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Abstract 10 

There is renewed interest in floating vertical axis wind turbines (FVAWTs) as 11 

offshore wind turbines progressively increase in size and move into deeper waters. To 12 

explore the potential of large-scale FVAWTs for future commercialization, it is crucial 13 

to investigate blade deformations using an accurate and effective method. In this study, 14 

we developed a hybrid model, namely, the SVST-ANN, which integrates dynamic 15 

theory and machine learning techniques to predict blade deformations. Specifically, an 16 

artificial neural network (ANN) module is incorporated into the slack coupled vertical 17 

axis wind turbine simulation tool (SVST), which significantly reduces the total 18 

computational time. A comparative study was conducted between the SVST-ANN 19 

model and the traditional SVST model, employing a 10 MW helical-type FVAWT as 20 

an example. The results show that the SVST-ANN model can accurately and efficiently 21 

predict blade deformations. The maximum errors for the maximum value, average value, 22 

and standard deviation across all nodes are minimal, with a corresponding 23 

computational time reduction of approximately 60%. This study provides a novel 24 

method for investigating the dynamic behavior of the FVAWTs, which is more effective 25 

for calculating the elastic deformations of blades than traditional numerical methods. 26 
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Nomenclature for the dynamic modeling process 

Coordinate systems: 

0e


 Global inertial coordinate system 

fe


 Floater body coordinate system 

te


 Tower body coordinate system 

be


 Blade body coordinate system 

k
ie


 Element coordinate system for the element k of the blade 

ke


 
Element translation coordinate system for the element k of the 

blade 

A  Cardan angles matrix 

 ,  ,   Angles rotated in sequence between the coordinate systems 

Dynamic modeling for the rigid body: 

m  Body mass 

J  Moment of inertia 

ω  Angular velocity 

F  External forces acting on the rigid body 

M  Torques acting on the rigid body 

Dynamic modeling for the flexible body: 

0P  Arbitrary point on the beam before deformation 

P  Arbitrary point on the beam after deformation 

r  Radius vector of the point P  

r  First derivative of the vector r  

r  Second derivative of the vector r  

0r  
Vector from the origin of the inertial coordinate system to the 

blade body coordinate system 



 

 

 

0ρ  Vector of the point 0P  on the blade floating coordinate system 

u  Elastic deformation of point P  

u  
First derivative of the vector u  based on the blade body 

coordinate system 

u  
Second derivative of the vector u  based on the blade body 

coordinate system 

ku  Overall deformation vector of the whole blade 

iu  
Vector from the element coordinate system to the element 

translation coordinate system 

ku  Deformation vector on the element translation coordinate system 

1
ku , 2

ku , 3
ku  

Elements of the deformation vector on the element translation 

coordinate system 

kw  Non-Cartesian coordinate deformation vector 

1
kw , 2

kw , 3
kw  Elements of the non-Cartesian coordinate deformation vector 

kN  Shape function for the finite element method 

1
kN , 2

kN , 3
kN  

Elements of the shape function in tensile and bending directions 

for the blade node 

1N , 2N , 3N  
Elements of the shape function in tensile and bending directions 

for the whole blade 

N  
Elements of the shape function in torsional direction for the 

whole blade 

kH  A shape function matrix represented by kN  

kp  Generalized coordinates based on the deformation vector kw  

1
k
iw , 2

k
iw , 1i , 

3
k
iw , 2i , i  

Elements of node i  of kp , including the tensile deformation, 

two directions of bending deformation and their corresponding 

bending angles, and the torsion angle deformation, respectively 



 

 

 

1
k
jw , 2

k
jw , 1 j , 

3
k

jw , 2 j , j  

Elements of node j  of kp , including the tensile deformation, 

two directions of bending deformation and their corresponding 

bending angles, and the torsion angle deformation, respectively 

kp  Generalized coordinates based on the deformation vector ku  

1
k
iu , 2

k
iu , 1i , 

3
k
iu , 2i , i  

Elements of node i  of kp , including the tensile deformation, 

two directions of bending deformation and their corresponding 

bending angles, and the torsion angle deformation, respectively 

1
k
ju , 2

k
ju , 1 j , 

3
k

ju , 2 j , j  

Elements of node j  of kp , including the tensile deformation, 

two directions of bending deformation and their corresponding 

bending angles, and the torsion angle deformation, respectively 

kp  Generalized coordinates on the blade floating coordinate system 

0p  Overall deformation vector  

p  
Overall deformation vector after considering the boundary 

conditions 

kL  
Cardan angle matrix between the blade floating coordinate 

system and the element translation coordinate system 

kB  Boolean matrix 

R  Transformation matrix between p  and 0p  

  Normal stress 

E  Elastic modulus 

  Normal strain 

  Shear stress 

G  Shear modulus 

  Shear strain 

K  Stiffness matrix of the elastic beam 

kK  Stiffness matrix of node k  

EA , zzEI , Tensile stiffness, two directions of bending stiffness, and 



 

 

 

yyEI , pGI  torsional stiffness of the blade node, respectively 

̂  Blade density 

 31 

1. Introduction 32 

Wind energy is a prominent renewable energy source with considerable potential 33 

in both onshore and offshore regions [1, 2]. In the last decade, there has been a rapid 34 

and substantial increase in the installation of wind turbines as the corresponding 35 

technology has gradually matured [3]. The Global Wind Energy Council reported that 36 

a total of 77.6 GW of wind power capacity was connected to power grids in 2022, 37 

including 68.8 GW from onshore wind turbines and the remainder contributed by 38 

offshore wind turbines [4]. 39 

Wind turbines can be categorized into horizontal axis wind turbines (HAWTs) and 40 

vertical axis wind turbines (VAWTs) according to the orientation of their rotating axes 41 

[5]. HAWTs have achieved a long history of successful commercialization in both 42 

onshore and offshore markets, driven by advancements in power efficiency and techno-43 

economic feasibility. In contrast, the development of VAWTs has lagged, with the 44 

primary developments occurring from the 1970s to 1980s [6]. The initial experiment 45 

with a Darrieus-type VAWT took place in 1972, focusing on exploration of the 46 

fundamental characteristics [7, 8]. Subsequently, various Darrieus-type turbine 47 

concepts were examined and installed in Canada, including Éole, which held the title 48 

of the world’s largest VAWT with a swept area of 4000 m2 [9]. Unfortunately, it 49 

operated for only five years after installation due to a bottom bearing issue. 50 

Concurrently, in the 1970s, a series of VAWT studies were carried out at Sandia 51 

National Laboratories (SNL) in the USA. For instance, the well-known Sandia 5-m, 17-52 

m, and 34-m turbines were tested [10-12]. Based on the accumulated technology, more 53 

than 500 Darrieus-type VAWTs were successfully operated at the FloWind wind farm 54 

in California [13]. Additionally, other VAWT projects, such as VAWT-850 and HM300 55 

[14], were also conducted. 56 

The commercial viability of VAWTs has faced constraints since the 1990s due to 57 

several inherent problems, such as significant oscillation of power output and fatigue 58 

loading. Nevertheless, renewed interest in VAWT technology for floating offshore 59 

applications has emerged, aligning well with two development trends in offshore wind 60 



 

 

