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1 | INTRODUCTION

Bayesian vector autoregressions (VARs) are now routinely used with large numbers of dependent variables. The use of
nonconjugate priors or non-Gaussian error distributions typically requires the use of Markov chain Monte Carlo (MCMC)
methods, which leads to a large computational burden. This means full system estimation of the reduced form VAR is dif-
ficult or infeasible with large VARs. This has led many researchers to avoid full system estimation and instead work with
a structural VAR with a diagonal error covariance matrix. The structural VAR allows for estimating one equation at a time
that greatly reduces the computational burden making Bayesian estimation of large VARs practical. However, standard
specifications for the structural VAR that allow for equation-by-equation estimation (e.g., Carriero et al., 2019) suffer
from order dependence (i.e., posterior and predictive densities depend on the manner in which the variables are ordered
in the VAR). The importance of order dependence, and in particular, its impact on predictive variances in larger VARSs, is
discussed in papers such as Arias et al. (2023) and Chan et al. (2021). There have been some order invariant approaches
proposed that do allow for equation-by-equation estimation, including Chan et al. (2021) and Wu and Koop (2023), but
these assume Gaussian errors and the former relies on the presence of stochastic volatility to identify the model. However,
the presence of large VAR shocks that imply sudden shifts in variances and/or asymmetries in predictive densities means
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more flexibility is required. These considerations motivate the present paper where we develop a VAR with a nonpara-
metric non-Gaussian error distribution for the shocks. The MCMC algorithm we derive for this VAR is computationally
efficient and order invariant.

There is a growing VAR literature that wishes to develop flexible models for the VAR errors. However, our model differs
from this literature by its use of nonparametric methods and its focus on computational efficiency and order invariance.
For instance, several papers, including Chiu et al. (2017) and Karlsson et al. (2023), work with VARs with parametric,
non-Gaussian error distributions (e.g., Student's ¢ distributions), but do not allow for equation-by-equation estimation
and, thus, are computationally slower than our approach. A VAR with a nonparametric distribution for the structural
shocks is Braun (2021), which does allow for equation-by-equation estimation conditional on the impact matrix. But this
paper uses departures from normality to identify the structural shocks. Moreover, the MCMC algorithm becomes more
involved due to the fact that the contemporaneous relations need to be sampled using Metropolis—Hastings (MH) updates.

To develop our model, we borrow ideas from the literature on semiparametric and nonparametric estimation of random
effects in panel data models, see Frithwirth-Schnatter et al. (2004) or Dunson and Xing (2009). The key insight is that we
can exploit the random effect representation of the covariance matrix of the system to enable equation-by-equation estima-
tion, see Fox and Dunson (2015). We decompose the shock vector of the VAR into two components. The first component
is a vector of random effects that feature an unknown multivariate distribution, which exhibits correlation between the
errors in different equations. The second component is a vector of Gaussian random shocks that are uncorrelated across
equations. Conditional on the random effects, the model becomes a system of uncorrelated regression models. But after
integrating out the random effects, the resulting shock distribution features cross-sectional dependence. The key impli-
cation is that fast estimation is possible as the VAR coefficients can be drawn one equation at a time conditional on the
random effects. By assuming a Dirichlet process mixture (DPM) for the vector of random effects, we achieve great flexi-
bility as the joint distribution of the shocks can be skewed, feature heavy tails, be heteroskedastic, or be multimodal. In
the multiple equation VAR context, this flexibility is potentially of great benefit as it allows for the errors in the different
equations to have different properties.

In an exercise using artificial data, we show how our nonparametric VAR can automatically uncover a variety of depar-
tures from Gaussianity. In an empirical exercise involving a large data set of US macroeconomic variables, we demonstrate
the advantages of our model both for forecasting and for structural economic analysis.

The remainder of the paper is structured as follows. The next section shows how a random effects representation of
the VAR can be used to facilitate equation-by-equation estimation and how we treat nonparametric shocks in the VAR.
Section 3 discusses the prior setup, sketches the MCMC algorithm and discusses some computational details. Sections 4
and 5 apply the model to synthetic and real data, respectively. The final section gives a summary and concludes the paper.
Data S1 provides details on the dataset used and includes additional empirical results.

2 | VARS WITH NONPARAMETRIC SHOCKS
2.1 | Alinear VAR with an additive Gaussian error structure

Before introducing our nonparametric specification for the shocks to the VAR, it is instructive to begin with a parametric

version of our model. This involves an M-dimensional vector of dependent variables, {y, }thl, which evolves as

YV.=AX;+ €+, €~ N0y, ), ve ~ N (0, Q) (@)

where X; = (yi_l, ey y;_p)’ is a K(= Mp) vector of lagged endogenous variables and A denotes an M x K matrix of VAR
coefficients. This specification differs from a conventional VAR in that it has two M-dimensional errors, €, and v;, which
are assumed to be independent over time and of one another at all leads and lags. The only restriction on X is that it is
positive definite whereas Q; is restricted to be a diagonal matrix with individual error variances wy;, ... , wp;. We assume
that the logarithms of w; evolve according to independent random walk processes, leading to a standard SV specification.

The covariance matrix of the VAR errors, €; = €; + v, is &, = X + Q,. Notice that the SV assumption on the idiosyncratic
shocks implies that the main diagonal elements of Z; are given by [&]; = crl.zl. + wjy, where o-l.zl. is the (i, i)th element of X.
We note that, without further restrictions, this specification is not identified as [E,]; = (al.zl. + A) + (wi; — A) where A is any
scalar. The key point to note is that this only relates to the main diagonal elements of Z,; as Q; is diagonal.
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In general, this lack of identification poses no problem for Bayesian estimation and prediction with this model provided
a proper prior is used. Furthermore, if the researcher wishes to impose identification, this can easily be done in standard
cases. For instance, beginning with Cogley and Sargent (2005), many popular Bayesian VARs have assumed the w; to
follow stochastic volatility (SV) processes. Fixing the SV initial conditions to be zero suffices to identify the model without
restricting the initial values for the error covariance matrix.

The reasons why we adopt this additive error structure relate to efficient computation and order invariance. To explain
these points, we first summarize some key issues in the Bayesian VAR literature that are particularly acute with larger
VARSs. The traditional reduced form VAR is given by (1) but with v, set to zero.! Direct Bayesian estimation of this reduced
form VAR is computationally challenging when M is large due to the need to carry out matrix manipulations involving
the very high dimensional posterior covariance matrix of A. Accordingly, it is common to carry out Bayesian estimation
in a structural form involving the use of the Cholesky decomposition of the reduced form error covariance matrix. That
is, decomposing £ = BDB' where B is lower triangular with ones on the diagonal and D is diagonal, the structural VAR
is obtained by multiplying both sides of the VAR by B™'. The structural VAR has a diagonal error covariance matrix,
which means estimation can be carried out one equation at a time. This leads to huge computational improvements. For
instance, in the specification used in Carriero et al. (2019), the MCMC algorithm based on the reduced form VAR requires
O(M?®) elementary operations to take one draw of the VAR coefficients but only O(M*) with the structural VAR. Thus, there
are enormous computational benefits from working with VARs specified in such a way as to allow equation-by-equation
estimation.

However, Bayesian results using the structural VAR based on the Cholesky decomposition are order dependent (i.e.,
posterior and predictive results depend on the way the variables are ordered in the VAR). This contrasts with the reduced
form VAR for which standard implementations (e.g., use of an inverse Wishart prior for X) are order invariant. The empir-
ical importance of ordering issues has been investigated in papers such as Arias et al. (2023) and Chan et al. (2021) and
found to be substantive, particularly in the case of large VARs and particularly for predictive variances and higher order
predictive moments. Thus, most Bayesian VAR papers either work in reduced form, and face computational challenges
unless the VAR dimension is very low, or work in structural form and produce empirical results that depend on the way
the variables are ordered in the VAR.

