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ABSTRACT
We compare a novel quantum mechanical model of lasers, which includes all two-particle correlations, with
the Coherent-Incoherent Model (CIM), where truncation eliminates these effects. Numerical results for the
simple case of identical single-electron quantum dots are presented for two cases: only the laser mode is coupled
to the quantum dots; the coupling is extended to non-resonant modes. We find coexistence between non-
lasing and lasing states, together with a minimum number of photons required to initiate the laser action.
The correlations introduce a non-zero variance in the field, which is otherwise strictly zero in the absence of
interparticle correlations.
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1. INTRODUCTION
The journey of laser miniaturization, inaugurated by the advent of VCSELs,1, 2 has uncovered a realm of novel
phenomena within the micro- and nanoscale domains. While the laser threshold was successfully modelled
as a clear phase transition,3–6 miniaturizatin advancements definitely blurred its delineations,7–14 giving rise
to enigmatic notions such as “zero-threshold” and “thresholdless laser”,15–18 with the latter term finding a
permanent place in the literature.

The notion of a thresholdless laser was criticized early on19 on the basis of scaling arguments, which, however,
could not be extended to the nanoscale. Separate efforts led to alternative pictures20 whose physical relevance
remain unclear. This failure stems from the fact that traditional rate-equation-based models, while effective
in many respects, lack essential physical ingredients necessary for accurately characterizing the laser threshold
at the nanoscale. Consequently, a protracted debate has unfolded over nearly three decades, grappling with a
myriad of issues. Fundamental inquiries have emerged regarding the very concept of threshold and its opera-
tional definition,21, 22 as well as the challenges associated with threshold measurement and identification.23, 24

Techniques aimed at identifying threshold have been proposed and scrutinized,25–29 contributing to the ongoing
discourse surrounding this intriguing phenomenon.

The growing interest in understanding, defining, and measuring the laser threshold, as well as comprehending
the underlying physics of these devices,30–33 is propelled by the rapid technological advancements in ultrasmall
sources.34–37 This surge in interest is driven by the allure of ultralow pumping requirements,38–42 which are
conducive to integration into optical circuits,43–45 aligning with the objectives of green photonics.46, 47

Significant strides in technology have been paralleled by extensive modeling endeavors, with the aim of
enhancing theoretical descriptions to encompass emerging features and novel physical effects.10, 48–54 While these
efforts have yielded notable successes, the ongoing need for continual adjustments to existing models underscores
the potential for broader enhancements. This persistent requirement for model refinement suggests opportunities
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for overarching improvements in our theoretical frameworks, indicating a dynamic and evolving landscape within
the field of laser physics modeling.

A crucial element in the debate is the difficulty of experimentally characterizing the physics of nano-lasers due
to their extremely small photon flux. The lack of detectors with sufficient sensitivity and bandwidth forces the
use of well-developed statistical measurements of photon counting, which are routinely used in quantum optics.
Unfortunately, the statistical picture provides information from which the dynamics cannot be inferred:55 the
inference from dynamics to statistics works only in this direction, but is not reversible. Thus, it is imperative to
develop models that capture the essence of nanoscale threshold physics in order to make meaningful comparisons
between measurements and predictions.

In this paper, we present a model that goes beyond the standard semiclassical description by incorporating
correlations between photons and emitters. This model is compared to an existing framework that includes spon-
taneous and stimulated processes, with the goal of providing a more comprehensive understanding of nanolaser
dynamics. The increased sophistication of our model not only reproduces established results, but also reveals
novel phenomena, including the coexistence of non-lasing and lasing solutions and the requirement of a minimum
photon threshold to initiate lasing.

Interestingly, parallels to our theoretical predictions are observed in experimental investigations of microlasers,
where direct dynamical measurements have unveiled a pre-threshold regime characterized by the emission of pho-
ton bursts.31, 56, 57 These phenomena, also observed in phenomenological stochastic simulations,58, 59 potentially
correspond to the experimental manifestations of our theoretical conjectures. The comprehensive classification
of laser scales provided in,60 helps in contextualizing our theoretical framework within existing experimental
configurations.