 

turbines: increased capacity and deeper water depth [15]. 61 

The former trend is that larger offshore wind turbines are designed to reduce the 62 

levelized cost of electricity. To date, a 15 MW offshore wind turbine with a rotor 63 

diameter of 236 m has been launched [16]. By 2030, a power capacity of 20 MW for 64 

an offshore wind turbine is expected to be available [17]. However, this trend poses 65 

challenges to the operation and maintenance of current FHAWTs. An increasing rotor 66 

diameter results in significant vibrations on the blades when subjected to aerodynamic 67 

loads and cyclic gravitational load effects. A heavier nacelle raises the center of gravity 68 

of the wind turbine system, which has a negative impact on the acceleration sensitivity 69 

of the equipment in the nacelle [18]. The installation and maintenance costs are also 70 

increased due to the large size of the structure. In contrast, increasing the scale of a 71 

FVAWT would not cause such limitations because its generator is mounted at the 72 

bottom of the system, resulting in a lower center of gravity and more convenient 73 

installation and maintenance. The fatigue problem induced by blade vibrations can be 74 

mitigated through the reasonable arrangement of struts. It is expected that the scaling-75 

up limit of the power output of VAWTs can reach 30 MW [19]. The latter trend is the 76 

gradual shift of offshore wind turbines into deeper waters to capture vast deep sea wind 77 

resources. When the water depth exceeds 60 m, a floating wind turbine is regarded as a 78 

more feasible option than a bottom fixed one [20]. For FVAWTs, the fatigue issue at the 79 

bottom of the rotor can be alleviated because a floating foundation is employed to 80 

reduce the concentrated stress [21].  81 

Consequently, large-scale FVAWTs are of interest because of their great potential 82 

for future wind energy applications. Table 1 lists some representative FVAWT concepts 83 

proposed in recent years [22-24]. However, it should be noted that research on large-84 

scale FVAWTs is still at its early stage and has not been extensively investigated in the 85 

literature. 86 

 87 

Table 1 FVAWT concepts 88 

Concept Capacity Type of VAWT Type of floater Reference 

DeepWind 5 MW Darrieus-type Spar [22] 

SeaTwirl (S2X) 1 MW Helical-type Spar [23] 

VertiWind 2 MW Helical-type Semi-submersible [24] 



 

 

 

Aerogenerator X 10 MW V-shape Semi-submersible [25] 

SKWID 0.5 MW H-type Spar [26] 

 89 

To explore the commercial applicability of large-scale FVAWTs, an investigation 90 

of their dynamic behavior is essential, and a numerical study on blade deformations is 91 

one of the most critical issues. In the early stages, the rigid body dynamic model was 92 

applied owing to its simplicity and high efficiency, while the elastic deformations of the 93 

tower and blades were ignored. However, the upscaling trend of floating wind turbines 94 

facilitates investigation of the significance of blade flexibility. For the blades of a large-95 

scale floating wind turbine, coupling factors originate from inertial loads, composite 96 

materials, geometric nonlinearity, and floater motions. These factors have a negative 97 

effect on the aerodynamic power output and structural stability and may even lead to 98 

severe damage in harsh environments [27].  99 

Many commercial simulation tools, such as Bladed, FAST, and SESAM-Simo, 100 

consider the flexibility of blades [28]. However, these tools are restricted to FHAWTs. 101 

There is still no publicly available simulation tool specifically designed for the dynamic 102 

analysis of FVAWTs, although some research institutions have developed numerical 103 

codes for internal use. Borg and Collu [29] programmed a time-domain simulation tool 104 

FloVAWT for FVAWTs based on MATLAB/Simulink software. The coupling between 105 

environmental loads and the wind turbine structure was considered. The aerodynamic 106 

loads were calculated with the application of the double multiple stream tube (DMS) 107 

momentum model with some aerodynamic modifications. The hydrodynamic model 108 

was implemented based on the Marine Systems Simulator Toolbox. For the mooring 109 

system, the force-displacement relation was linearized and the quasi-static catenary 110 

method was utilized. Owens et al. [30] developed the OWENS (Offshore Wind Energy 111 

Simulation) toolkit for simulating FVAWTs. The tool interfaces with various modules 112 

of aerodynamics, hydrodynamics, and multibody dynamics. The floating foundation is 113 

assumed to be a rigid body, while the VAWT blade is discretized into beam elements 114 

based on the finite element method. Wang et al. [31] developed the coupled numerical 115 

code Simo-Riflex-DMS to predict the dynamic behavior of FVAWTs. The time domain 116 

simulation is realized based on the coupling of three modules: Simo, Riflex, and DMS. 117 

Simo calculates the hydrodynamic forces; DMS calculates the aerodynamic forces; 118 

Riflex models the blades, tower, shaft and mooring lines. Cheng et al [32] replaced the 119 



 

 

 

DMS method with the AC method and thus developed the SIMO-RIFLEX-AC 120 

simulation tool. Deng et al [33, 34] developed a nonlinear coupled simulation tool for 121 

the dynamic modeling and response analysis of FVAWTs. Afterwards, a slack coupled 122 

modeling methodology was employed in the simulation tool to improve the calculation 123 

efficiency and ensure accurate numerical results [35]. 124 

All of the aforementioned numerical codes consider blade flexibility [29-35]. 125 

However, when modeling larger-scale FVAWTs, the blade is inevitably divided into 126 

more elements. Although this approach enables the capture of dynamic behavior at 127 

multiple positions on the blade, it adds the expense of simulation time. Balancing the 128 

trade-off between time consumption and the number of blade elements becomes an 129 

obstacle, especially when dealing with enormous numerical simulations. 130 

Recently, machine learning approaches have emerged as start-up and highly 131 

efficient tools for solving complex nonlinear problems. The core idea is to establish 132 

underlying patterns that are useful for understanding relationships in data [36, 37]. 133 

Machine learning has a variety of applications in the wind turbine industry, such as 134 

power prediction, wind and wave forecasts, and structure optimization. For instance, 135 

Wang et al. [38] employed the wavelet transform and a deep convolutional neural 136 

network for wind power prediction, demonstrating the robustness of machine learning 137 

techniques in capturing nonlinear features of wind power. He et al. [39] proposed a 138 

hybrid machine learning approach for short-term wind speed forecasting. The 139 

methodology involves employing an ensemble empirical mode decomposition (EEMD) 140 

technique for data preprocessing and a kernel-based fuzzy c-means clustering (KFCM) 141 

algorithm for data clustering. de N Santos et al. [40] conducted a fatigue estimation of 142 

wind turbines based on an artificial neural network (ANN), and measurements for real-143 

world turbines were used as input to realize the estimation. Chen et al. [41] redesigned 144 

the equatorial radius, the ratio of the radius over the half-height, and the blade number 145 

of a Darrieus-type VAWT by incorporating a heuristic search algorithm into the DMST 146 

method. The optimized model exhibited a 12.5% enhancement in the power coefficient 147 

at the optimal velocity compared to the baseline. 148 

Motivated by the merits of machine learning techniques, in this study, a hybrid 149 

model named SVST-ANN is originally developed for the dynamic modeling and 150 

response analysis of large-scale FVAWTs. The system integrates aerodynamics, 151 

hydrodynamics, control dynamics, rigid-flexible multibody dynamics, and machine 152 

learning algorithms. The coupled numerical code SVST (slack coupled vertical axis 153 



 

 

 

wind turbine simulation tool), which was developed in our previous study [35], is first 154 

employed to model the wind turbine system and calculate the motions of the floater, 155 

deformations of the tower, and deformations on part of the blade elements. Next, the 156 