If we now return to our VAR with additive errors in (1), it is straightforward to show that it suffers neither of these
drawbacks. Computationally efficient MCMC algorithms can be developed that exploit the fact that (conditional on
€;) the equations are independent of one another. But marginally (i.e., after integrating out ¢,), the shocks to y, are
cross-sectionally correlated. In relation to order-invariance, it is worth emphasizing that the ordering issue does not relate
to the likelihood (i.e., the structural and reduced form VARs lead to the same likelihood function) but rather relates
to the prior that is placed on the error variances and covariances. Indeed Carriero et al. (2019) refer to it as the “prior
ordering issue.” In our additive error setup, order invariance can be achieved by retaining an inverse Wishart prior for
X. As Q; is diagonal any conventional set of priors will lead to order invariance. For instance, in the homoskedastic ver-
sion of the model, assuming w; for i = 1 ... M to have inverse-Gamma priors that are independent across i leads to
order invariance. In the heteroskedastic case, assuming w;; to have independent SV processes leads to order invariance
as well.

This additive specification, however, also has a drawback. As opposed to a standard Cholesky-type decomposition
of the reduced-form covariance matrix of the shocks, our specification implies that Q, only impacts the main diago-
nal elements of &; and thus does not scale up the covariances between shocks accordingly. Hence, in periods where
Q; becomes large (such as during a recession), the covariances between shocks are not scaled up accordingly and thus
decrease in relative importance. As empirical evidence shows that shocks tend to co-move in turbulent times this fea-
ture could be detrimental for forecasting accuracy. Below we will discuss how our nonparametric model can solve this
shortcoming.

In subsequent sections, we will work with a nonparametric version of this model and provide full details of the priors we
use and our computationally efficient MCMC algorithm. We stress that the issues discussed in this subsection also hold
with nonparametric VARs. However, this subsection provides the basic insights into how these computational benefits are
achieved and why our prior is order invariant. In addition, it may be found useful by Bayesian VAR researchers who are
happy to remain parametric and work with linear VARs with Gaussian shocks. Specifying the VAR as we have done, with

ITypically, the assumption of homoskedasticity is relaxed, but allowing for this does not affect the arguments in this subsection.
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additive errors, is an attractive way of achieving fast, order invariant inference even in conventional VARs. Although the
heteroskedastic version of this specification has the possibly undesirable feature that error covariances decline in relative
importance if Q; becomes large.

2.2 | Allowing for shocks of unknown form

The model in the preceding subsection had a linear conditional mean and Gaussian error structure. In many contexts, lin-
earity and Gaussianity can be restrictive, and this is particularly so in extreme times such as the recent Covid-19 pandemic.
In this paper, we focus on relaxing the Gaussianity assumption relating to the shocks hitting the model. We will maintain
the assumption of a linear conditional mean and assume a standard SV process for Q;.? In particular, our nonparametric
VAR is the same as the one specified in the preceding section except for assumptions relating to €;. The assumption of
Gaussianity will be replaced by a Dirichlet process mixture (DPM) of Gaussians. We will show that by this simple exten-
sion, we will achieve great gains in empirically relevant flexibility. But because the error process remains conditionally
Gaussian, the benefits discussed in the preceding subsection (i.e., equation-by-equation estimation and order invariance)
will be retained.

The ideas underlying our treatment of €; are inspired by papers such as Frithwirth-Schnatter et al. (2004) and Dun-
son and Xing (2009), which develop parametric and nonparametric Bayesian treatments of random effects in panel data
models, and accordingly, we refer to €, as a vector of random effects. We model the random effects by introducing a base
measure G and defining a parametric family of component densities f with unknown parameters 9:

mm=/?wwmww=2mﬂm&x

Jj=1

where the weights Z;’;l n; sum to 1. We assume that the component densities f are Gaussian with M X 1 mean vector u;
and M x M variance-covariance matrix X;, which implies

ple) = Y nifueduy Ep),

=1

with f denoting the density of the multivariate Gaussian distribution.

DPMs can be written (see, e.g., Escobar & West, 1995) in terms of a discrete latent random variable 6; € {1,2 ... }, with
Prob(é6; = j) = #;, that indicates which mixture component to adopt at time ¢. Thus, the DPM assumption implies the
VAR errors are g; ~ N (0, E;) and time-varying error covariance matrix &; = X5 + Q, where X5 = X; if 6, = j. Thus,

Y= ”5t +AXt + Qétwt + v, (2)
——

&

where Q; is any matrix with the property that X5 = Q,, Q:%' Various choices for this decomposition of a covariance matrix
are possible (e.g., eigendecomposition or Cholesky decomposition).?

This model has several properties that make it attractive for use in empirical macroeconomics. It retains a conditionally
(i.e., conditional on §;) Gaussian structure that leads to simplicity of computation and structural economic interpretation.
However, it is extremely flexible as infinite mixtures of Gaussians can approximate any distribution. Notice that =, varies

2Adopting nonparametric approaches for either of these can easily be done. For instance, Huber and Rossini (2020), Huber et al. (2020) and Clark et al.
(forthcoming, Clark et al. (forthcoming) model the conditional mean of a VAR nonparametrically using regression trees. The last of these papers also
uses regression trees to model the conditional variance. Approaches such as these could be added to the model of the present paper if extra flexibility
is desired. However, as will be demonstrated below our model is already very flexible and can model any of the empirical regularities common with
macroeconomic data.

3Note that if we use the Cholesky decomposition in this manner it does not undermine the order invariance of our model. It is merely used as a step
in writing the likelihood function (which is order invariant) to facilitate interpretation and estimation. See subsection 3.1 of Carriero et al. (2019) for a
discussion of this issue and why VAR ordering issues relate to the prior used on the error covariance matrix.
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across components in the DPM. Depending on the estimated values for §; this allows for a wide variety of behavior (i.e.,
structural breaks, regime switching, and outliers) in the contemporaneous relationships between the elements in y,.

By additionally allowing for SV (via our specification for €;), we have an error process of great flexibility allowing for
impulse responses and other structural features to differ over time in a way that is estimated from the data. That is, both
6 and Q; allow for different types of parameter change, the latter only changing the error variances and being of a smooth
nature, with the former additionally relating to the error covariances and allowing for more abrupt types of regime change
or structural break. To see this feature, notice that a typical main diagonal element of &, is

= 2
[:t]ii = O-ii,ét + wi.

In this equation, ‘71'21‘, 5 the (i, i)th element of X5, changes abruptly over time and is thus capable of handling large outliers
whereas w;; changes smoothly and thus captures slowly varying trends in the error variances. Using only the latter implies
that in the presence of large shocks, the SV model would only slowly adapt and would thus imply a higher variance when
the large shock has already faded out. This model resembles the SV with outliers model of Carriero et al. (2022).

These properties mean the restrictions on the relations between volatilities and error covariances of the specification
that involves a single Gaussian distribution for v; noted in the previous subsection (i.e., that covariances between shocks
would not scale up when volatility increases) are relaxed. To see this more clearly, suppose there is an economic event that
causes both volatilities and the covariances between shocks to increase. Our model would react by selecting a Gaussian
distribution with a larger covariance matrix. If we were to use a single Gaussian distribution, the corresponding covari-
ances would remain as is, and we would thus systematically underestimate the correlations between the shocks. Under
our more flexible mixture specification, which implies a larger choice for X5, and thus a matrix E, that would imply larger
error variances but also stronger correlations across shocks.

