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INTRODUCTION

Sea louse infestation remains one of the most serious chal-
lenges to salmon aquaculture in many regions. Infestation 
with this ectoparasite can pose a risk to salmon health and 
reduces fish growth, thus decreasing aquaculture productiv-
ity (Abolofia et al. 2017). It has also been suggested that such 
infestations may contribute to declines in wild salmonid 
populations (Krkosek et al. 2007; Rogers et al. 2013; Nekouei 
et  al.  2018). To manage sea louse infestation on salmon 
farms, farm operators use a variety of methods (Overton 

et al. 2019), including, among others, parasiticides to kill the 
parasites, fallow periods between production cycles where 
farms are emptied of fish to interrupt the parasite's life cycle, 
mechanical delousing to remove sea lice from salmon, and 
cleaner fish that feed on sea lice attached on salmon. In 
many instances, neighboring salmon farms adopt integrated 
pest management (IPM) to limit the exchange of sea lice 
among farms (Brooks 2009) and reduce external infestation 
pressure (McEwan et  al.  2019). The success and mainte-
nance of these interventions are contingent on an accurate 
and precise surveillance system.
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Abstract
Objective: Efficiently managing sea lice on salmon farms through active surveil-
lance, crucial for lice abundance estimation, is challenging due to the need for effec-
tive sampling schemes. To address this, we developed an application that considers 
infestation levels, farm structure, and management protocols, enhancing the preci-
sion of sampling strategies for sea louse abundance estimation.
Methods: Simulation-based methods are valuable for estimating suitable sample 
sizes in complex studies where standard formulae are inadequate. We introduce 
FishSampling, an open Web-based application tailored to determine precise sample 
sizes for specific scenarios and objectives.
Result: The model incorporates factors such as sea lice abundance, farm pen num-
bers, potential clustering effects among these pens, and the desired confidence level. 
Simulation outcomes within this application provide practical advice on how to de-
cide on the number of fish and pens to sample, under varying levels of assumed 
clustering.
Conclusion: This approach can be used across the salmon aquaculture sector to im-
prove sampling strategies for sea lice abundance estimation and balance surveillance 
costs against health objectives.
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To be successful, a surveillance system must accu-
rately estimate the abundance of sea lice, defined as 
the number of sea lice per fish, a standard metric used 
to measure levels of sea lice infestation, by sampling 
salmon. Liu and vanhauwaer Bjelland (2014) noted that 
the accuracy of sea lice abundance measurements were 
critical to effective resource management for salmon 
health. It is also obvious that errors in sea lice estima-
tion may result in unnecessary interventions, with all 
of the cost and associated negative outcomes, or in the 
poorly timed application of required interventions. In 
addition, salmon-producing countries have regulations 
or guidelines in place that sea lice abundance should 
not exceed certain “treatment threshold” limits (Revie 
et al. 2009), with a range of negative consequences when 
such limits are breached. For these and other reasons, 
effective sea lice surveillance programs are critical, with 
appropriate sampling strategies being the cornerstone to 
such effectiveness.

Cost-efficient sampling strategies form the basis for 
effective surveillance in animal production systems (Alba 
et al. 2017). Due to the large number of fish on a salmon 
farm, the proportion sampled will always be small. The 
unnecessary handling of fish should also be avoided due 
to the potential stress that this may cause to the animals. 
It is therefore a requirement of responsible surveillance 
that a minimum sample size be determined, based on 
numbers that can generate an acceptable level of sam-
pling precision. The impact of inaccurate estimates of sea 
lice abundance on lice management has been described 
using mathematical models (Jeong et  al.  2021). In addi-
tion, the prevention of unnecessary treatment should help 
minimize the mortality associated with stress during such 
interventions (Overton et al. 2019). The optimal sampling 
strategy will be different, depending on farm structure, sea 
lice abundance, and the level of parasite clustering among 
pens. In addition, the desired level of precision will have 
an important bearing in determining a suitable sampling 
regime. This implies that we should not expect some abso-
lute numbers that can be applied across all farms, or even 
to every case of sampling within a given farm.