ANN module is incorporated. The blade deformations calculated by the SVST module 157 

are selected as input data to predict deformations on other blade nodes. Eventually, the 158 

dynamic responses calculated by the two modules are combined; thus, all the dynamic 159 

responses of the FVAWT can be derived. This study conducted a series of comparisons 160 

between the SVST-ANN model and the traditional SVST model. The results 161 

demonstrate that the combination of numerical code and machine learning techniques 162 

not only ensures the accuracy of dynamic responses but also significantly reduces the 163 

computational time. 164 

The contributions of this study can be summarized as follows: 165 

(1) For the dynamic calculation of FVAWTs, many simulation tools apply the finite 166 

element method. When modeling larger-scale FVAWTs, the blade is inevitably divided 167 

into more elements, resulting in a significant increase in computational costs. Different 168 

from other simulation tools, the hybrid SVST-ANN model developed in this work 169 

incorporates an ANN module to predict part of the blade deformations, so that the total 170 

computational time can be substantially reduced. To the best knowledge of the authors, 171 

no FVAWT simulation tool in the literature combines dynamic methodology with 172 

machine learning techniques to predict blade deformations. 173 

(2) For machine learning techniques, many previous studies have attempted to 174 

employ neural networks for the short-term prediction of wind turbine dynamic 175 

responses. However, it is challenging to directly conduct the long-term prediction due 176 

to the cumulative error effect. Compared to previous studies, the SVST-ANN hybrid 177 

model uses part of the blade deformations calculated by the SVST module as input data 178 

rather than other types of inputs, such as environmental parameters. This approach 179 

establishes a stronger mapping between the input and output and effectively avoids 180 

cumulative error. 181 

The remaining parts of this paper are organized as follows: A 10 MW helical-type 182 

FVAWT is introduced as a test example in Section 2. The traditional SVST model and 183 

the proposed SVST-ANN model are presented in Section 3 and Section 4, respectively. 184 

In Section 5, a series of comparisons between the two models are conducted and 185 

discussed. Finally, the conclusions are summarized in Section 6. 186 



 

 

 

 187 

2. Physical problem 188 

This study focuses on a 10 MW helical-type FVAWT system featuring complex 189 

helical blades. As illustrated in Fig. 1, the system comprises three blades, a tower, three 190 

groups of total nine struts, a floating foundation, and three mooring lines. 191 

 192 

Fig.1 Helical type floating wind turbine system 193 

 194 

The concept of a helical-type wind turbine was proposed as an optimization of 195 

conventional straight blades or H-type VAWTs to overcome the limitations of large 196 

torque fluctuations and poor self-starting performance [42]. The structural definition of 197 

the rotor is obtained by upscaling a 5 MW helical-type wind turbine concept [35], given 198 

the absence of an existing design in the literature for a benchmark 10 MW FVAWT with 199 

helical blades. The classical similarity rules [43] are applied by determining the 200 

geometric scaling factor as 2  to achieve the doubled power output. Note that the 201 

helical twist angle is a vital parameter and is defined as the phase shift angle between 202 

the top and bottom of a helical blade. In this study, three blades with a helical twist 203 

angle of 120° are applied, as determined in our previous research [44]. For the tower, 204 

the diameter increases linearly from the top to the bottom. The position of the top of the 205 

tower is designed to match the height of the 3/4 position of the blade, so that the three 206 

top struts are slanted to connect the top of the blades and the top of the tower. The 207 



 

 

 

detailed parameters of the helical-type wind turbine are listed in Table 2. 208 

 209 

Table 2 Parameters of the helical type wind turbine  210 

Item Value 

Rated power 10 MW 

Cut-in/Rated/Cut-out wind speed 5/14/25 m/s 

Rated rotor speed 0.78 rad/s 

Blade number 3 

Helical twist angle 120° 

Blade length in vertical direction 112 m 

Blade chord length 4.1 m 

Airfoil NACA0018 

Tower length 143.6 m 

Diameter at tower top  5 m 

Diameter at tower base 8.3 m 

Rotor radius 55 m 

Diameter of struts 0.3 m 

 211 

The floating foundation and mooring system stem from the OO-star semi-212 

submersible concept [45]. The ballast of the floating foundation is slightly adjusted to 213 

maintain the draft because the OO-star concept was originally designed for HAWTs. As 214 

depicted in Fig. 2, three mooring lines are evenly distributed around the floating 215 

foundation with an interval of 120°. A clump mass of 50 t is attached to each mooring 216 

line, positioned 118 m from the fairlead. Table 3 provides the specifications of the 217 

mooring system. Table 4 presents the main parameters of the helical-type FVAWT 218 

system.  219 



 

 

 

 

(a) (b) 

Fig. 2 Mooring lines arrangement (a) top view (b) side view [45] 

 220 

Table 3 Parameters of the mooring lines 221 

Item Value 

Number of lines 3 

Angle between adjacent lines 120° 

Anchor position below MSL 130 m 

Vertical position of fairleads above MSL 9.5 m 

Mooring line length of upper part 

(from fairlead to clump mass) 
118 m 

Mooring line length of lower part 

(from clump mass to anchor) 
585 m 

Extensional stiffness 1.506×109 N 

Equivalent mass per length in air 375.38 kg/m 

Equivalent weight per length in water 3200.6 N/m 

 222 

Table 4 Main parameters of the helical type FVAWT system 223 

Item Value 

Water depth 130 m 

Draft 22 m 

Total mass (including ballast) 23011.4 t 

Center of gravity below MSL 

(Mean Sea Level) 
10.79 m 



 

 

 

Elevation of tower base above MSL 11 m 

 224 

3. SVST model 225 

As introduced above, the helical-type FVAWT is a complex coupling structure 226 

comprising numerous components. Therefore, the investigation on its dynamic 227 

characteristics necessitates the use of a coupled simulation tool, which spans 228 

interdisciplinary research, including aerodynamics, hydrodynamics, control dynamics, 229 

and rigid-flexible multibody dynamics. To address this challenge, we propose the 230 

numerical code SVST, which integrates the aero-hydro-elastic-control aspects of the 231 

FVAWT system. Details of the SVST algorithm can be found in our previous research 232 

[35, 44, 46]. Extensive verification works are also included in these publications. For 233 

instance, motions of the floater were validated via a code-to-code comparison. The 234 

natural frequencies and elastic deformations of the flexible blades were validated 235 

against ANSYS software. Satisfactory agreements were obtained in these tests, 236 

confirming the accuracy of SVST for dynamic analysis of helical-type FVAWTs. 237 

This section briefly elaborates the theoretical framework and methodology of 238 

SVST, starting with an introduction of coordinate systems and their transformation 239 

relationships. Then, the dynamic modeling process for flexible blades is presented. 240 

Afterwards, the calculation methodologies for environmental loads are explained. 241 

Finally, the SVST calculation process is introduced. In addition, for clarity, a 242 

nomenclature for the dynamic modeling process is given at the beginning of this paper. 243 

 244 

3.1 Definition of coordinate systems 245 

    The coordinate systems utilized in SVST are shown in Fig. 3. The global inertial 246 

coordinate system ( 0e


 ) remains fixed at the center of gravity of the helical type 247 

FVAWT system. The floater body coordinate system ( fe


) initially coincides with 0e


 248 

while moves synchronously with the floater to simulate the six degrees of freedom 249 

(DOFs) of motions. The six DOFs include three translational motions of surge, sway, 250 

and heave, and three rotational motions of roll, pitch and yaw, which are associated with 251 

translational motions, respectively. The surge direction points to the nominal downwind 252 

direction. The tower body coordinate system ( te


) is fixed at the tower base for the 253 

purpose of calculating the tower elastic deformations, and te


 is parallel to fe


. The 254 

blade body coordinate system ( be


 ), located at the bottom of the helical blade and 255 



 