The conditional representation of the model also gives insights on how the DPM handles location shifts in the shocks.
To see this, note that we allow for the intercept to change over time in a nonparametric manner. Models with time-varying
intercepts are common in macroeconomics (see, e.g., Stock & Watson, 2007 and Antolin-Diaz et al., 2017). Traditionally,
intercepts have assumed to follow a random walk. However, our nonparametric treatment allows us to uncover the form of
parameter change from the data (see also Hauzenberger et al., 2022, for a related but parametric treatment of time-varying
parameter regressions).

It is also worth noting that an alternative model for nonparametric shocks would omit the additive error structure
by setting v, = 0 and simply have one vector of errors that is modeled using a DPM. But this apparently simpler form
would both be more computationally demanding (i.e., because order invariant equation-by-equation estimation would be
difficult to achieve) and would omit the SV process. That is, a DPM model for the errors on its own would be very flexible
at modeling structural breaks and outliers, but the assumption that the DPM errors are independent over time means that
it is less able to model gradual changes in volatility. In contrast, our model combines the benefits of a very flexible shock
distribution with the gradual volatility change of an SV process.

3 | BAYESIAN INFERENCE IN THE VAR WITH NONPARAMETRIC SHOCKS
3.1 | Prior

In this subsection, we describe our prior. We emphasize that the innovations in this paper relate to the parameters in
the random effects. For the remaining parameters, any standard Bayesian priors can be used. In this paper, we use the
Normal-Gamma prior of Griffin and Brown (2010) for the VAR coefficients (see, e.g., Huber & Feldkircher, 2019) although
any other common Bayesian VAR prior could be used (e.g., the Minnesota prior or a global local shrinkage prior such as
the Horseshoe).

For the error variances of the log-volatilities log w;, af)’l., we use Gamma priors. The prior implies shrinkage toward
homoskedasticity. This can be seen by noting that

6t . ~G <1, L) S +04,; ~ N(0,Cop).
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We then use yet another Gamma prior on ¢,,; ~ G(9, 954, /2). This prior features M equation-specific shrinkage parame-
ters, a global shrinkage factor A ~ G(0.01,0.01) that pulls all state innovation variances toward zero and a hyperparameter
9, = 0.6. It allows to decide, in a data-based manner, whether heteroskedastic measurement errors are relevant or not.
We also consider a homoskedastic version of our model where Q; = Q for all ¢ and in this case assume priors w; ~
¢ Yay,by) fori=1 ... Mwitha, = b, = 1073.
Our prior for the mean of the random effects is similar to one developed in Malsiner-Walli et al. (2017). It is a Gaussian
prior on p; that shrinks the different elements of u; toward a common location:

u; ~ N (ug.Bo) for j =1, ..., 0,
with By = diag(bs, ... ,by) being a diagonal prior variance matrix with
b; ~ G(cp, dp).

The hyperparameters cp, dj are greater than zero. This is the Normal-Gamma prior proposed in Griffin and Brown (2010).
If ¢y = 1, we obtain the LASSO (Park & Casella, 2008). However, the LASSO is known to overshrink significant signals and
undershrink irrelevant ones. Hence, we set ¢, = dp = 0.6. This leads to a model that implies more shrinkage and flexible
tail behavior. As our prior is fully hierarchical, we also require another prior on p,. This is assumed to be N'(0,c1Iy)
with ¢ — 0, yielding a noninformative prior. In all our empirical work, we set ¢ = 1073 to render the prior relatively
noninformative but proper.

The combination of a flexible shrinkage prior that forces the component-specific means toward a common location has
implications on the clustering behavior of the mixture model. To illustrate this, let x;; denote the jth element of y; for
i = kor k (i.e., these are the two intercepts in the jth equation for two different components of the infinite mixture k # k).
The prior above implies the following in terms of the distance between y;x and u ; (see Yau & Holmes, 2011):

(Mjk — M)
V2

Thus, our prior is centered over intercept homogeneity and b; controls the strength of this belief. If b; is close to zero, the
intercepts collapse to a common value (which is yu;, the jth element of p,). For larger b;, we allow for more heterogeneity
in the intercepts. This feature is crucial as the presence of the nonzero location parameter allows us to capture skewness in
the shocks. If we use a noninformative prior on the component means, we would risk overfitting the data. Our shrinkage
prior effectively enables us to investigate how much asymmetries are in the data in a fully automatic manner.

For the covariance matrices for each component in the DPM, we use a conjugate Wishart prior on X! as this leads to
order invariance within each component that implies order invariance in the VAR as a whole. Thus, we assume

2;1 ~ W(C(), Zal)

Note that we parameterize the Wishart such that the prior mean equals coX;" with ¢, being its degrees of freedom. The
prior hyperparameters can be chosen in any way. In our empirical work, we use a relatively noninformative data-based
prior inspired by the Minnesota prior. In particular, we set the prior degrees of freedom as ¢y = M + 4. The prior scaling
matrix is estimated from the data and set as £, = diag(é7, ... ,8;,) where &f are the OLS error variances obtained by
running an AR(p) model for y;;.

In terms of the weights in the DPM, we use a stick breaking process (SBP) prior on #;. The SBP prior introduces
additional auxiliary random variables v, (called sticks) such that the weights are obtained sequentially:

Jj-1

n=vy, Nj=V; H(l —v)), v; ~ B(1, ).

i=1

The parameter a determines the clustering behavior of the mixture model. To see this, notice that the prior probability of
forming a new cluster when assigning &, conditional on all £,(z # t) is (Frithwirth-Schnatter & Malsiner-Walli, 2019; Lau
& Green, 2007)
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T-14a«a )

and thus decreases in 7. This implies that the DPM has the potential to create few larger clusters and then has a low
probability of opening up new clusters that are populated by relatively few observations. In macroeconomic data, this
behavior might be necessary to single out events that are different from those produced by the DGP in normal times such
as the Covid-19 pandemic. As « crucially impacts this behavior, we treat it as an unknown parameter and estimate it from
the data. We assume that « arises from a Gamma distribution a priori, that is, « ~ G(2,4), which implies a prior mean 0.5
and a prior variance 0.125. This choice was originally suggested by Escobar and West (1995) and encourages clustering
behavior of the mixture model.

3.2 | Posterior simulation of the VAR coefficients and random effects

In this subsection, we describe how we simulate the VAR coefficients and random effects in more detail. The other steps
are relatively standard, and we sketch them in the next subsection. A key theme of this paper is computational efficiency
and, to achieve this end, we need to draw the VAR coefficients one equation at a time. This requires knowledge of the
random effects that serve to establish correlations across the shocks. Accordingly, we describe how we draw the VAR
coefficients and the random effects in more detail.

Conditional on the random effects {¢; }thl, we draw the equation-specific VAR coefficients A; from

Ajle ~Nm;, V), i=1, ..., M,

where « denotes all arguments necessary to define the full conditional posterior distribution and

denote the posterior moments with X; being a T X K matrix with typical tth row X/ \/5”, V. denotes the prior variance

matrix and Y; denotes a T x 1 vector with typical element given by (y;; — i)/ \/ait where ¢;; is the ith element of ¢;.
For large models (characterized by T <« K), the inversion of the posterior covariance matrix becomes computationally
cumbersome. Accordingly, one can use the algorithm of Bhattacharya et al. (2016). This has computational complexity of
O(T?K) instead of O(K?), which speeds up computation enormously.*

Next we describe the sampling steps involved in simulating the random effects in more detail. The key point to notice
is that the random effects are conditionally independent over time and hence p(ey, ... ,er|s) = H:T=1 p(€e;]|+) with time ¢
posteriors given by

etl. ~ N(Et"_/e,[)7 (4)

and moments given by
Ver =25, = 5,5, + Q)7 Bs, € = s+ Z5,(Z5, + Q)7 0, — AX; — ).