As is customary in nanolaser descriptions, we parameterize the effective coupling of radiation into the lasing
mode using the well-known β parameter, defined as the ratio of the spontaneous emission rate into the lasing
mode to the total spontaneous emission rate, β =

[
γl

(γnl+γl)

]
, where γl and γnl denote the spontaneous emis-

sion rates into the lasing and non-lasing modes, respectively. This parameterization allows for a quantitative
characterization of the nanolaser’s behavior in terms of its coupling efficiency.

Specifically, in a more refined framework, we introduce a laser model labeled as the Two-Particle Model
(TPM), which accounts for all two-particle quantum correlations. This model is compared to the previously
derived Coherent-Incoherent Model (CIM), which simplifies the physical description by neglecting these corre-
lations. Through numerical simulations, we examine the behavior of the TPM in a basic scenario involving
identical, single-electron quantum dots. We explore two distinct conditions: first, when only the laser mode is
coupled to the quantum dots, and second, when the coupling extends to non-resonant modes alongside the laser
mode.

2. THE MODEL
The quantized total Hamiltonian is H = HE + HQD + Hint, where

HE = h
∑

q

νq

(
b†

qbq + 1
2

)
, (1)

HQD =
∑

n

(
εc,nc†

ncn + εv,nv†
nvn

)
, (2)

Hint = −ih
∑
n,q

[
gnqbqc†

nvn − g∗
nqb†

qv†
ncn

]
, (3)

correspond the energies of the electric field, of the charge carriers and of the light-matter interaction in the dipole
approximation, respectively. νq is the frequency of a q-th mode photon, ϵc,n, ϵv,n are the energies and cn, c†

n and
vn, v†

n the annihilation and creation operators for conduction and valence electrons of the n-th quantum dot,
respectively, and gnq is the strength of light-matter coupling of q-th mode in the n-th quantum dot.
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The Heisenberg equations for the one and two particle operators including non radiative losses, polarization
dephasing and cavity mode losses due to coupling to a Markovian bath are

dtbs = − (γs + iνs)bs +
∑

n

g∗
nsv†

ncn (4a)

dtv
†
l cl = − (γ + iνεl

) v†
l cl +

∑
q

glq

[
2bqc†

l cl − bq

]
(4b)

dtc
†
l cl = − γnrc†

l cl −
∑

q

[
glqbqc†

l vl + h.c.
]

(4c)

dtb
†
qbq = − 2γqb†

qbq +
∑

n

[
gnqbqc†

nvn + h.c.
]

(4d)

dtbsc†
l vl = − (γ + γs + i∆ν) bsc†

l vl + g∗
lsc†

l cl −
∑

q

g∗
lq

(
2b†

qbsc†
l cl − b†

qbs

)
+

∑
n ̸=l

g∗
nsc†

l v†
ncnvl (4e)

dtbsc†
l cl = − (γs + γnr + iνs) bsc†

l cl − bs

∑
q

(
glqbqc†

l vl + h.c.
)

+
∑
n̸=l

g∗
nsv†

nc†
l clcn (4f)

dtbsbs = − 2 (γs + iνs) bsbs + 2
∑

n

g∗
nsbsv†

ncn (4g)

dtbsv†
l cl = − [γ + γs + i (νεn + νεl

)] bsv†
l cl + glsbsbs

(
2c†

l cl − 1
)

+
∑
n ̸=l

g∗
nsv†

nv†
l clcn (4h)

dtc
†
l v†

ncnvl = − [2γ + i (νεn
− νεl

)] c†
l v†

ncnvl +
∑

q

[
g∗

lq

(
2b†

qv†
nc†

l clcn − b†
qv†

ncn

)
(4i)

+ gnq

(
2bqc†

l c†
ncnvl − bqc†

l vl

)]
dtv

†
nc†

l clcn = − (γ + γnr + iνεn) v†
nc†

l clcn +
∑

q

[
gnq

(
2bqc†

nc†
l clcn − bqc†

l cl

)
− glqbqc†

l v†
ncnvl (4j)

−g∗
lqb†

qv†
nv†

l clcn

]
dtc

†
nc†

l clcn = − 2γnrc†
nc†

l clcn −
∑

q

[
gnqbqc†

nc†
l clvn + glqbqc†

l c†
ncnvl + h.c.