 

 

rotating with the rotor, is established to depict blade elastic deformations. 256 

 257 

Fig. 3 The FVAWT configuration and the definition of coordinate systems 258 

 259 

Various methods, such as Euler angles, Cardan angles and Euler parameters, can 260 

be employed to capture the structural posture of the helical-type FVAWT system and 261 

describe the transformation relationships between the coordinate systems. In this 262 

research, the Cardan angles matrix was applied [47]. As shown in Fig. 4, assuming that 263 

a coordinate system undergoes a rotation (from (0)e  to (3)e ), the rotational motion 264 

can be decomposed into three steps: (1) the coordinate system (0)e  moves to (1)e  265 

with rotational angle  ; (2) the coordinate system (1)e  moves to (2)e  with 266 

rotational angle  ; (3) the coordinate system (2)e  moves to (3)e  with rotational 267 

angle  .  ,   and   represent the Cardan angles, and the transformation matrix 268 

can be written as: 269 

cos cos cos sin sin

cos sin sin sin cos cos cos sin sin sin sin cos

sin sin cos sin cos sin cos cos sin sin cos cos

    
           
           

 
     
   

A  (1) 



 

 

 

 270 

Fig. 4 Cardan angles 271 

 272 

3.2 Dynamic modeling for the rigid body 273 

In the dynamic modeling process, the floater and struts are assumed to be rigid 274 

bodies, and the momentum theorem of vector mechanics is applied. This theory states 275 

that the momentum change of an object is equal to the net external force. 276 

Mathematically, it can be expressed as: 277 

mr = F  (2) 

    J ω+ω J ω M  (3) 

where m   is the body mass, J   is the moment of inertia, and ω   is the angular 278 

velocity. F  and M  represent the external forces and torques acting on the rigid body. 279 

 280 

3.3 Dynamic modeling of a flexible body 281 

The blades and tower are considered as flexible bodies. Here, we use an example 282 

of a helical blade to illustrate the modeling method for a flexible body. The prediction 283 

of blade deformations is the main focus of this work, so the dynamic modeling process 284 

is specifically introduced in this subsection. 285 

Some basic assumptions are first presented: (a) The material of the blade is 286 

isotropic, and the constitutive relationship follows Hooke's Law. (b) The material is 287 

homogeneous, and the cross-section of the beam is symmetric about its axis. (c) The 288 

slender beam model is simplified by neglecting the shear effects. 289 

 290 

3.3.1 Kinematic theory 291 



 

 

 

Fig. 5 shows the flexible beam kinematics model. 0e


 is the inertial coordinate 292 

system. be


 is the blade body coordinate system, which is fixed on the undeformed 293 

blade. 0P   represents an arbitrary point on the beam before deformation, and P  294 

represents the point after deformation.  295 

 296 

Fig. 5 Flexible beam kinematics 297 

 298 

The radius vector r  of point P  can be written as: 299 

0 0  r r ρ u  (4) 

where 0r  is the vector from the origin of the inertial coordinate system to the blade 300 

body coordinate system, representing the large overall motions of the blade. 0ρ  is the 301 

vector of point 0P   on the blade floating coordinate system. u   is the elastic 302 

deformation of point P  . The first and second derivatives of the vector r   can be 303 

obtained as follows: 304 

0 0= + ( + ) + r r ω ρ u u   (5) 

0 0 0= + ( + ) + + ( + ) + 2    r r ω ρ u u ω ω ρ u ω u    (6) 

where u  and u  are the first and second derivatives of u  based on the blade body 305 

coordinate system. 306 

 307 

3.3.2 Kinetics theory 308 

The helical blade is modeled as a Bernoulli-Euler beam and discretized into 309 

numerous straight elements with the application of the finite element method to 310 

simulate the elastic deformation u . As shown in Fig. 6, a blade is divided into n  311 

elements, and each element contains 2 nodes. Each node has 6 DOFs, including tensile 312 



 

 

 

deformation, two directions of bending deformation and their corresponding bending 313 

angles, and torsion angle deformation. Therefore, a total of 12 DOFs are considered in 314 

one element. 315 

 316 

Fig. 6 Finite element method 317 

 318 

For the k-th element, the element coordinate system k
ie


 is defined. Additionally, 319 

the element translation coordinate system ke


  is also employed to facilitate the 320 

description of the vector of point P  on the element coordinate system, as shown in 321 

Fig. 7. 322 

  

(a) (b) 

Fig. 7 Elastic deformation vector of the flexible body (a) element coordinate system 

(b) element translation coordinate system 

 323 

Fig. 7(a) presents the deformation vector of point P   under the element 324 

coordinate system, which can be written as: 325 

0
k k

i    l u u l u  (7) 

where iu  is the vector from the element coordinate system to the element translation 326 

coordinate system, ku  is the deformation vector on the element translation coordinate 327 

system. From Eq. (7), k k
i  u u u can be derived. 328 

As shown in Fig. 7(b), a non-Cartesian coordinate deformation vector kw  can 329 

also be defined, where 1
kw  represents the axial deformation along the flexible beam. 330 

The relationship between the vectors ku  and kw can be expressed as follows based 331 



 

 

 

on the continuum mechanics theory [48]:  332 
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where kw  can be described by using the finite element shape functions: 333 
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kN  is the shape function: 334 
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where: 335 

11 1
k

x
N

l
   12

k

x
N

l
  

2 3

21 1 3 2
k k

x x
N

l l

   
     

   
 

2 3

31 2
2

k k

x x
N x

l l
    

2 3

22 3 2
k k

x x
N

l l

   
    

   
  

(11) 

kp  represents the generalized coordinates based on the deformation vector kw  , 336 

including the 12 DOFs of deformations in one element, which are described in detail in 337 

the Nomenclature. 338 

1 2 1 3 2 1 2 1 3 2
k k k k k k k

i i i i i i j j j j j jp w w w w w w     


      (12) 

Similarly, the generalized coordinates kp  based on the deformation vector ku  can 339 

also be defined as: 340 

1 2 1 3 2 1 2 1 3 2
k k k k k k k

i i i i i i j j j j j jp u u u u u u u    


      (13) 

According to Eqs. (7) and (8), the relationship between kw  and ku  is given by: 341 
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2 2
k ku w   (15) 

3 3
k ku w   (16) 

where the superscript T  represents the matrix transpose. Therefore, the expression of 342 

ku  on the element translation coordinate system is given by: 343 
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where kH  is written as: 344 
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 345 

3.3.3 Coordinate system transformation  346 

As discussed above, the deformation vector ku   is derived on the element 347 

translation coordinate system. In this subsection, the vector is transformed to the blade 348 

floating coordinate system to model the helical blade. 349 

The generalized coordinates of the blade floating coordinate system are supposed 350 

as kp , and the relationship between kp  and kp  can be given by: 351 

k k kp L p  (19) 

where kL   is the Cardan angle matrix of the element between the blade floating 352 

coordinate system and the element translation coordinate system. It should be noted that 353 

kp   only includes the information of two nodes on an element, so that the overall 354 

deformation vector 0p  is defined, which contains all the deformations along the blade: 355 

0
k kp B p  (20) 



 

 