These moments directly follow from the fact that y, — AX, and €, are jointly Gaussian and the conditional distribution
of €|y, is given by Equation (4). An interesting special case arises if we set Q; = 0V¢. This results in a degenerate Gaussian
distribution for the error with posterior covariance 1_/'5,, = 0 and the posterior mean reduces to €, = (y, — AX;). Hence, we
would end up with a standard VAR.

4This algorithm requires that the prior covariance matrix is simple to invert. This is the case in our framework.
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3.3 | Full conditional MCMC sampling

Our MCMC sampler is relatively straightforward and contains several steps that involve standard full conditional distri-
butions. Here, we summarize the different updating steps necessary to sample from the joint distribution of the latent
states and coefficients of the model.

Our sampler iterates between the following steps:

1. Sample A;|« for each equation from p(A;|+) = N (m;, V) as described in the previous subsection.
—1
2. Sample Z;l from p(ZJI:1 |*) = W(&, Zk ). The posterior degrees of freedom are ¢, = co+T%/2 where T, = Zthl I(6; =
k) denotes the number of observations allocated to cluster k. The posterior scaling matrix is given by

= 1 - - _
To=s ) G = Hg)P— ) + g
2::5,=k [ '

wherey, =y, — A'x; —v,.
3. Sample y; from p(py|+) = N (uy, V ,.1)- The posterior moments of the random intercept terms are given by

Vo= (5T +By) 7,

e =V ():,;1 > ¥ +Bgl;40).

t:6,=k

4. Sample p, from p(uy|+) = N (Hy, V,.0) With

J
= 1 — 1
VM,O = jBO’ [10 = \7 J;l ”j

5. Sample {et}tT:1 from p(ey, ... ,e7|*) = HIT: L N (e, V.,) with moments given below Equation (4).

6. Sample b; (fori =1, ... ,M) from p(b;|+) = GIG(po, px.z;) With pg = 2dp, px = c» —J/2and z; = Z§=1 (Wji — Hoi)?
and GIG denoting the generalized inverse Gaussian distribution.>

7. Sample a using a Metropolis—Hastings step. As proposal distribution, we use the log-normal distribution cen-
tered on the previously accepted value of log «, denoted by log a@. More formally, the proposal distribution reads:
loga* ~ N (loga@, ¢2) with ¢, denoting a scaling parameter. We set this scaling parameter to achieve an acceptance
probability between 40% and 60%. This is done by using the first 25% of the burn-in stage to tune ¢, accordingly.

8. Sample wy;, ... ,wnm; from p(wyy, ... , wme). For the SV case, wj1, ... ,w;r (for j =1, ... ,M) and the parameters of
the state equation are drawn using the algorithm outlined in Kastner and Frithwirth-Schnatter (2014) and imple-
mented in the R package stochvol. When we assume homoskedasticity, we simply draw w; from an inverse
Gamma posterior.

9. Sample vy, ... ,v;_1 from p(vy, ... ,vj_1|e) = Hle B (1 + T 0+ Zl]:j+1 Tl>.

10. Sample 64, ... ,67 from p(6y, ... ,6r|) = Hthl p(6¢] ) using the Slice sampler (Kalli et al., 2011) in two steps. First,
letu;|6, ~ U°(0, {5,) denote a set of auxiliary random variables with {; = (1 - ww*—1 and w = 0.8. Then, conditional
on u;, we simulate &, from its discrete distribution as follows:

I(u < &)

Prob(6; = k|») x
Ck

Nk f./\/(j)tlﬂka Zk)

Notice that J is a truncation parameter that determines the effective number of regimes that is obtained by solving
1- 25:1 ¢; < min(uy, ... ,ur). This implies that our infinite mixture model becomes effectively finite dimensional and
thus computationally tractable. As an important special case, we obtain the VAR described in Section 2.1 by fixing J = 1.
We will refer to this model as BVAR—J1.

5The density of the GIG is given by f(x) = xilem 3 lxH),
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Time required to sample 10 draws from the joint posterior for different values of M

4004

1001

504

25+

3

Time (in seconds)

0.254

M=

Models: == BVAR-DPM BVAR-J1 === BVAR-SV (system wide)

FIGURE1 Comparison of computation times between BVAR-DPM, BVAR-J1 and BVAR-SV (full system) for M € {5, ... ,40}. The y-axis is
in log scale.

In most of our applications, we repeat this algorithm 20,000 times and discard the first 10,000 draws as burn-in. For the
actual data application and in simulations, we did not encounter any mixing issues when we consider functions of the
parameters such as impulse responses or forecast densities.

Before applying our model to the data, it is worth stressing that the mixture model is not identified with respect to
relabeling the latent discrete indicators. This does not cause any issues if interest is exclusively on either unconditional
impulse responses or forecast distributions. In our structural application, we discuss impulse responses conditional on
a given cluster. To avoid label switching in this case, we introduce restrictions that ensure a unique ordering ex-post.
Specifically, we post process the posterior draws by sorting the mixture probabilities in a descending order and then
relabeling the corresponding mixture model accordingly. This implies that the first cluster is always the one with the most
observations.

3.4 | Computational aspects of our algorithm

The algorithm described in the previous subsection is efficient and has the same complexity as the original (but incorrect)
version of the algorithm proposed in Carriero et al. (2019) and its corrected variant proposed in Carriero et al. (2022).5
This is because we sample from the equation-specific posteriors. This implies that the posterior covariance matrices are
K x K and inversion of such matrices has computational complexity O(K?) (or O(T?K) if T < K). A similar computational
advantage can be obtained by applying the algorithm outlined in Kastner and Huber (2021) that uses a factor model to
render equation-by-equation estimation possible. In any case, all these algorithms are much more efficient than the one
based on treating the VAR as a full system of equations in large dimensions.

Figure 1 illustrates the magnitude of efficiency improvements of equation-by-equation estimation relative to system
wide estimation and the increase in computation required to add the DPM. It compares our model (BVAR-DPM) to a
restricted version of it, which is Gaussian and obtained by setting J = 1 (BVAR-J1) and a BVAR with SV but estimated

®Notice that Carriero et al. (2019) do not use the efficient sampling algorithm of Bhattacharya et al. (2016) to simulate from the equation-specific
coefficient posteriors if T < K.

95UB017 SUOWIWOD SAIES1D) 8|l |dde au Aq poueA0B 8.2 S9[o1Le YO ‘8sN JO'Sa|NJ o} Akeiq 1 8UIUO A1 UO (SUOIPUOI-PUe-SWLBI LIS A8 | 1M AReiq 1 puljuo//Sdny) SUORIPUOD Pue SWd | 84} 885 * [7202/80/80] UO AR1q1Tauliu A8]iIM ‘99110 enued yBinguip3 'SIN puUenods 1o} uoireonp SHIN Aq 2808 e/Z00T 0T/10p/wod A8 | ARq 1 jpul|uoy/sdiy wouj pepeojumod ‘0 ‘SSZT660T



HUBER and KOOP
TABLE 1 Empirical distribution of inefficiency factors Minimum 25% 50% 75% Maximum
ba.sed on 1000 (.rccletalne.:d) d.raws frdom the poster;or of A . BVAR-DPM 1 115 140 196 8.85
using system wide estimation and our proposed approach. BVAR-SV (system wide) 1 174 220 276 8.77

using system wide estimation (labeled BVAR-SV (system wide)). All models feature a single lag. Figure 1 compares the
computation times necessary to generate 10 draws from the posterior. Note that the y-axis of the figure is in log scale.

The figure shows that BVAR-DPM and BVAR-J1 are faster than system wide estimation when M exceeds 12 (in the
case of BVAR-J1) and when M exceeds 14 (in the case of the BVAR-DPM). In larger panels, full system estimation of the
BVAR-SV becomes much slower and the computational burden increases substantially. Differences between the blue and
orange line reflect the additional computational burden from adding the DPM piece to the model. In most empirical work,
the effective number of regimes is small (i.e., the infinite mixture reduces to a four-components mixture of Gaussians).
This implies that if the true number of regimes is small, the computational burden would also decrease under the DPM
specification.