]
(4k)

dtv
†
nv†

l clcn = − [2γ + i (νεn + νεl
)] v†

nv†
l clcn +

∑
q

[
gnq

(
2bqv†

l c†
ncncl − bqv†

l cl

)
(4l)

+glq

(
2bqv†

nc†
l clcn − bqv†

ncn

)]
,

where νs, νεn
= εn/h are the frequencies of the s-th mode and the radiative transition of the n-th QD, γnr is

the population decay rate due to non radiative losses, γ the decay rate of the polarization and γs the decay rate
of the s-th mode.

These equation contain three-particle operators because the Hamiltonian H and the Lindblad diffusors in-
cluded to take into account for the losses61 give rise to an infinite hierarchy of coupled equations of motion for
operators of all orders. We obtain a finite-dimensional model of quantum dots in a laser by transforming the
Heisenberg equations into equations for the expectation values and by truncating the expectation value equa-
tions assuming that all quantum correlations above the second order are negligible and can be set to zero.62 The
decomposition of the expectation values of three particle operators in the sum of the three particle correlations
and products of single and two particle expectation values is

⟨OiOjOk⟩ = δ⟨OiOjOk⟩ + ⟨(OiOjOk)⟩, (5)

where
⟨(OiOjOk)⟩ = ⟨Oi⟩⟨OjOk⟩ + ⟨Oj⟩⟨OiOk⟩ + ⟨Ok⟩⟨OiOj⟩ − 2⟨Oi⟩⟨Oj⟩⟨Ok⟩ . (6)
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In numerical studies it is necessary to calculate the expectation values in the rotating frames in order to eliminate
the fast frequencies. The relations between expectation values in the Heisenberg picture and in the rotating frame
are:

⟨b⟩ = ⟨b⟩H

N1/2 eiνt, (7a)

⟨v†c⟩ = ⟨v†c⟩Heiνt, (7b)

⟨bc†c⟩ = ⟨bc†c⟩H

N1/2 eiνt, (7c)

⟨v†c†cc⟩ = ⟨v†c†cc⟩Heiνt, (7d)

⟨bv†c⟩ = ⟨bv†c⟩H

N1/2 ei2νt, (7e)

⟨bb⟩ = ⟨bb⟩H

N
ei2νt (7f)

⟨v†v†cc⟩ = ⟨v†v†cc⟩Hei2νt, (7g)

where we indicate with an H suffix the expectation values in the Heisenberg picture. We also rescale the coupling
coefficient with the number of quantum dots N as

g = gHN1/2 . (8)

The equations for the expectation values in the rotating frame are:

dt⟨b⟩ = − γc⟨b⟩ + g∗⟨v†c⟩, (9a)
dt⟨v†c⟩ = − (γ − i∆ν) ⟨v†c⟩ + g

(
2⟨bc†c⟩ − ⟨b⟩

)
. (9b)

dt⟨c†c⟩ = − γnr⟨c†c⟩ −
(
g⟨bc†v⟩ + h.c.

)
+ r

(
1 − ⟨c†c⟩

)
− γnl⟨c†c⟩, (9c)

dt⟨b†b⟩ = − 2γc⟨b†b⟩ +
(
g⟨bc†v⟩ + h.c.

)
, (9d)

dt⟨bc†v⟩ = − (γ + γc + i∆ν) ⟨bc†v⟩ + g∗
[

⟨c†c⟩
N

+ 2
〈(

b†bc†c
)〉

− ⟨b†b⟩
]

+ (N − 1)
N

g∗⟨c†v†cv⟩ (9e)

dt⟨bc†c⟩ = − (γc + γnr) ⟨bc†c⟩ − g
〈(

bbc†v
)〉

− g∗ 〈(
b†bv†c

)〉
+ (N − 1)

N
g∗⟨c†v†cc⟩ (9f)

+ ⟨b⟩
[
r

(
1 − ⟨c†c⟩

)
− γnl⟨c†c⟩

]
dt⟨bb⟩ = − 2γc⟨bb⟩ + 2g∗⟨bv†c⟩ (9g)

dt⟨bv†c⟩ = − [γc + γ − i∆ν] ⟨bv†c⟩ + g
[
2

〈(
bbc†c

)〉
− ⟨bb⟩

]
+ (N − 1)