The development of a practical method to simulate 
sampling events that accurately reflect sea lice abundance 
on salmon farms has significant benefits both in terms of 
cost savings and improved fish welfare. This study illus-
trates the use of FishSampling, a flexible and accessible 
modeling tool for salmon farm operators responsible for 
fish health on salmon farms, to estimate sea lice abun-
dance and to support assessments as to when the treat-
ment threshold may have been exceeded. We describe 
how the application was created and then, using some ac-
tual sampling protocols for different scenarios, illustrate 
how the application can be used in a field setting. While 

the tool is suitable for all species of sea louse (e.g., Caligus 
rogercresseyi in Chile, or the other Caligus spp. found else-
where around the globe), the examples given will tend to 
be most closely aligned to sampling situation as they relate 
to salmon louse Lepeophtheirus salmonis, the species most 
commonly of concern on Atlantic Salmon Salmo salar 
farms outside of Chile.

METHODS: MODELING

We set up a hypothetical salmon farm consisting of mul-
tiple pens in which salmon can be infested with sea lice. 
Our model assigns a certain level of sea lice infestation for 
each fish on the farm based on the negative binomial dis-
tribution (Heuch et al. 2011). This distribution, which has 
a higher variance than its mean, as opposed to the Poisson 
distribution, where the mean and variance are equal, has 
been found to better approximate the nonrandom man-
ner in which sea lice are observed on salmon in fish farms 
(Jeong and Revie 2020). The shape of a particular nega-
tive binomial distribution depends on two parameters: the 
mean (μ) and a dispersion parameter (κ). In our models, μ 
is the average number of sea lice per fish (i.e., abundance) 
while κ determines the shape of the distribution (i.e., 
variance). It was found that various levels of abundance 
across sites in several countries could be described by a 
reasonably narrow range of κ with a mean value of 2.19 
(Jeong and Revie  2020). Once a user inputs an average 
abundance (μ) of sea lice in a farm, this abundance and 
the dispersion parameter of 2.19 (κ) are used to stochas-
tically determine the number of sea lice present on each 
fish in the farm. These simulated fish are then randomly 
sampled from the farm using the Monte Carlo method, 
from which an observed mean abundance for the farm 
can be estimated.

We provide an option to consider the impact of dif-
ferent sea lice abundance levels being present among 
pens when estimating the lice abundance for the whole 
farm. The pattern of sea lice infestation often differs from 
pen to pen, and this clustering effect has been found to 

Impact statement

The open-source application FishSampling en-
hances sea lice monitoring on salmon farms with 
a novel simulation-based approach for sample 
size determination. It offers precise estimates of 
sea lice abundance, crucial for regulatory pur-
poses, and aids in the efficient allocation of sam-
pling resources.
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significantly affect abundance estimation during sampling 
on salmon farms (Revie et al. 2007). The degree of clus-
tering associated with sea lice infestation on fish among 
pens can be measured using the intraclass correlation co-
efficient (ICC), where a high ICC value signifies that the 
number of sea lice on fish resembles other fish in a given 
pen on a farm, as compared to infestation patterns over 
the whole farm. A high ICC is consistent with a situation 
where abundance levels differ markedly among pens on 
a given farm. In a study of sea lice abundance data from 
Scottish salmon farms, it was found that the ICC values 
typically ranged from 0 (no clustering) up to around 0.35 
(Revie et al. 2005). In our simulations, probable ranges of 
ICC values are provided by the application, depending on 
the presumed abundance. Users can check how the sim-
ulated abundances of each pen are distributed based on 
the ICC value they specify. If the user wishes to assume 
that differences in abundance among pens on a farm is not 
considerable, they may omit any clustering effect (which 
also results in much shorter simulation run times).