The algorithms of Carriero et al. (2019) and Carriero et al. (2022) have the same computational complexity as our
approach that sets J = 1. In this case, computation times would be very similar (and the shape of the curves would, in fact,
be identical) and our algorithm thus scales as well as theirs. However, it is worth stressing that ours is order invariant,
can have nonparametric errors, and is applicable to any conditional mean function.

One question pertaining to our algorithm is whether it has favorable mixing properties. We illustrate this using the
large US macroeconomic dataset we describe in Section 5.1 and using p = 5 lags. As our method is much faster than
system wide estimation, we follow Carriero et al. (2019) and start by producing 1000 draws from the posterior of A using
the system wide algorithm. This takes around 1.2 h. We then run our proposed algorithm for 1.2 h as well. This produces
around 17,000 draws from the posterior distribution. As the chain from our algorithm is much longer, we thin the chain
to have 1000 draws for both estimation methods. We then compare inefficiency factors (IFs) between both methods. The
empirical quantiles of IFs over the elements of A are shown in Table 1.

This analysis reveals that both algorithms produce draws from p(A|+) that mix well. The maximum IF is 8.85 in the
case of the BVAR-DPM and around 8.77 for the BVAR-SV estimated using the system wide algorithm. Considering the
quantiles of the empirical distribution shows that the IFs of the BVAR-DPM are always lower than the ones obtained from
the BVAR-SV. Because IFs below 30 are generally viewed as acceptable (Primiceri, 2005), we take this as evidence that
using our algorithm and adding the DPM piece yields an algorithm that mixes better than the system wide algorithm.

4 | ARTIFICIAL DATA EXERCISE

We illustrate the merits of our approach by simulating data from a set of different DGPs. These DGPs differ in terms of
model size, the error distributions and the number of observations. With respect to model size, we consider three sizes
that capture typical situations in applied macroeconomic work. The smallest DGP has M = 5 endogenous variables, the
medium-sized DGP features M = 10 and the largest includes M = 20 endogenous variables.

With respect to the error distributions, we consider three different shock assumptions. Two of these three feature sub-
stantial departures from homoskedasticity and normality while one assumes Gaussian and homoskedastic shocks. All of
these DGPs assume that the conditional mean of the process is given by

Vi=Ay, +€, y,=0,t=1, .., T,

where A has diagonal elements A; = 0.75 and off-diagonal elements sampled from a Gaussian distribution 4;; ~
N(0,0.1%)(i # j). To ensure stationarity, we reject draws of A, which imply an unstable model.”
The errors ¢, differ across the DGPs in the following four ways.

1. For the first DGP, we assume that &, is multivariate Student t with three degrees of freedom and covariance matrix
W. The matrix W is created as follows. We specify a lower uni-triangular matrix U with u;; ~ N'(0,0.1%) for
i=2,..,M;j=1,...,M—1and thenset W = UU'.

7This happens only in very rare cases.
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2. The second DGP has a common stochastic volatility specification (Carriero et al., 2016). We assume that the shocks
are Gaussian distributed with zero mean and time-varying covariance matrix W, = e% x W. The log-volatility
process 8, evolves according to a random walk with innovation variance 0.252.

3. Finally, we also consider a homoskedastic DGP that assumes that £, ~ N (0, W).

For all these DGPs, we simulate time series of three different lengths. The first one is a short sample of T = 100 observa-
tions. This reflects quarterly macroeconomic data commonly observed in, for example, the Euro Area. Then, we focus on
a sample of T = 250 observations. This resembles a situation commonly faced when working with US quarterly macroe-
conomic data. Finally, we also consider longer time series with T = 750 observations. The long sample serves to analyze
how the model would behave if the researcher uses monthly data.

For comparison, we consider the BVAR-DPM and the BVAR-DPM with J = 1 and set the number of lags equal to 5. All
models are estimated with homoskedastic and SV measurement errors. This combination allows us to analyze whether
the BVAR-DPM is capable of recovering non-Gaussian features in the DGP without overfitting. In particular, the final DGP
can be used to focus on the question whether adding the nonparametric component to the model leads to a deterioration
in estimation accuracy or whether the DPM can recover the simple Gaussian case without overfitting.

To rank models in terms of estimation accuracy, we focus on the mean absolute error (MAE) between the true set of
coefficients and the posterior median of the estimated VAR coefficients. Table 2 shows the accuracy of the BVAR-DPM
relative to the BVAR with Gaussian errors in terms of their estimation of the VAR coefficients. All results are means across
MAE:s from 50 replications from each of the DGPs.

In general, our results indicate that if the Gaussian-errored model is mis-specified, the DPM model is consistently more
accurate. These accuracy gains increase with the sample size. This result is not surprising given that for, for example,
t-distributed shocks, using a smaller sample implies a lower probability of observing outliers over time. Hence, in short
samples, the series we simulate look like being generated with Gaussian shocks and the parameter estimates thus do not
profit much from having a DPM specification in the shocks. With larger samples, more outliers mechanically show up
and the increased sample size does not overweight the adverse effect these outliers have on parameter estimates.

When we consider differences across model sizes, we find that accuracy gains from using the full DPM mixture that
potentially involves an infinite number of Gaussians relative to simply setting J = 1 decline with larger information sets.
This finding points toward the fact that large models can soak up non-Gaussian features in the data.

In cases where the BVAR J = 1 is correctly specified (i.e., with the homoskedastic model and homoskedastic DGP and
with the SV model with the SV DGP), relative MAEs are very close to one. In fact, for the homoskedastic and Gaussian
DGP, both the DPM and the model with J = 1 produce identical parameter estimates.

This short discussion illustrates that the BVAR-DPM is capable of capturing model features such as skewness and fat
tails, but when the DGP does not have such features it can successfully uncover the underlying Gaussian model with very
little overfitting.

TABLE 2 Simulation results.

Homoskedastic Stochastic volatility
t SV Homosk. t SV Homosk.
T, M| DPM J=1 DPM J=1 DPM J=1 DPM J=1 DPM J=1 DPM J=1
100 5 0.97 1.50 0.91 2.39 1.00 1.55 1.03 1.12 0.67 0.69 1.03 1.09
10 0.98 1.59 1.01 1.85 1.00 1.63 1.00 1.03 0.90 0.91 1.00 1.02
20 0.99 2.02 1.00 2.26 1.00 2.07 1.00 1.01 0.93 0.93 0.99 0.99
250 5 0.77 1.39 0.74 4.49 1.00 1.59 0.80 1.03 0.36 0.37 0.99 1.12
10 0.82 1.39 0.90 2.21 1.00 1.60 0.86 1.03 0.72 0.73 1.03 1.08
20 0.97 1.35 1.00 1.86 1.00 1.60 093 1.00 0.85 0.85 1.01 1.03
750 5 0.47 1.28 0.66 7.61 1.00 1.48 0.47 0.86 0.21 0.22 1.02 1.21
10 0.55 1.28 0.73 4.01 1.00 1.44 0.63 0.90 0.37 0.38 1.02 1.15
20 0.70 1.18 0.75 3.49 1.00 1.23 0.72 0.92 0.42 0.43 1.01 1.11

Note: This table shows mean absolute error (MAE) ratios between BVAR-DPM and a BVAR that sets J = 1 and has homoskedastic
measurement errors. Shaded columns are raw MAEs multiplied by 100. The MAEs are computed as the difference between the
posterior median of the coefficients and the true VAR coefficients. All results are based on averaging over 50 replications from
each DGP.
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TABLE 3 Effective number of clusters. o . Stochastic volatility
T| M| t SV Homosk. t SV Homosk.
100 5 30 1.5 1.0 28 1.2 1.0
10 26 1.4 1.0 26 13 1.0
20 26 2.0 1.0 25 1.8 1.0
250 5 29 21 1.0 29 1.8 1.0
10 28 1.9 1.0 2.8 2.0 1.0
20 3.0 25 1.0 29 23 1.0
750 5 34 26 1.0 33 20 1.0
10 29 24 1.0 28 23 1.0
20 27 23 1.0 29 22 1.0

When we use the DPM, we can also infer the effective number of clusters. This is achieved as follows. For the ith run
of our MCMC algorithm, we compute

J
1= Y 1(1">0).
J

We can then compute the posterior median of these runs to obtain an estimate of the number of clusters. Table 3 shows
the mean over these posterior median estimates across the different realizations from the DGP. Note that, when the DGP
is Gaussian and the DPM extension is unnecessary, our algorithm is correctly selecting J = 1.