N
g∗⟨v†v†cc⟩ (9h)

dt⟨c†v†cv⟩ = − 2γ(1 + µ)⟨c†v†cv⟩ + g∗ [
2

〈(
b†v†c†cc

)〉
−

〈
b†v†c

〉]
(9i)

+ g
[
2

〈(
bc†c†cv

)〉
− ⟨bc†v⟩

]
dt⟨v†c†cc⟩ = − [γ(1 + µ) + γnr − i∆ν] ⟨v†c†cc⟩ + g

[
2

〈(
bc†c†cc

)〉
− ⟨bc†c⟩

]
(9j)

− g
〈(

bc†v†cv
)〉

− g∗ 〈(
b†v†v†cc

)〉
+ ⟨v†c⟩

[
r

(
1 − ⟨c†c⟩

)
− γnl⟨c†c⟩

]
,

dt⟨c†c†cc⟩ = − 2γnr⟨c†c†cc⟩ −
[
2g

〈(
bc†c†cv

)〉
+ h.c.

]
(9k)

+ 2⟨c†c⟩
[
r

(
1 − ⟨c†c⟩

)
− γnl⟨c†c⟩

]
,

dt⟨v†v†cc⟩ = − 2 [γ(1 + µ) − i∆ν] ⟨v†v†cc⟩ + 2g
[
2

〈(
bv†c†cc

)〉
− ⟨bv†c⟩

]
, (9l)

where r is the pumping rate and γµ, with µ ≥ 0, is the dephasing rate due to phonon scattering.63 γnl is a
decay rate that takes into account the effect of the non lasing modes, which have been adiabatically eliminated.

3. NUMERICAL RESULTS
In this section we compare the TPM model given in the previous section with the semi-classical Coherent-
Incoherent Model (CIM)64–66 derived including only slowly varying quantum correlations of the type δ⟨bC†v⟩.
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The CIM equations are (9a) to (9e) after a suitable truncation. We reproduce the CIM equations here for
convenience:

dt⟨b⟩ = − γc⟨b⟩ + g∗⟨v†c⟩, (10a)
dt⟨v†c⟩ = − (γ − i∆ν) ⟨v†c⟩ + g⟨b⟩

(
2⟨c†c⟩ − 1

)
. (10b)

dt⟨c†c⟩ = − (γnr + γnl) ⟨c†c⟩ −
(
g⟨bc†v⟩ + h.c.

)
+ r

(
1 − ⟨c†c⟩

)
, (10c)

dt⟨b†b⟩ = − 2γc⟨b†b⟩ +
(
g⟨bc†v⟩ + h.c.

)
, (10d)

dt⟨bc†v⟩ = − (γ + γc + i∆ν) ⟨bc†v⟩ + g∗
[

⟨c†c⟩
N

+ ⟨b†b⟩
(
2

〈
c†c

〉
− 1

)]
+ N − 1

N
g∗⟨c†v⟩⟨v†c⟩ . (10e)

