impact a unit change in each pa-
ameter has on the quality of the fit. Log-likelihood took an open
ownwards parabolic shape with respect to changes in almost all the
itted (using MLE) parameters. The only exception was the rate of
escent of Rt for general population, 𝜔𝑟𝑎𝑡𝑒

𝐺 : log-likelihood is initially
n increasing function of this parameter but then levels out (an elbow
hape). Increased 𝜔𝑟𝑎𝑡𝑒

𝐺 causes the general population Rt to behave
loser to a step function. When 𝜔𝑟𝑎𝑡𝑒

𝐺 > 5 (and all other parameters
ixed), the general population Rt is a step function where the drop in
t is instantaneous, i.e., less than 1 day.
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Rǎdulescu, A., Williams, C., Cavanagh, K., 2020. Management strategies in a SEIR-type
model of COVID 19 community spread. Sci. Rep. 10 (1), http://dx.doi.org/10.1038/
s41598-020-77628-4.

Reilly, J., Crawford, D., Boyle, D.O., 2020. CARE HOME REVIEW: A Rapid Review of
Factors Relevant To the Management of COVID-19 in the Care Home Environment
in Scotland. Cabinet Secretary for Health and Sport, The Scottish Government,
Available from: https://www.gov.scot/publications/root-cause-analysis-care-home-
outbreaks/.

Ripperger, T.J., Uhrlaub, J.L., Watanabe, M., Wong, R., Castaneda, Y., Pizzato, H.A.,
et al., 2020. Orthogonal SARS-CoV-2 serological assays enable surveillance of low-
prevalence communities and reveal durable humoral immunity. Immunity 53 (5),
925–933. http://dx.doi.org/10.1016/j.immuni.2020.10.004.

Roselló, A., Barnard, R.C., Smith, D.R.M., Evans, S., Grimm, F., Davies, N.G.,
et al., 2021. Impact of non-pharmaceutical interventions on SARS-CoV-2 out-
breaks in english care homes: A modelling study. medRxiv [Preprint]; medRxiv
2021.05.17.21257315. Available from: https://www.medrxiv.org/content/early/
2021/05/18/2021.05.17.21257315.

Smith, D.R.M., Duval, A., Pouwels, K.B., Guillemot, D., Fernandes, J., Huynh, B.T.,
et al., 2020. Optimizing COVID-19 surveillance in long-term care facilities: A
modelling study. BMC Med. 18, 1–16. http://dx.doi.org/10.1186/S12916-020-
01866-6.

Social Care Working Group (SCWG) for the Scientific Advisory Group for Emergencies,
2021. Commission: What are the Appropriate Layers of Mitigation To Deploy for
Care Homes in the Context of Post Vaccination Risk Landscape?. UK Government,
Available from: https://www.gov.uk/government/publications/scwg-what-are-
the-appropriate-mitigations-to-deploy-in-care-homes-in-the-context-of-the-post-
vaccination-risk-landscape-26-may-2021.

The Scottish Government, 2020. Coronavirus (COVID-19): Modelling the Epidemic in
Scotland (Issue No. 29). The Scottish Government, Available from: https://www.
gov.scot/publications/coronavirus-covid-19-modelling-epidemic-issue-no-29/.

World Health Organisation, 2021. WHO coronavirus (COVID-19) dashboard. Available
from: https://covid19.who.int/.