The Web application includes three scenarios, where 
each scenario is designed to support sampling for a spe-
cific purpose. Thus, after choosing one of these three sce-
narios, the user is required to input specific conditions, 
such as sample size, assumed abundance, and number of 
pens. The number of fish in a pen was set as a reasonably 
small population size of 2000 in the interest of simulation 
efficiency. (In trials based on fish numbers well in excess 
of 2000 fish, it was found that little variability was gener-
ated in the sampling results.) By setting up different simu-
lations based on these inputs, the application can generate 
feedback on the probability that the sampling purpose is 
likely to be satisfied. We used the R statistical environment 
to run the simulations (R Core Team 2022) and the Shiny 
package (Chang et al. 2017) to build the interactive Web 
application of FishSampling, which is freely available at 
https://​jaewo​onjeo​ng.​shiny​apps.​io/​FishS​ampling. In ad-
dition, the source code is published on GitHub (https://​
github.​com/​jaewo​onjeo​ng/​FishS​ampling).

RESULTS

Sampling Scenarios

Three scenarios were designed that satisfy different goals 
when sea lice abundance is being estimated through 
sampling (Figure 1). Scenario 1 provides the user with a 
probability that an estimated abundance will fall within 
the extent of two abundance values. Using scenario 1 
provides an insight into the level of precision that can 
be expected given a certain sample size and cage selec-
tion choices. Scenario 2 provides a “special case” of this 

range comparison by generating the probability of how 
likely it is that an estimated abundance will be higher 
than a specified level of abundance. This scenario has 
been designed to be used in the context of lice treatment 
thresholds, where it is important to determine whether 
the estimated abundance is lower than some regulated sea 
lice limit. Scenario 3 is designed for the case where the 
user wishes to compare two abundance levels, for exam-
ple, subsequent to a sea lice treatment event. The output 
generates a probability as to how likely it is that the two 
abundances in question will in fact be observed to be dif-
ferent from one another. All scenarios were simulated for 
500 iterations.

As an illustration of the use of scenario 1 within the 
FishSampling application, we might consider a farm in 
British Columbia, Canada, where the regulations spec-
ify that at least three pens per farm should be assessed 
with 20 fish per pen being sampled (Fisheries and Oceans 
Canada 2014). On this basis we suppose that a total of 60 
fish were sampled from 3, 5, and 10 pens, on a farm con-
sisting of 10 pens (Table 1 and Figure 2). The true abun-
dance was assumed to be 3.0, while the lower and upper 
target limits were set to 2.7 and 3.3, respectively. The ICC 
was assumed to be 0.26. When only three pens were sam-
pled, it can be seen that the likelihood of estimating an 
abundance between the two target limits was 0.25, or a 
probability of 25%. This rises to around 0.33 if five pens 
are sampled, and to 0.56 when all 10 pens are sampled. 
Here, it was found that the difference of “many pens” is 
obvious due to the substantial clustering effect. However, 
even when the ICC was lowered to 0.08, the benefit of 
“many pens” was still reflected in the likelihood values of 
0.47, 0.59, and 0.77.

As an illustration of the use of scenario 2 within the 
FishSampling application, we also consider a farm in 
British Columbia, Canada, where there is a regulatory 
threshold of three mobile sea lice during the period when 
wild juvenile salmon are out-migrating (Fisheries and 
Oceans Canada 2014). On this basis, we consider a farm 
with 10 pens and use simulations from scenario 2 based 
on a total sample size of 60 (Table 1 and Figure 3). We set 
the (presumed) true abundance to be 3.3 and assume that 
there is a fair degree of clustering (ICC = 0.26). The sim-
ulation allows the user to explore the probability that the 
estimated abundance will apparently be higher than the 
3.0 threshold and compares this outcome to cases where 
the overall sampled total (N = 60) is taken from 3, 5, or 10 
pens on the farm. Using three pens, it can be seen that 
the likelihood of getting an estimated abundance over the 
3.0 limit is only 0.60 (despite the fact that we “know” the 
true value to be 3.3). This rises to around 0.68 if five pens 
are sampled from, and to 0.76 when all 10 pens are sam-
pled. While this level of clustering is not unrealistic based 

https://jaewoonjeong.shinyapps.io/FishSampling
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on empirical data (Revie et  al.  2005, 2007), the “many 
pens” difference is most clear where significant clustering 
is present. Reducing the ICC to a value of 0.08 resulted 
in increased likelihood values of 0.68, 0.71, and 0.81 that 
the estimated abundance would appear to be over the 3.0 
threshold for the cases of 3, 5, and 10 pens, respectively.