 

where kB  is known as the Boolean matrix [49]. Next, boundary conditions should be 356 

introduced for the beam model: 357 

0p Rp  (21) 

where p  is the overall deformation vector after considering the boundary conditions 358 

and R  is the transformation matrix. 359 

After the transformation introduced above, the expression ku , which represents 360 

the overall deformation vector of the whole blade, can be written as: 361 
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where kA  is the Cardan angle matrix of one node between the blade floating 362 

coordinate system and the element translation coordinate system. 1N  , 2N   and 3N  363 

are given by: 364 

1 1
k k kN N L B R  

2 2
k k kN N L B R  

3 3
k k kN N L B R  

k k k k kH R B L H L B R    

(23) 

Note that the above formula derivation only involves the tensile and bending 365 

deformations. The derivation process of the torsion angle deformation is similar to that 366 

of the tensile deformation. To avoid repetition, the process is not described in this paper; 367 

it can be referred to in Ref. [35]. 368 

 369 

3.3.4 Elasticity theory 370 

According to the assumptions mentioned above, Hooke's Law is utilized, and the 371 

shear effects are ignored. Hence, the normal stress is expressed as: 372 

E   (24) 

where E   is the elastic modulus, and    is the normal strain. The shear stress is 373 

written as: 374 

G   (25) 



 

 

 

where G  is the shear modulus, and   is the shear strain. Then, the stiffness matrix 375 

of the elastic beam can be obtained after neglecting the higher-order terms: 376 
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where EA , zzEI , yyEI , and pGI  are the tensile stiffness, two directions of bending 377 

stiffness, and torsional stiffness of the blade node, respectively. 378 

 379 

3.3.5 Jourdain’s velocity variational principle 380 

The dynamic equilibrium of the flexible blade system can be expressed as the 381 

following equation based on Jourdain’s velocity variational principle. 382 

ˆ 0bV
r rdV p Kp - W          (28) 

in which ˆ
V

r rdV    represents the variation of kinetic energy, and ̂  is the blade 383 

density. p Kp   represents the variation of kinetic energy. bW   represents the 384 

variation of external force energy. The methodologies for simulating external forces are 385 

discussed in subsection 3.4. 386 

 387 

3.4 Environmental loads 388 

The dynamic responses of a helical type FVAWT are governed by the combined 389 

actions of its inertia as well as offshore environmental loads, such as aerodynamic loads 390 

on the blades and tower, and hydrodynamic loads on the floater and mooring lines. 391 

Additionally, the coupling effect between environmental loads and the structure needs 392 

to be properly considered to evaluate the structural ability to withstand fatigue. The 393 

detailed methodologies for determining environmental loads have been extensively 394 

described in our previous research [35, 46]. To avoid redundancy, we provide a concise 395 

overview of the algorithms in this subsection. 396 

For aerodynamic loads, the unsteady blade element momentum (UBEM) method 397 

with aerodynamic corrections is utilized [50]. The UBEM was inspired by the 398 

conventional blade element momentum (BEM) method for HAWTs, which was initially 399 



 

 

 

proposed by Rankine [51] and Froude [52]. The UBEM is conducted in the time domain, 400 

considering time-delay effects caused by dynamic wakes or dynamic inflows. Fig. 8 401 

shows the blade velocity vector. The blade azimuth angle   varies as the wind turbine 402 

rotates. The relative inflow velocity relV  can be derived considering the incoming 403 

wind speed, rotational speed, and the motions of the floating foundation. Based on 404 

momentum theory, the induction factor of the blade can be obtained through momentum 405 

loss and rotor thrust, and induction factors converge throughout the time domain 406 

process. During this process, the normal force and tangential force can be calculated 407 

based on the transformation relationships among the relative inflow velocity relV  , 408 

normal inflow velocity ,rel nV , and tangential inflow velocity ,rel tV . Subsequently, the 409 

aerodynamic parameters of the rotor can be obtained, such as the thrust, torque, and 410 

power. 411 

 412 

Fig. 8 Blade velocity vector 413 

 414 

Additionally, aerodynamic corrections are included to improve the accuracy of the 415 

UBEM. Dynamic stall is considered based on the B-L model proposed by Beddoes and 416 

Leishman [53]. This model simulates three stages: full attached flow, trailing-edge flow 417 

separation, and dynamic stall (complete separation flow) [54, 55]. Prandtl's tip-loss 418 

theory is employed to adjust the lift and drag coefficients [56]. Additionally, a dynamic 419 

inflow correction is utilized to balance the relationship between the thrust and induction 420 

velocity caused by the aerodynamic load variation [57]. 421 

Hydrodynamic loads are derived based on the DNVGL software SESAM [58]. 422 

Linear wave theory and the 3D potential flow method are utilized based on the 423 

assumptions that the water flow is inviscid and irrotational and that the wave amplitude 424 

is much smaller than the wavelength. Fig. 9 shows the hydrodynamic model established 425 



 

 

 

in SESAM. The hydrodynamic coefficients and wave force transfer functions in the 426 

frequency domain are calculated by the analysis program WADAM, including linear 427 

and quadric transfer functions, radiation coefficients, and hydrodynamic restoring force 428 

coefficients. The frequency domain parameters are then introduced to the 429 

hydrodynamic module of the SVST so that they can be transferred into time domain 430 

hydrodynamic loads. 431 

 432 

Fig. 9 Hydrodynamic model in SESAM 433 

 434 

The mooring forces are computed using the quasi-static catenary method [59]. This 435 

method assumes that the mooring lines maintain static equilibrium at any time. The 436 

mooring line is divided into several elements. For each element, the force equilibrium 437 

equation can be obtained by neglecting the inertia and hydrodynamic effects. After 438 

integrating the element forces along the catenary line from the anchor to the fairlead, 439 

the instantaneous tension of the mooring lines can be simulated. 440 

 441 

3.5 SVST model calculation process 442 

Based on dynamic theories, the coupled numerical code SVST was developed to 443 

simulate the time-domain dynamic behavior of a helical-type FVAWT. As introduced 444 

above, the helical type FVAWT is a complex multi-body system. To simulate its 445 

dynamic responses, numerous coordinate systems are defined, leading to a large and 446 

intricate dynamic equation. Hence, the SVST code employs a slack coupled 447 

methodology to streamline equation solving and improve solution efficiency [35].  448 

Fig. 10 shows a schematic diagram of the slack coupled modeling method. The 449 

wind turbine system is divided into two configurations. Configuration 1 consists of a 450 

rigid-flexible coupling system, where the floater and blades are modelled as rigid bodies, 451 



 

 

 

while the tower is treated as a flexible beam. Configuration 2 models the blades as 452 

flexible beams. During the time domain simulation, the motions of rigid blades are 453 

computed in configuration 1 at each timestep and then transferred to configuration 2 as 454 

the overall motions of the flexible blades. Compared to the fully coupled method, the 455 

slack coupled method simplifies the coupling relationship between the blades and 456 

substructures by disregarding the effect of blade deformation on substructures. Using 457 

this method, the SVST code ensures accurate results while reducing the time 458 

consumption of numerical calculations for helical type FVAWTs. 459 

 460 

Fig. 10 Schematic diagram of the slack coupled modeling method 461 

 462 

Fig. 11 illustrates the computational flowchart for the SVST numerical code. Prior 463 

to the time domain simulations, the initial parameters, including the hydrodynamic 464 

parameters, environmental conditions, and structural positions, are pre-set within the 465 

code. Then, the environmental loads and constraint equations are incorporated into 466 

configuration 1 to form the Lagrange equation. This equation calculates the dynamic 467 

responses in configuration 1, including the floater motions, tower deformations, and 468 

large overall blade motions. Afterwards, configuration 1 provides the time histories of 469 

large overall blade motions to configuration 2 as boundary conditions. Finally, 470 

configuration 2 computes the blade elastic deformations. 471 



 