Plots of the power of the laser light versus the pumping rate are easily obtained experimentally and have been
extensively considered in investigations of the laser threshold. The light power is proportional to the number of
photons, which are generated by both coherent and incoherent processes: as a result, plots of the same lasers
calculated with different models give very similar results, as shown in Figure 1. The dependence of the total
number of photons on the pump depends on γnl, i.e. the number of non resonant modes coupled to the QDs,
but it is virtually unaffected by two-particle quantum correlations even for lasers with a low number of emitters.
The number of photons scales as the number of QDs, which makes the slope of the rising part of the curves
steeper for high γnl.
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Figure 1. Log-log plot of the number of photons divided by the number of QDs vs the pumping rate r/γnr for CIM
model (blue curve) and TPM with µ = 0 (no phonon scattering, yellow curve) and µ = .05 (red curve). For all figures
gH = 70, ∆ν = 0, γ = 104, γc = 10, γl = 0.968; (a) N = 50, γnl = 0, (b) N = 50, γnl = 7 × 104, (c) N = 350, γnl = 0,
(d) N = 350, γnl = 7 × 104. Differences in the numbers of photons for these theories are very small.
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The effect of quantum correlations is clear in Figure 2, where we plot |⟨b⟩| – corresponding to the complex
amplitude of the classical field – |⟨b⟩|2/⟨b†b⟩ – the ratio of energy due to coherent emission over the total energy of
the field – and the generalized variance |⟨bb⟩−⟨b⟩2| – which is zero for classical fields and provides an estimate of
the importance of quantum effects – as functions of the non dimensional pump parameter r/γnr. We show results
for a nanolaser with only the laser mode coupled to the QDs (γnl = 0, top row) and a macrolaser with a laser
mode and many non resonant modes coupled to the QDs (γnl = 7 × 104, bottom row) both with N = 50. From
the plots of ⟨b⟩ – Figure 2(a) and Figure 2(d) – we can see that in the semi-classical CIM stable laser emission
grows from zero through a pitchfork bifurcation. The two particle quantum correlations change the nature of the
bifurcation: in these models the laser emission always starts with a finite amplitude in a saddle-node bifurcations
that also creates a second, unstable laser solution (not shown). In these models lasing can be achieved only if
triggered by a finite amplitude fluctuation of the coherent variables and stable lasing and non-lasing solutions
can coexist. Figure 2(b) and Figure 2(e) show that at threshold the intensity of the coherent emission, |⟨b⟩|2, is
a significant fraction of the photon number for the TPM, while it is zero for the CIM. Finally, the generalized
variance, – Figure 2(c) and Figure 2(f) – which is zero for the semi-classical CIM, is instead different from
zero for the TPM, as expected in quantum systems where measurements are associated to probability densities.
Furthermore, the generalized variance is always larger at the bifurcation, as are fluctuations due to noise in
classical systems.

0 2 4 6 8

105

0

20

40

60

80

100 (a)

CIM
TPM - =0.05
TPM - =0.00

0 2 4 6 8

105

0

0.2

0.4

0.6

0.8

1
(b)

CIM
TPM - =0.05
TPM - =0.00

0 2 4 6 8

105

0

200

400

600

800
(c) CIM

TPM - =0.05
TPM - =0.00

0 2 4 6 8

105

0

20

40

60

80

100
(d)

CIM
TPM - =0.05
TPM - =0.00

0 2 4 6 8

105

0

0.2

0.4

0.6

0.8

1
(e)

CIM
TPM - =0.05
TPM - =0.00

0 2 4 6 8

105

0

200

400

600

800
(f) CIM

TPM - =0.05
TPM - =0.00

Figure 2. N = 50: Nanolaser with same parameter as in Figure 1(a) in (a), (b), (c); macroscopic laser with same
parameter as in Figure 1(b) in (d), (e), (f).

In Figure 3 we show for a nanolaser and a macrolaser with N = 350 the same type of curves as in Figure 2.
The larger number of QDs reduces the thresholds for the CIM and the TPM with weak phonon scattering, while
the threshold increases in the absence of phonon scattering. This is due to the competition between the increase
in the light matter coefficient g, which scales as N1/2, and the increase in the electron-electron correlations,
which acts as an increased mass in an oscillator. The variance is reduced in presence of weak phonon scattering.

4. CONCLUSIONS
In conclusion, two particles quantum correlations change the nature of the bifurcation leading to the emergence
of continuous laser emission that, for all lasers, appears through a finite amplitude perturbation, as opposed
to the infinitesimal amplitude perturbation of semi-classical theories. The effect of quantum correlations on
the laser threshold depends on the presence of damping mechanisms such as phonon scattering that produce
a fractional increase in the damping rate of two-electron correlations with respect to the dumping rate of the
polarization. When these mechanisms are present, we observe a small increase in the threshold and decrease in
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Figure 3. N = 350: Nanolaser with same parameter as in Figure 1(c) for (a), (b), (c); macroscopic laser with same
parameter as in Figure 1(d) for (d), (e), (f).

the amplitude of the coherent field with a low number of emitters; both effects becomes harder to detect as the
number of QDs increases. These effects are more pronounced when two-electron correlations decay at the same
rate as the polarization and are actually stronger for larger numbers of QDs. This is associated to an increase in
the generalized variance, which is associated to the larger role of quantum correlations in systems without extra
damping for two photon correlations.
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