As an illustration of the use of scenario 3 within the 
FishSampling application, we consider a similar setting to 
that used in scenarios 1 and 2, but now propose a postin-
tervention comparison. Once again, a total of 60 fish were 
sampled from 3, 5, and 10 pens from a farm consisting of 
10 pens (Table 1; Figure 4). The initial level of abundance 

F I G U R E  1   Diagram of the structure used in FishSampling. Any case requires total sample size (A) and putative abundance (B). If the 
clustering effect is chosen, the user should specify the number of pens to be sampled (C), the total number of pens on a farm (D), and the 
ICC (intraclass correlation coefficient) value (E). Next, the user decides which of the three scenarios they wish to explore, and the necessary 
input for each scenario (F) must be entered. Then, the simulation generates outputs relating to the likelihood that the purpose for which the 
salmon sampling is being carried out will be satisfied.

T A B L E  1   Summary of simulated outcome likelihood values.a For scenarios 1 and 2, two distinct ICC (intraclass correlation) values were 
applied, while scenario 3 utilized two different total sample sizes.

Number of 
sampled pens

Number of sampled fish 
per pen for scenarios 1 

and 2

Scenario 1 Scenario 2 Scenario 3

ICC = 0.26 ICC = 0.08 ICC = 0.26 ICC = 0.08
Total sample 

size = 60
Total sample 

size = 120

10 6 0.56 0.77 0.76 0.81 0.90 0.97

5 12 0.33 0.59 0.68 0.71 0.84 0.86

3 20 0.25 0.47 0.60 0.68 0.78 0.79
aDue to the nature of the randomness simulated in the application, any specific execution of the scenarios above will likely result in slightly different likelihood 
values. These were generated using the parameters specified in the text, based on 500 iterations (a value that can be modified by the user).
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was assumed to be 1.7 sea lice, with an ICC of 0.2 to rep-
resent a fair degree of clustering among pens. We then as-
sumed that we wished to detect an approximate decrease 
of 25%, to an abundance of 1.3, and also assumed that the 
ICC would decrease to 0.09 due to a more homogeneous 
situation postintervention. Using three pens, the likeli-
hood of detecting this level of reduction in abundance is 
0.78. This increases to around 0.84 if five pens are sampled 
from, and to 0.90 when all 10 pens are sampled. It was still 
found that the “many pens” approaches brought benefits, 
although these were less marked due to the reduction in 
clustering, particularly subsequent to the intervention. In 
this case, doubling the total number of fish sampled (to 
120) resulted in only minor changes, with likelihoods of 
0.79, 0.86, and 0.97 that a decrease of 25% would be de-
tected from the initial level of abundance, for the cases of 
3, 5, and 10 pens, respectively.

DISCUSSION

Cost-effective interventions to manage marine ectopara-
sites rely on efficient monitoring systems (Myksvoll 

et al. 2018). Considering the substantial impact that sea 
lice infestation can have on the productivity of farmed 
salmon and conservation of wild fish, salmon-producing 
countries have developed regulations and guidelines in-
dicating the number of fish and the number of pens that 
should be sampled as well as the frequency of sampling 
(Misund  2019). However, it is important to understand 
the level of precision around lice abundance estimation 
that can be expected when using a particular sampling 
strategy. Such an understanding should help prevent an 
overinterpretation of the precision of sample-based esti-
mates, and ensure a more appropriate use of these results 
in the effective management of sea lice.

When a sample size needs to be determined in applied 
veterinary epidemiology, it is not uncommon for the sit-
uation to be inconsistent with a standard study design. 
Individual fish are aggregated into pens, and as such, sim-
ple formulae, which assume independence among fish, 
cannot be meaningfully applied to the calculation of sam-
ple sizes (Stevenson 2021). In such cases, “the advantage 
of simulation methods is that appropriate sample sizes can 
be estimated for complex study designs for which formula-
based methods are not available” (Stevenson  2021). To 
develop this simulation-based application, we employed 

F I G U R E  2   Distribution of abundance values from simulated 
output for scenario 1, which highlights the probability of achieving 
the desired level of precision in lice abundance estimation 
assuming certain inputs. The upper panel and the lower panel 
represent the results for ICC (intraclass correlations) values of 
0.26 and 0.08, respectively. The likelihood of estimating the true 
abundance is represented by the area between the two green lines. 
The black and green lines represent true abundance and lower and 
upper limits, respectively.