 

 

 472 

Fig. 11 Computational flowchart for the SVST 473 

 474 

4. SVST-ANN hybrid model 475 

This section introduces the hybrid SVST-ANN model proposed in this study, 476 

which combines machine learning techniques with the SVST numerical code to 477 

enhance computational efficiency. The core idea is to compute the blade deformations 478 

on some specific nodes using the SVST module and predict the deformations on other 479 

nodes using the ANN module. 480 

 481 

4.1 ANN structure 482 

 Although numerous complex neural network architectures have been proposed, 483 

this study employs the typical ANN owing to its robust ability to simulate nonlinear 484 

mappings [60]. As illustrated in Fig. 12, the ANN follows a common structure 485 

comprising an input layer, one or several hidden layers, and an output layer. The 486 

neurons within each layer are linked to each other in various layers of the network. The 487 

input layer receives blade deformations on some key nodes, which are derived from the 488 

SVST module. The hidden layer, situated between the input and output layers, carries 489 

out computations to find features and patterns of blade deformations on different nodes. 490 



 

 

 

Finally, the output layer is responsible for predicting the blade deformations on other 491 

nodes that are not calculated by the SVST module.  492 

 493 

Fig. 12 The ANN models 494 

 495 

4.2 Calculation process of the SVST-ANN model 496 

Based on the integration of the ANN algorithm, the SVST-ANN hybrid model is 497 

established using MATLAB software to calculate the dynamic responses of helical-type 498 

FVAWTs. Fig. 13 shows the flowchart of the system which can be divided into three 499 

steps: 500 

 501 

Fig. 13 The flowchart of SVST-ANN system 502 

 503 

Step 1: Hydrodynamic modeling 504 

In the first step, a hydrodynamic model is established in SESAM with the input 505 

parameters of the helical type FVAWT system. The hydrodynamic coefficients and 506 



 

 

 

wave force transfer functions in the frequency domain are then computed using the 507 

analysis program WADAM. 508 

Step 2: Training process  509 

The helical type FVAWT is modeled utilizing the SVST numerical code with the 510 

incorporation of hydrodynamic parameters. Next, the SVST computes helical blade 511 

deformations under various environmental conditions to generate training data. During 512 

this process, the finite element method discretizes the helical blades into numerous 513 

elements. The deformations of specific key nodes, named calculate nodes, are manually 514 

selected as the input data, while the deformations of other nodes, named predict nodes, 515 

are considered as the output data. 516 

Afterwards, the training data are input into the ANN module, and the 517 

hyperparameters are tuned, such as the number of hidden layers, the number of neurons, 518 

and the learning rate. The training process continues until the loss function, defined as 519 

the mean square error (MSE), reaches a sufficiently low value. Consequently, the 520 

network for the prediction of blade deformations is modeled. The trained network is 521 

exported to establish the SVST-ANN calculation system. 522 

Step 3: Calculation process 523 

The established hybrid SVST-ANN model is applied to compute the dynamic 524 

responses of the helical type FVAWT. For a specific load case, environmental 525 

parameters are first defined. The SVST and ANN modules conduct time series 526 

simulations simultaneously. It is noteworthy that fewer blade elements are divided in 527 

the SVST module during the blade modeling process, only focusing on the calculate 528 

nodes. At each timestep, the SVST module calculates the floater motions, tower 529 

deformations, and blade deformations on the calculate nodes. Afterwards, blade 530 

deformations on these calculate nodes are introduced into the ANN module as input to 531 

predict the blade deformations on the predict nodes. 532 

 533 

5 Results and discussion 534 

In this section, a comparison of blade deformations between the SVST and SVST-535 

ANN models is described to demonstrate the accuracy and efficiency of the proposed 536 



 

 

 

SVST-ANN hybrid model in predicting the dynamic responses of a helical type FVAWT. 537 

The parameters of the two models are first introduced. Then a comprehensive 538 

comparison is conducted, involving temporal histories, spatial trajectories, and 539 

statistical results. Finally, the computational costs of the two models are compared. 540 

 541 

5.1 Parameter setting 542 

The 10 MW helical-type FVAWT introduced in Section 2 was modeled using the 543 

SVST-ANN and SVST methods. Fig. 14 shows the top view of a helical blade. In the 544 

SVST model, each helical blade is discretized into 20 elements with 21 nodes. For 545 

comparison, during the training process of the SVST-ANN model, the blade is also 546 

divided into 20 elements. As shown in Fig. 15, three boundary nodes (marked in red) 547 

are located at the top, middle, and bottom of the blade, exhibiting zero deformation 548 

owing to the restriction of struts. The remaining 18 nodes are divided into two groups: 549 

8 nodes (marked in blue) represent the calculate nodes, and 12 nodes (marked in yellow) 550 

represent the predict nodes. Therefore, during the calculation process of the SVST-ANN 551 

model, the blade is divided into 10 elements in the SVST module, which contain only 552 

the calculate nodes. The blade deformation on a node is divided into the x- and y-553 

directions based on the blade coordinate system. The deformations in the two directions 554 

are trained respectively using the ANN module. 555 

 556 

Fig. 14 Top view of a helical blade 557 

 558 



 

 

 

 559 

Fig. 15 Distribution of nodes on the blade 560 

 561 

The hyperparameters of the ANN are carefully tuned because they are significantly 562 

related to the prediction performance. Ultimately, two hidden layers, each containing 563 

20 neurons, were employed, and the Levenberg-Marquardt backpropagation algorithm 564 

was utilized. The mean wind speeds ranging from a cut-in wind speed of 5 m/s to a cut-565 

out wind speed of 25 m/s, with 2 m/s steps, were used as training cases. The wave 566 

parameters were selected according to the measured data from the Gulf of Maine [61]. 567 

Environmental parameters of the training cases are shown in Table 5. For these cases, 568 

irregular waves and turbulent wind were considered. The wind and waves coincide, 569 

aligning with the surge motion, as shown in Fig. 3. For each case, a time series of 400 570 

s of blade deformations was used as training data after removing a small part of initial 571 

start-up transients. The trained network was exported to conduct the calculating process 572 

of the SVST-ANN hybrid model. 573 

Table 5 Environmental parameters of the training cases 574 

Load 

cases 

Mean wind 

speed 

Wind turbulence 

intensity 

Significant 

wave height 

Spectral peak 

period 

LC 1.1 5 m/s 4.1% 1.38 m 7.00 s 

LC 1.2 7 m/s 4.7% 1.66 m 7.95 s 

LC 1.3 9 m/s 5.1% 1.98 m 8.00 s 



 

 

 

LC 1.4 11 m/s 5.4% 2.36 m 8.29 s 

LC 1.5 13 m/s 5.7% 2.83 m 9.13 s 

LC 1.6 15 m/s 6.0% 3.38 m 9.64 s 

LC 1.7 17 m/s 6.2% 4.01 m 9.89 s 

LC 1.8 19 m/s 6.3% 4.79 m 10.65 s 

LC 1.9 21 m/s 6.4% 5.70 m 11.85 s 

LC 1.10 23 m/s 6.5% 6.85 m 12.00 s 

LC 1.11 25 m/s 6.7% 8.31 m 12.34 s 

 575 

To compare the SVST and SVST-ANN models, several testing cases were defined. 576 

The environmental parameters are shown in Table 6. LC 2.1, which is an untrained load 577 

case, was selected to test the prediction capability of the SVST-ANN model under 578 

untrained scenarios. In addition, it is essential to explore whether the SVST-ANN model 579 

can effectively forecast blade deformations when the environmental parameters change. 580 