When the DGP involves a Student's ¢ distribution, we are finding an interesting pattern where the number of clusters is
inversely related to the VAR dimension (this holds for T € {100,750}). For T = 250, we find that the number of clusters
is close to three for all values of M. This is consistent with our conjecture that, as the VAR dimension increases and more
explanatory variables appear on the right hand side of each equation, the extra variables can fit some of the fat tailed
behavior of the DGP.

When we use a DGP that features SV, we find a slightly lower number of clusters and a rather mixed pattern when it
comes to the relationship between size and the number of clusters. Comparing our different specifications that either use
SV on the measurement error variances or assume them to be homoskedastic reveals that if the former specification is
adopted, the effective number of clusters declines slightly.

5 | EMPIRICAL APPLICATION USING US DATA
5.1 | Data and specifications

We use US quarterly macroeconomic data from 1960Q1 to 2023Q4 taken from the FRED database, see McCracken and
Ng (2020). A full list of variables is given in Section A in Data S1. In our forecasting exercise, we evaluate forecast perfor-
mance beginning in 1977Q1 and rely on the iterated method of forecasting and consider forecast horizons of one-quarter
and 1 year.

We work with small (M = 4), medium (M = 7) and large (M = 26) dimensional VARs with the variables included
in each being given in Data S1. All variables are transformed to be approximately stationary (with detailed informa-
tion provided in Data S1). In the forecasting exercise, we evaluate the performance of the models by focusing on the
variable-specific performance for GDP growth, the unemployment rate and inflation. These three variables form our set
of focus variables. We choose a long lag length, p = 5, and trust our shrinkage prior to prevent overfitting.

In Section 5.4, we carry out a forecasting exercise to assess whether adding the DPM to the VAR improves predictive
accuracy. To this end, we compare the performance of the model with nonparametric shocks (BVAR-DPM) to models with
Gaussian errors that we obtain by taking our BVAR-DPM and setting J = 1. This is the model described in Section 2.1.
All other specification details, including prior choice, are the same in all of our models. In this way, we can focus on
the specific issue of what the use of the DPM adds to the model. Note that we are not also including a BVAR with full
error covariance because, as established previously, it is computationally much more burdensome in larger models and
is expected to give results very similar to the BVAR with J = 1. We consider two versions of every model, one with SV and
one homoskedastic.

95UB017 SUOWIWOD SAIES1D) 8|l |dde au Aq poueA0B 8.2 S9[o1Le YO ‘8sN JO'Sa|NJ o} Akeiq 1 8UIUO A1 UO (SUOIPUOI-PUe-SWLBI LIS A8 | 1M AReiq 1 puljuo//Sdny) SUORIPUOD Pue SWd | 84} 885 * [7202/80/80] UO AR1q1Tauliu A8]iIM ‘99110 enued yBinguip3 'SIN puUenods 1o} uoireonp SHIN Aq 2808 e/Z00T 0T/10p/wod A8 | ARq 1 jpul|uoy/sdiy wouj pepeojumod ‘0 ‘SSZT660T



HUBER and KOOP

WILEY-==a=

L

TABLE 4 Probability of a given effective number of clusters. J= 1 2 3 4 5 6 7 8 9
0.00 0.03 0.77 0.19 0.01 0.00 0.00 0.00 0.00

1960 1980 2000 2020

probability of being in cluster 1 —— probability of being in cluster 2

1960 1980 2000 2020

probability of being in cluster 3 —— probability of being in cluster 4

FIGURE 2 Probability of being in a given cluster over time.

5.2 | Full sample analysis

In order to illustrate the properties of our model, we begin by carrying out full sample estimation using a single model:
the BVAR-DPM without SV using the medium data set. We use the homoskedastic version of the model because, as we
will show in our forecasting experiment, this model performs well and simplifies interpretation of the impulse responses
discussed in the next subsection.

An advantage of the DPM is that it can be used to estimate the effective number of components in the Gaussian mixture
and our simulation results show that it does so accurately. Table 4 presents evidence relating to this. It provides quantita-
tive information on the posterior distribution of the effective number of clusters. The table suggests thatJ = 3 is the most
likely number of clusters and there is no probability associated with J = 6 or more clusters. We are finding no evidence
in favor of the conventional Gaussian VAR that hasJ = 1.

The probabilities of being in one of the first four clusters estimated by the DPM over time can be seen in Figure 2.
This figure shows the posterior probability that 6, = j for j = 1, ... ,4. The probability of the fifth cluster will be one
minus the sum of these lines and which is effectively zero so is not plotted here. To introduce persistence and simplify
the discussion, we report yearly rolling averages of these probabilities. Recall that we solve the label switching issue by
sorting the posterior draws ex post so that the mixture weights are descending.

Cluster 1 is predominant and holds with high probability in most periods. Cluster 2 is associated with times of high
volatility such as periods in the mid 1970s and early 1980s as well as the financial crisis and, to a lesser extent, the pan-
demic. Cluster 3 is largely associated with the pandemic but plays a small, brief role in other times of high volatility. These
are the three main clusters. The tiny amount of probability associated with Cluster 4 is in the early 1980s. Another inter-
esting point to note is that, much of the time Cluster 1 applies with probability near one. But in more volatile times like
the financial crisis and the pandemic, no single cluster holds with probability near one. For instance, early in the Covid-19
pandemic each of the main three clusters receives roughly equal probability. Thus, in normal times, a single Gaussian
distribution suffices to model the error distribution, but in less stable times a mixture of two or more Gaussians is required.

A deeper understanding of the properties of the clusters can be obtained by looking at the posteriors of Xy fork =1 ... 5.
Figure 3 contains box and whisker plots of the posterior of the log of the determinant of each ;. The red horizontal line
is the (log) determinant of X,

It can be seen that Cluster 1 is the low volatility cluster whereas Clusters 2 and 3 have much higher volatility (as
evidenced by much larger log-determinants). Clusters 2 through 3 also have much more uncertainty (e.g., wider credible
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

FIGURE 3 Boxplots of the posterior of the log-determinant of X; and the log-determinant of X, (red line)

intervals) than Cluster 1. Clusters 4 and 5 (which play a role very rarely and appear to be similar to one another) lie
between the low volatility Cluster 1 and higher volatility Clusters 2 and 3.

Comparing the posterior of the determinants to the prior reveals that particularly in Clusters 1, 2, and 3, our model
departs substantially from the prior while in the other cases, posterior medians are much closer to the prior. This is not
surprising because Cluster 4 and 5 include only relatively few observations and are thus strongly influenced by the prior.
Notice that the prior, being calibrated using the error variances from AR(5) regressions, implies variances that are too
high in normal periods (i.e., the observations allocated to regime 1) and too low in turbulent times (i.e., the observations
allocated to regimes 2 and 3).