http://dx.doi.org/10.1038/s41591-020-0869-5
http://dx.doi.org/10.1038/s41591-020-0869-5
http://dx.doi.org/10.1038/s41591-020-0869-5
http://dx.doi.org/10.1126/scitranslmed.abg4262
http://dx.doi.org/10.1126/scitranslmed.abg4262
http://dx.doi.org/10.1126/scitranslmed.abg4262
http://dx.doi.org/10.1016/j.eclinm.2020.100533
http://dx.doi.org/10.1016/j.jinf.2020.11.021
http://dx.doi.org/10.1016/j.jinf.2020.11.021
http://dx.doi.org/10.1016/j.jinf.2020.11.021
http://dx.doi.org/10.1136/bmjopen-2020-039652
http://dx.doi.org/10.1136/bmjopen-2020-039652
http://dx.doi.org/10.1136/bmjopen-2020-039652
https://www.medrxiv.org/content/early/2020/04/30/2020.04.25.20079913
https://www.medrxiv.org/content/early/2020/04/30/2020.04.25.20079913
https://www.medrxiv.org/content/early/2020/04/30/2020.04.25.20079913
http://dx.doi.org/10.1056/NEJMoa2005412
http://dx.doi.org/10.1056/NEJMoa2005412
http://dx.doi.org/10.1056/NEJMoa2005412
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/mid-year-population-estimates/population-estimates-time-series-data
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/mid-year-population-estimates/population-estimates-time-series-data
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/mid-year-population-estimates/population-estimates-time-series-data
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/mid-year-population-estimates/population-estimates-time-series-data
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/mid-year-population-estimates/population-estimates-time-series-data
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-scotland
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-scotland
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-scotland
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-scotland
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-scotland
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-scotland
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-scotland
http://dx.doi.org/10.1017/ice.2020.1369
http://dx.doi.org/10.1016/j.ajic.2021.07.001
http://dx.doi.org/10.1371/journal.pcbi.1009780
http://dx.doi.org/10.1017/ICE.2020.113
https://ltccovid.org/wp-content/uploads/2020/12/Report-3_Care-homes_Vaccination_Strathclyde.pdf
https://ltccovid.org/wp-content/uploads/2020/12/Report-3_Care-homes_Vaccination_Strathclyde.pdf
https://ltccovid.org/wp-content/uploads/2020/12/Report-3_Care-homes_Vaccination_Strathclyde.pdf
https://services.nhslothian.scot/Pages/default.aspx
https://services.nhslothian.scot/Pages/default.aspx
https://services.nhslothian.scot/Pages/default.aspx
https://www.medrxiv.org/content/10.1101/2020.06.30.20143487v2
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/impactofcoronavirusincarehomesinenglandvivaldi/26mayto19june2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/impactofcoronavirusincarehomesinenglandvivaldi/26mayto19june2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/impactofcoronavirusincarehomesinenglandvivaldi/26mayto19june2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/impactofcoronavirusincarehomesinenglandvivaldi/26mayto19june2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/impactofcoronavirusincarehomesinenglandvivaldi/26mayto19june2020
http://dx.doi.org/10.1016/j.idm.2020.06.008
http://dx.doi.org/10.1016/j.idm.2020.06.008
http://dx.doi.org/10.1016/j.idm.2020.06.008
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland/resource/2dd8534b-0a6f-4744-9253-9565d62f96c2
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland/resource/2dd8534b-0a6f-4744-9253-9565d62f96c2
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland/resource/2dd8534b-0a6f-4744-9253-9565d62f96c2
http://dx.doi.org/10.1038/s41598-020-77628-4
http://dx.doi.org/10.1038/s41598-020-77628-4
http://dx.doi.org/10.1038/s41598-020-77628-4
https://www.gov.scot/publications/root-cause-analysis-care-home-outbreaks/
https://www.gov.scot/publications/root-cause-analysis-care-home-outbreaks/
https://www.gov.scot/publications/root-cause-analysis-care-home-outbreaks/
http://dx.doi.org/10.1016/j.immuni.2020.10.004
https://www.medrxiv.org/content/early/2021/05/18/2021.05.17.21257315
https://www.medrxiv.org/content/early/2021/05/18/2021.05.17.21257315
https://www.medrxiv.org/content/early/2021/05/18/2021.05.17.21257315
http://dx.doi.org/10.1186/S12916-020-01866-6
http://dx.doi.org/10.1186/S12916-020-01866-6
http://dx.doi.org/10.1186/S12916-020-01866-6
https://www.gov.uk/government/publications/scwg-what-are-the-appropriate-mitigations-to-deploy-in-care-homes-in-the-context-of-the-post-vaccination-risk-landscape-26-may-2021
https://www.gov.uk/government/publications/scwg-what-are-the-appropriate-mitigations-to-deploy-in-care-homes-in-the-context-of-the-post-vaccination-risk-landscape-26-may-2021
https://www.gov.uk/government/publications/scwg-what-are-the-appropriate-mitigations-to-deploy-in-care-homes-in-the-context-of-the-post-vaccination-risk-landscape-26-may-2021
https://www.gov.uk/government/publications/scwg-what-are-the-appropriate-mitigations-to-deploy-in-care-homes-in-the-context-of-the-post-vaccination-risk-landscape-26-may-2021
https://www.gov.uk/government/publications/scwg-what-are-the-appropriate-mitigations-to-deploy-in-care-homes-in-the-context-of-the-post-vaccination-risk-landscape-26-may-2021
https://www.gov.scot/publications/coronavirus-covid-19-modelling-epidemic-issue-no-29/
https://www.gov.scot/publications/coronavirus-covid-19-modelling-epidemic-issue-no-29/
https://www.gov.scot/publications/coronavirus-covid-19-modelling-epidemic-issue-no-29/
https://covid19.who.int/

	COVID-19 in Scottish care homes: A metapopulation model of spread among residents and staff
	Introduction
	Materials and methods
	Mathematical model
	Model calibration process
	Data
	Parameters set from evidence and assumptions
	Maximum likelihood estimation

	Sensitivity analysis

	Results
	Data fit
	Sensitivity analysis

	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Parameter assumptions and estimates
	Appendix B. Force of infection, time-share and transmission rate matrix representations
	Appendix C. Sensitivity of log-likelihood to perturbations in maximum likelihood estimates
	References