Therefore, LC 2.2, LC 2.3 and LC 2.4 were defined. Compared to LC2.1, LC 2.2 has a 581 

different mean wind speed and rotational speed, LC 2.3 has different inflow turbulence, 582 

and LC 2.4 has different significant wave height and spectral peak period. When 583 

generating wind and waves, the random seed was changed for each case. 584 

Table 6 Environmental parameters of the testing cases 585 

Load 

cases 

Mean wind 

speed 

Wind turbulence 

intensity 

Rotational 

speed 

Significant 

wave height 

Spectral peak 

period 

LC 2.1 14 m/s 6 % 0.78 rad/s 3.10 m 9.39 s 

LC 2.2 20 m/s 6 % 0.65 rad/s 3.10 m 9.39 s 

LC 2.3 14 m/s 12 % 0.78 rad/s 3.10 m 9.39 s 

LC 2.4 14 m/s 6 % 0.78 rad/s 6 m 11 s 

 586 

The time-domain simulations for the two models were conducted separately on a 587 

Core (TM) i7-13700F CPU@2.1GHz server with a 5.2GHz 30GB RAM, simulating 588 

for 2000 s with a time interval of 0.1 s. Noticeably, the SVST-ANN model also 589 



 

 

 

calculates other dynamic responses of the helical type FVAWT, including floater 590 

motions and tower deformations. Nevertheless, both the SVST and SVST-ANN models 591 

employ the configuration 1 of SVST module to compute these dynamic responses, 592 

resulting in no difference between them. Therefore, only the blade deformations are 593 

compared and discussed. 594 

The remaining parts of this section are organized as follows: subsection 5.2-5.5 595 

specifically compare the SVST model and SVST-ANN model under LC 2.1, including 596 

temporal features, spatial features and statistical results of blade deformations, as well 597 

as the computational time of the two models. Subsection 5.6 demonstrates the 598 

prediction ability of SVST-ANN model under LC 2.2-2.4. 599 

 600 

5.2 Temporal features 601 

Fig. 16 shows the temporal comparison of blade deformations in the x and y 602 

directions. The horizontal axis represents time, and the vertical axis represents blade 603 

deformation components. A duration from 500 s to 550 s was chosen to clearly present 604 

the variation of deformations. The schematic diagram on the right side displays the 605 

corresponding numbers and positions of the blade nodes. In addition, only the 606 

deformations on the lower half of the blade are presented in the figure since the 607 

deformation patterns are identical for the upper and lower halves [44]. 608 

The two curves derived by the SVST and SVST-ANN models match well, 609 

indicating the precise predictive capability of the SVST-ANN model for the nonlinear 610 

behavior of blade deformations. For the calculate nodes (marked in yellow), a minimal 611 

difference is observed in the figure, which is attributed to the element variation in the 612 

finite element method. Although both models use the same SVST module to calculate 613 

blade deformations on these nodes, the SVST model divides the helical blade into 20 614 

elements, while the SVST-ANN model divides it into 10 elements. For the predict nodes 615 

(marked in blue), the temporal results of the two models exhibit good agreement. For 616 

node 2, there is a slight distinction observed in the x-direction. This discrepancy may 617 

partly stem from the inherent structural characteristics of the blade. The tangential 618 

stiffness of the blade airfoil is substantially larger than the normal stiffness, contributing 619 



 

 

 

to a much smaller blade deformation of node 2 in the x-direction compared to the y-620 

direction. Despite the normalization method was employed during the training process, 621 

a small bias inevitably occurred when predicting the blade deformation in the x-622 

direction of node 2.  623 

 624 

 625 
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Fig. 16 Comparison of temporal histories 626 

 627 

5.3 Spatial features 628 

Subsection 5.2 discusses the temporal features of the helical blade deformations. 629 

This subsection focuses on spatial information. In Fig. 17, heatmaps are used to 630 

compare the spatial trajectories of the composite deformation for blade nodes 631 

throughout one rotational period of the rotor. The composite deformation on a blade 632 

node can be given by: 633 

2 2
c x yp p p   (29) 

where xp  and yp  are the node deformations in x and y directions. 634 

The horizontal axis of the figure represents the time points in one rotational period. 635 

The rotational period is approximately 8.1 s, corresponding to 81 points on the 636 

horizontal axis. The vertical axis includes all 21 blade nodes. Consequently, a total of 637 

81×21=1701 contour points are used to illustrate the spatial features. The contour points 638 

become more yellow as the blade deformation increases. 639 

As shown in the figure, the two heatmaps are almost identical throughout the 640 

whole region, confirming the accuracy of the SVST-ANN model in spatially presenting 641 

blade deformation behaviors. Recall from subsection 5.2 that a slight bias on node 2 of 642 

the blade deformation in the x-direction is noted. However, this phenomenon could not 643 

be observed in Fig. 17. This discrepancy occurs because the deformation in the x-644 

direction is negligibly small compared to that in the y-direction, thus contributing little 645 



 

 

 

to the composition of blade deformations.  646 

Moreover, it is noticeable that the deformation pattern of the helical blade is 647 

intricate. Three slender areas positioned at the top, middle, and bottom of the figure are 648 

dark blue, indicating zero blade deformation due to the restriction of the struts. The 649 

upper and lower halves of blade deformations show a similar pattern with a phase shift. 650 

This phase shift arises from the helical twist angle effect. The phase angle of the helical 651 

blade airfoil varies continuously from the bottom to the top, leading to a corresponding 652 

phase shift in blade deformations as the rotor rotates.  653 

 
(a) 

 
(b) 

Fig. 17 Comparison of spatial trajectories (a) SVST model (b) SVST-ANN model 



 

 

 

 654 

5.4 Statistical results 655 

In this subsection, the statistical results are compared to quantify the accuracy of 656 

the SVST-ANN model in predicting blade deformations. Fig. 18 presents a box plot of 657 

blade composite deformations on all nodes. The deformations on nodes 1, 11 and 21 658 

are not given because they are all zeros. The lower and upper limits of the box indicate 659 

the 25th and 75th percentiles, and the middle line within the box denotes the average 660 

value. In addition, the upper and lower boundaries of the whiskers represent the 661 

maximum and minimum values of the data. Overall, the statistical results of the two 662 

datasets show no significant differences. 663 
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Fig. 18 Comparison of statistical results (a) from node2 to node10 (b) from node 12 to 668 

node 20 669 



 

 

 

 670 

Furthermore, Table 7 details the percentage bias of the SVST-ANN model, given 671 

by the statistical results of the blade node deformations: 672 

100%SVST SVST ANN
MAX

SVST

MAX MAX
P

MAX


   (30) 

100%SVST SVST ANN
AVE

SVST

AVE AVE
P

AVE


   (31) 

100%SVST SVST ANN
STD

SVST

STD STD
P

STD


   (32) 

where MAX  , AVE  , and STD  represent the maximum value, average value, and 673 

standard deviation. 674 

Table 7 shows that the maximum percentage bias of the maximum value, average 675 

value, and standard deviation are 6.13%, 1.35%, and 0.97%, which occur at node 19, 676 

node 5, and node 2, respectively. The percentage bias of the maximum value is 677 

relatively large, demonstrating that the SVST-ANN model still exhibits a small degree 678 

of error in predicting the instantaneous blade deformations. However, the maximum 679 

percentage bias of the maximum value is less than 7%. In addition, most of the 680 

percentage biases of the average value and standard deviation are less than 1%. 681 