F I G U R E  3   Distribution of abundance values from simulated 
output for scenario 2, showcasing the probability of correctly 
assessing lice abundance of a farm compared to a certain level of 
lice abundance with the assumed inputs. The upper panel and the 
lower panel represent the results for ICC (intraclass correlations) 
values of 0.26 and 0.08, respectively. The area to the right of the red 
line indicates this probability. The black and red lines represent the 
true and desired levels of abundance, respectively.
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basic programming and computer simulation to display 
the reliability and confidence limits of particular sam-
pling strategies.

The modeling approach presented here allows stake-
holders to adopt efficient sampling strategies for sea lice 
abundance estimation for a range of purposes. In partic-
ular, this application is useful in providing advice on the 
number of pens and the number of sampled fish per pen, 
under an assumption that the total number of sampled fish 
is a fixed limit. Previous studies have emphasized that in 
the presence of significant clustering, fewer pens and a 
greater number of fish will generate more precise estima-
tion than using a larger number of fish from fewer pens 
(Revie et al. 2005, 2007; Jeong and Revie 2020). This appli-
cation provides practical advice on how to decide on the 
number of fish and pens to sample, under varying levels of 
assumed clustering. There may of course be various sources 
of sampling bias, such as an increased likelihood of captur-
ing poor performers with dip nets, which the approaches 
outlined here are unable to address (Jeong et al. 2021).

One limitation of this approach is that the modeled 
outputs are heavily influenced by the users' assumptions 

of putative abundance and the level of clustering present 
(captured by the specified ICC value). This can appear 
to be something of a “chicken and egg” situation, as the 
purpose of sampling is to obtain an estimate of the sea 
lice abundance. The solution is to start with reasonable 
guesses around key assumptions by referring to previ-
ous sampling results. The model also allows for various 
“what-if” analyses. For example, what would be the im-
plications on abundance precision if the actual ICC value 
was, say, 0.4 as opposed to the initial assumed value of 
0.15? Another way to improve sampling precision is to 
enhance the counting skills of farm personnel, which 
should improve the estimation of sea lice abundance 
(Elmoslemany et  al.  2013), as it has been documented 
that counters' competence can significantly affect esti-
mates (Heuch et al. 2011). In addition, insufficient sample 
size can often be compensated for by engaging in more 
frequent sampling. Such approaches more effectively sup-
port the adoption of Bayesian estimation, where the use 
of informed priors can result in more precise estimates 
than would be the case under a frequentist model where 
noninformed priors are assumed (Musella et al. 2014). An 
exploration of the effects of sampling frequency on esti-
mated precision is beyond the scope of this study, but it 
would be interesting for further studies to include both 
sample size and frequency in a more complete assessment 
of sea lice sampling designs. In addition, the development 
of novel technologies in the future may help mitigate con-
cerns around sampling inaccuracy. For example, under-
water camera systems and a machine-learning approach 
are being applied to count sea lice on salmon (Solvang and 
Hagemann 2018), and environmental DNA metabarcod-
ing has been suggested as an accurate and cost-effective 
tool for monitoring marine parasite populations (Peters 
et al. 2018).

In summary, this study illustrated a novel approach to 
enhancing decisions around sample size determination 
for adequate sea lice infestation estimation on salmon 
farms. This article shows how to use a simulation-based 
approach to estimate sample size, when a formula-based 
approach has limited validity. Furthermore, the approach 
could be extended to other sampling contexts, particularly 
those relating to the estimation of ectoparasites where 
overdispersion is typically observed. This freely available 
application also contributes to an enhanced understand-
ing of the main factors that affect the estimation of sea lice 
abundance at the farm level, ultimately supporting better 
management decisions to manage and control the impact 
of sea lice infestation on salmon farms.
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