5.3 | Structural impulse responses to a monetary policy shock

Next we use the medium-scale BVAR-DPM without SV to investigate the dynamic effects of monetary policy shocks using
a standard identification scheme with a Cholesky ordering where the Federal Funds rate is ordered above financial market
variables and below real quantities. This ordering implies that real quantities belong to the “slow-moving” block whereas
financial markets are “fast-moving” (Bernanke et al., 2005). To economize on space, we focus on the IRFs of the three
focus variables (output growth, unemployment, and inflation).

A feature of our approach is that, conditional on the mixture indicators §;, our model can be interpreted as a constant
parameter VAR with a fully time-varying covariance matrix. This implies that the structural form of the model features
time-varying parameters. To see this, multiply (2) by ¥, the inverse of the lower Cholesky factor of E;, from the left.
This yields

Y ly, =AX +&. (5)

Here, we let A, = ‘I‘t‘lA and & ~ N (0y,Iy). The key implication is that the structural coefficients of the model are
time-varying and all parameters in the structural form of the model change if the regime shifts.

We start our analysis by considering median impulse responses across clusters. Because within each regime we have
a standard VAR with constant coefficients, we compute the IRFs per regime. This gives a set of J dynamic responses
to a monetary policy shock. To analyze differences in shapes and magnitudes, we focus on the posterior median in the
main body of the paper. Results that include posterior credible intervals and the reactions of the other variables in y, are
provided in Section B in Data S1.

Figure 4 presents posterior medians of the impulse responses implied by each cluster. In general, the model produces
impulse responses that are consistent with our economic intuition. In response to unexpected increases in the policy rate,
output growth declines and the unemployment rate increases. Inflation, unexpectedly, increases, pointing toward a price
puzzle. It is worth stressing that this price puzzle is most pronounced in the second cluster, which is the high volatility
cluster.

When we compare differences across clusters, it can be seen that Cluster 2 stands out as implying very different impulse
responses but in ways that are different for the different variables. For instance, all of the clusters are very similar for
long-run impulse responses (e.g., greater than 10 quarters), Cluster 2 differs greatly from other clusters at short horizons
(e.g., less than 1 year) for most of the variables. In particular, short-run responses in Cluster 2 appear to be much more
pronounced. This is driven by the fact that the variances of the structural shocks are much larger and the monetary shock
implies a stronger impact reaction of the Federal funds rate (see panel (d) of Figure B.1 in Data S1). For medium-run
responses, the second cluster also yields responses of GDP growth and unemployment rates, which differ from the
remaining clusters. For GDP growth, our results indicate an overshoot in real activity after around 2 years whereas
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the unemployment reaction appears to be much more persistent. This points toward differences in the transmission of
monetary policy to real activity in turbulent periods (i.e., periods that are allocated to Cluster 2).

Next we turn to the question about the overall effects of monetary shocks on the three focus variables. The overall
impulse responses (i.e., averaged over the different clusters) for our core variables (i.e., the ones common to all VARSs)
are given in Figure 5. These are calculated by taking the impulse responses for cluster i and weighting it by the posterior
mean of ;. This figure also contains credible intervals for both our BVAR-DPM and the BVAR with J = 1 so that the
reader can gage whether the differences in impulse responses between our model and the Gaussian-errored equivalent
are substantial in a statistical sense.

The figure suggests that differences between the model the DPM and the model that sets J = 1 are not substantial in the
sense that the credible intervals of the BVAR-DPM include the ones of the BVAR in almost all cases. The main exception is
the reaction of inflation. Here, we observe a much stronger immediate increase (i.e., more evidence for a price puzzle) but
also a slightly more pronounced one-year-ahead decline in inflation. It is also worth stressing that short-run unemploy-
ment reactions of the BVAR with J = 1 suggest substantial posterior mass of the IRFs are located below zero, suggesting a
decline in the unemployment rate to a monetary tightening. The BVAR-DPM allocates appreciably less posterior evidence
to declines in unemployment rates.

(a) GDPC1 (b) UNRATE (c) CPIAUCSL
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FIGURE 4 Median impulse responses to a monetary policy shock for the different clusters. Note: The black lines show the posterior
median of the impulse responses for the different clusters
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FIGURE 5 Median impulse responses to a monetary policy shock, average across clusters. Note: The black lines show the posterior median
of the impulse responses for the BVAR-DPM. The shaded region is a credible interval. The orange lines denote credible intervals for the
Gaussian BVAR. Both intervals cover 16th to 84th percentiles
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FIGURE 6 Impulse responses over time. Note: The gray shaded area denotes the 16th to 84th percentiles of the posterior of the
four-step-ahead responses. The blue dashed lines represent the 16th and 84th posterior percentiles of the eight-step-ahead responses

Finally, we turn to the question about how impulse responses evolve over time. The discussion of the cluster proba-
bilities over time in combination with the cluster-specific IRFs provides some information on how IRFs change across
clusters and in which periods the model assigns observations to these clusters. However, the actual time ¢ IRF is a con-
vex combination of the IRFs across the different regimes. Hence, when viewed at a particular point in time, substantial
differences can arise to the cluster-specific IRFs.

In Figure 6, we show the 16th and 84th posterior percentiles of the four and eight-step-ahead responses for each point
in time. This is achieved by computing the IRFs for t = 1, ... , T using Equation (5).

This exercise tells a similar story to the cluster specific IRFs but links these differences to particular time periods.
Substantial declines in output, inflation and increases in unemployment in response to monetary shocks can be observed
in the mid 1970s, early 1980s and during the financial crisis. Notice, however, that for both horizons, we find reactions
that look (slightly) different from the ones observed for the individual clusters. This mostly relates to the fact that even
in turbulent times, the first regime gets some weight (between 10% and 25%), and this gives rise to different marginal
posterior distributions of the h-step-ahead IRFs.

5.4 | Forecasting performance

In this subsection, we present the results of our forecasting exercise. Our measure of point forecast performance is the
mean squared forecast error (MSE) and our measure of density forecast performance is the average of log predictive
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TABLE 5 Forecasting performance: 1977:Q1 to GDPC1 UNRATE CPIAUCSL
2023:Q4. DPM J=1 DPM J=1 DPM J=1

One-quarter-ahead
Homosk. S 0.900 1.096 0.823 1.140 0.939 0.977
(-0.041) (=0.009) (0.161)  (-0.153) (0.035)  (0.032)
M 0.873 1.015 0.748 1.104 0.915 0.955
(~0.064) (—0.014) (0.240)  (-0.545) (0.032)  (0.023)
L 0979 0.964 0.967 0.983 1.064 1.039
(~0.199) (—0.145) (=0.575) (-0.334) (-0.056) (—0.049)
NY% S 0933 0.935 0.850 0.859 0.973 1.015
(0.000)  (0.146)  (0.043)  (0.073)  (0.111)  (0.109)
M 0.875 0.874 0.805 0.795 0.911 0.958
(-0.038) (0.118)  (-0.306) (0.087)  (0.124)  (0.101)
L 1.027 1.381 0.965 2.296 0.999 1.217
(0.022)  (-1.463) (0.123)  (—2.638) (—0.002) ' (—1.539)
One-year-ahead
Homosk. S  0.980 0.989 0.922 1.000 1.056 1.049
(0.807)  (0.817)  (1.091)  (0.659)  (0.538)  (0.506)
M 0.985 1.005 0.909 1.018 1.028 1.014
0.787)  (0.772)  (1.115)  (0.577)  (0.537)  (0.521)
L 1.005 1.012 0.972 1.003 0.991 0.991
(0.661)  (0.636)  (0.917)  (0.806)  (0.528)  (0.511)
NY% S 0.988 0.988 0.933 0.941 1.039 1.038
(0.546)  (0.524)  (0.811)  (0.696)  (0.579)  (0.542)
M 00973 0.978 0.913 0.910 1.003 1.026
(0.436)  (0.489)  (0.972)  (0.659)  (0.554)  (0.506)
L 0.995 1.091 0.965 1.430 0.981 1.277
(0.101) | (-2.420) (0.252)  (-2.908) (0.114)  (-2.168)

Note: The table reports mean squared forecast errors relative to the large BVAR with SV and
average log predictive likelihood differences (in parentheses) between a given model and the
large BVAR with SV. The BVAR-SV is estimated by setting J = 1. The blue shaded cells are
absolute MSEs and LPLs. Bold numbers indicate the best performing model for a given variable
and horizon.

likelihoods (LPL). Tail forecast performance is measured using absolute quantile scores (QSs). Results are reported relative
to a benchmark model, which is the large BVAR that sets G = 1 and has heteroskedastic measurement errors.