 682 

Table 7 Statistical results of blade deformations 683 

Node position Maximum value (%) Average value (%) Standard deviation (%) 

1 - - - 

2 0.49 1.27 0.97 

3 0.62 0.99 0.63 

4 0.13 1.04 0.13 

5 0.98 1.35 0.68 

6 4.23 1.00 0.87 

7 4.86 0.68 0.66 

8 5.10 0.34 0.11 

9 5.23 0.19 0.20 



 

 

 

10 5.59 0.23 0.39 

11 - - - 

12 3.24 0.29 0.28 

13 3.67 0.44 0.30 

14 3.73 0.74 0.39 

15 3.24 1.10 0.25 

16 4.90 0.75 0.88 

17 4.16 0.45 0.48 

18 5.33 0.12 0.17 

19 6.13 0.12 0.03 

20 4.38 0.10 0.30 

21 - - - 

 684 

5.5 Computational time 685 

The above comparisons in subsections 5.2-5.4 demonstrate the accuracy of the 686 

SVST-ANN model from different perspectives. In this subsection, the computational 687 

times of the two models are compared. The results are shown in Table 8 and Fig. 19.  688 

For clarity, the computational time of the SVST model is divided into two parts: 689 

SVST-Configuration1 and SVST-Configuration2. In contrast, the computational time 690 

of the SVST-ANN model is divided into three parts: SVST-Configuration1, SVST-691 

Configuration2 and ANN. As mentioned above, the SVST-Configuration1 module has 692 

no difference between the two models, so the time consumption is nearly equivalent. 693 

The major difference in the computational time lies in SVST-Configuration2. For the 694 

SVST-ANN model, when fewer blade elements are divided, the computational time is 695 

substantially reduced. Although the ANN module is added, it costs little time compared 696 

with the other two modules, as shown in Table 8 and Fig. 19. Therefore, the total time 697 

cost of the SVST-ANN model is approximately two-fifths that of the SVST model. 698 

 699 

Table 8 Comparison of the computational time of the SVST and SVST-ANN models 700 



 

 

 

Model SVST-Configuration1 SVST-Configuration2 ANN Total 

SVST 3606.2 s 40328.6 s - 43934.8 s 

SVST-ANN 3612.7 s 13309.2 s 1.7 s 16923.6 s 
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 702 

Fig. 19 Bar graph comparison of the computational time of the SVST and SVST-ANN 703 

models 704 

 705 

5.6 Prediction ability of SVST-ANN model under different conditions 706 

Subsections 5.2-5.5 have demonstrated that the SVST-ANN model can accurately 707 

and efficiently predict blade deformations. However, the testing case LC 2.1 is similar 708 

to the training cases. It is essential to explore whether the SVST-ANN model can 709 

effectively forecast blade deformations under significantly different environmental 710 

conditions. Therefore, time-domain simulations for the two models were conducted 711 

under LC 2.2, LC 2.3 and LC 2.4, and the statistical results of blade deformations were 712 

analyzed. Note that in this testing process, the SVST-ANN model was not retrained. 713 

This means that the model did not learn anything from load cases of LC 2.2, LC 2.3 and 714 

LC 2.4. 715 

Table 9 summarizes the maximum percentage bias of the maximum value, average 716 

value, and standard deviation across all blade nodes. Results under LC2.1 are also listed 717 

for comparison. The table shows that the blade deformations computed by the SVST-718 

ANN model have small errors compared to the SVST model despite changes in wind 719 

speed, rotational speed, wind turbulence intensity, and wave parameters under various 720 

cases. Consequently, it can be concluded that the SVST-ANN method still has high 721 



 

 

 

accuracy in predicting blade deformations for helical type FVAWTs under significantly 722 

different environmental conditions. This may be because the SVST-ANN hybrid model 723 

uses blade deformations rather than environmental parameters as input data, indicating 724 

that its predictive ability is not directly correlated with environmental conditions. 725 

Table 9 Statistical results of blade deformations under different conditions 726 

Load cases 
Maximum value 

(%) 

Average value 

(%) 

Standard deviation 

(%) 

LC 2.1 6.13 1.35 0.97 

LC 2.2 4.00 2.06 1.61 

LC 2.3 3.52 1.39 1.44 

LC 2.4 4.38 1.41 1.81 

 727 

6 Conclusions and future work 728 

To explore the potential of large-scale FVAWT for future commercialization, it is 729 

crucial to calculate the blade deformations using an accurate and effective method. To 730 

achieve this goal, a novel hybrid SVST-ANN model was originally proposed in this 731 

study. The hybrid model is composed of SVST and ANN modules. The SVST module 732 

is used to model the wind turbine system and calculates the motions of the floater, 733 

deformations of the tower, and deformations on part of the blade elements; The ANN 734 

module is used to predict deformations on other blade elements with the input from the 735 

SVST module. 736 

A series of comparative studies were conducted to evaluate the SVST-ANN model, 737 

utilizing a test example of a 10 MW helical-type FVAWT. According to the numerical 738 

results, the SVST-ANN model presents impressive advantages in two aspects:  739 

(1) For machine learning techniques, many previous studies utilized 740 

environmental parameters as inputs to forecast wind turbine dynamic responses, but a 741 

direct long-term prediction is challenging due to the accumulation of errors over time. 742 

Compared to previous studies, the SVST-ANN model uses part of the blade 743 

deformations calculated by the SVST module as input data. Using this method, a strong 744 



 

 

 

mapping can be established between the input and output of the ANN. This approach 745 

can circumvent the obstacle arising from the cumulative error effect, so that the long-746 

term prediction of blade deformations can be realized. 747 

(2) Another advantage of the SVST-ANN model is attributed to the combination 748 

of dynamic theory and machine learning techniques. The dynamic theory provides a 749 

theoretical basis for the blade responses, so that blade deformations can be precisely 750 

calculated. Machine learning techniques can greatly reduce the computational time. For 751 

example, under testing case LC 2.1, the maximum errors for the maximum value, 752 

average value, and standard deviation across all blade nodes are 6.13%, 1.35%, and 753 

0.97%, respectively, and the computational time can be reduced by approximately 60%, 754 

showing a significant improvement in efficiency. Additionally, the SVST-ANN model 755 

maintains high accuracy under significantly different environmental conditions. 756 

It should be noted that this study employed a large-scale helical type FVAWT for 757 

two reasons. First, the helical-type FVAWT is a promising concept for future 758 

commercial applications because it can overcome the limitations of large torque 759 

fluctuations and poor self-starting performance of the traditional H-type FVAWT. The 760 

other reason is that the modeling and calculating process of the helical blade is quite 761 

complex, so that a highly efficient simulation tool is urgently needed. Although the 762 

helical-type FVAWT was used as an example, the hybrid SVST-ANN model proposed 763 

in this study is feasible for other types of FVAWTs and FHAWTs because these floating 764 

wind turbines have similar structural compositions. 765 

In the future, there will be advancements in the technique presented in this study. 766 

The accuracy of the SVST-ANN model will further improve, especially for some nodes 767 

near the bottom of the blade, where the blade deformations are significantly different 768 

in the x- and y-directions. 769 
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