We start our discussion by focusing on MSE ratios and LPL differences between a given model and the BVAR with
J =1and SV. Table 5 presents the relative MSEs and LPLs (in parentheses) for the three variables being forecast for both
homoskedastic and heteroskedastic models, allowing for a variable-specific examination of forecast performance.

With some exceptions, it can be seen that DPM models perform well for all variables and both forecast horizons. The
gains are particularly pronounced for one-step-ahead point forecasts of the unemployment rate. In this case, gains in pre-
dictive accuracy reach over 20%. For one-step-ahead GDP growth and inflation forecasts, we find gains that are slightly
more muted (over 12% for GDP growth and around 9% for inflation). The gains in point forecasting accuracy often carry
over to increases in density forecast performance. In this respect, adding the DPM piece often improves predictive accu-
racy for unemployment and inflation rate forecasts. Only for GDP growth, we find values close to zero and hence little
evidence that adding a DPM improves one-step-ahead density forecasts. It is also worth stressing that having SV on the
measurement errors only plays a limited role for point forecasts, but for density forecasts, we find that for unemployment
forecasts, the DPM with homoskedastic measurement errors produces the most accurate density forecasts. For inflation,
we find that models with SV and the DPM produce slightly superior density forecasts.

The improvements in forecast performance deteriorate slightly if we move to the one-year-ahead horizon. In this case,
DPM models still produce more precise density forecasts for all three focus variables but gains are smaller (around 3%
for GDP growth and 9% for the unemployment rate and 2% for inflation). One-year-ahead density forecasts, however,
appear to profit more from using a DPM. Interestingly, in this case, we also find that adding SV to the measurement errors
often harms predictive performance. This motivates our choice of using a homoskedastic BVAR-DPM in the previous
subsections.
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TABLE 6 Tail forecasting performance: 1977:Q1 to GDPC1 UNRATE CPIAUCSL
2023:Q4. DPM J=1 DPM J=1 DPM J=1

One-quarter-ahead
Homosk. S 0.914 0.940 1.151 1.372 0.930 0.930
(0.959) (1.010) (0.877) (0.929) (1.076) (1.060)
M 0.938 0.948 1.047 1.356 0.950 0.958
(0.952) (0.996) (0.847) (0.903) (1.012) (1.024)
L 0.988 0.990 1.241 1.254 1.042 1.033
(1.019) (1.021) (0.858) (0.886) (1.167) (1.130)
SV S 0929 0.969 1.136 0.684 0.961 1.001
(0.921) (0.742) (0.868) (0.963) (1.012) (0.987)
M 0.952 0.960 1.186 0.630 0.947 0.986
(0.946) (0.721) (0.923) (0.946) (0.930) (0.945)
L 0995 0.128 0.930 0.095 0.992 0.139
(0.996) | (0.125) (0.971) @ (0.127) (1.060) (0.102)
Homosk. S  0.604 0.616 0.561 0.526 0.821 0.829
(0.549) (0.555) (0.630) (0.632) (0.755) (0.754)
M 0.607 0.612 0.538 0.558 0.831 0.819
(0.572) (0.575) (0.617) (0.634) (0.730) (0.716)
L 0.687 0.694 0.587 0.586 0.804 0.792
(0.671) (0.672) (0.616) (0.627) (0.724) (0.734)
SV S 0.632 0.681 0.545 0.609 0.825 0.839
(0.551) (0.608) (0.638) (0.695) (0.766) (0.768)
M 0.664 0.677 0.614 0.630 0.809 0.838
(0.593) (0.602) (0.678) (0.705) (0.788) (0.771)
L 0937 0.211 0.859 0.189 0.985 0.175
(0.922) | (0.202) (0.902) ' (0.219) (0.936) (0.178)

Note: The table reports relative quantile scores (5% and 95 %, in parentheses) to the
large BVAR with SV. The BVAR-SV is estimated by setting J = 1. The blue shaded
cells are absolute quantile scores. Bold numbers indicate the best performing model
for a given variable and horizon.

To analyze whether the DPM component improves forecasts, we can compare each of the BVAR-DPM models with
the equivalent model with J = 1. For all three variables, two forecast horizons and for both forecast metrics, we usually
find that one of the DPM versions of the model forecasts better than the Gaussian one. It is worth stressing that there are
several cases where adding SV to the model, which sets J = 1 improves predictive performance substantially relative to the
homoskedastic version. As stated above, this does not necessarily hold for the DPM models. This corroborates the findings
in the forecasting literature that points toward the necessity for using flexible assumptions on the shocks to improve
forecasts (Clark, 2011; Carriero et al., 2022; Huber & Feldkircher, 2019) but that there is a trade-off between flexibility in
error distribution and SV. That is, once you allow for fat tailed error distributions there is less need to additionally add SV
to the model.

In terms of VAR dimension, it is interesting to note that the strongest performance for the DPM models arises with
small and medium VARs. With large VARs, the evidence is more mixed both with regards to the need for DPM and with
regards to the need for SV. We conjecture that in the large VAR, the explanatory power of the right hand side variables
can mop up some (but not all) of the need to allow for non-Gaussianity or volatility change.

Table 6 presents evidence on tail forecasting performance. The table shows 5% and 95% QSs relative to the BVAR with
J = 1 and SV so that numbers smaller than one indicate that a given model produces more accurate tail forecasts than
the benchmark.

We would expect the DPM to be particularly good in capturing tail behavior in a way that the Gaussian model cannot.
And, with some exceptions, Table 6 confirms this expectation. The pattern of results is similar to those found in Table 5,
but is slightly stronger in favor of BVAR-DPM models. More specifically, we again find gains of the different models
relative to the benchmark. Depending on the model size, we also find accuracy gains from using the DPM specification
relative to setting J = 1. These gains are more pronounced for one-year-ahead tail forecasts of output growth and the
unemployment rate and smaller-sized models.
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6 | CONCLUSIONS

In this paper, we propose a new specification for the errors in a VAR that takes a particular additive form involving
two components. The first is a homoskedastic error and a conventional inverse Wishart prior can be used for its covari-
ance matrix. The second is a diagonal error covariance matrix with diagonal elements following SV processes. We show
that, by adopting this additive form, we gain two major advantages. First, computation is much faster as it allows for
equation-by-equation estimation. Second, posterior and predictive inference does not depend on the way the variables
are ordered in the VAR. We then extend this model to allow the first error to follow a DPM. We discuss, both theoretically
and empirically, the great flexibility that is obtained by doing so. In addition, we develop a computationally fast MCMC
algorithm that allows for posterior and predictive inference in high dimensional nonparametric VARs. Our empirical
results, using artificial and real data, show that our approach produces more accurate parameter estimates and forecast
distributions. Moreover, when it comes to structural analysis, we can leverage the flexibility of our model to focus on how
the effects of monetary policy shocks have changed over time.
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