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Abstract 

Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic 

in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the 

development of new DCS methods. However, newcomers might feel overwhelmed, not only by the 

already complex DCS theoretical framework but also by the broad range of component options and 

system architectures. To facilitate new entry into this exciting field, we present a comprehensive review 

of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize 

corresponding theoretical models. Further, we discuss new applications of highly integrated silicon 

single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and 

review other components (lasers, fibers, and correlators), as well as new data analysis tools, including 

deep learning. Potential applications in medical diagnosis are discussed, and an outlook for the future 

directions is provided, to offer effective guidance to embark on DCS research.  

Keywords: diffuse correlation spectroscopy (DCS); continuous-wave; time-domain; frequency domain; 

blood flow indices; clinical application; near-infrared.  
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Glossary 

DCS Diffuse correlation spectroscopy 

DCT Diffuse correlation tomography 

SPAD Single-photon avalanche diode  

APD Avalanche photon diode 

PMT Photomultiplier 

SNSPD Superconducting nanowire single-photon detector 

DL Deep learning 

BF Blood flow 

BFi Blood flow index 

CBF Cerebral blood flow 

PET Positron emission tomograph 

SPECT Single photon emission computed tomograph 

XeCT Xenon-enhanced computed tomography 

MRI Magnetic resonance imaging 

DSC-MRI Dynamic susceptibility contrast magnetic resonance imaging 

LDF Laser Doppler flowmetry 

NIR Near-infrared 

NIRS Near-infrared spectroscopy 

DOS Diffuse optical spectroscopy 

CBV cerebral blood volume 

FCS Fluorescence correlation spectroscopy 

DLS Dynamic light scattering 

QELS Quasi-elastic light 

DWS Diffusing wave spectroscopy 

CHS Coherent hemodynamics spectroscopy 

RBC Red blood cells 

AI Artificial intelligence 

CMOS Complementary metal-oxide-semiconductor 

CW Continuous wave  

TD Time domain 

FD Frequency domain 

RTE Radiative transfer equation 

PDE Photon diffuse equation (Section 2); Photon detection efficiency of 

detectors (Section 3) 

CTE Correlation transport equation 

CDE Correlation diffusion equation 

MRI-ASL MRI-based arterial spin labelling 

RF Radio-frequency 

ANSI American National Standards Institute 

MPE Maximal permissible exposure  

PDE Photon detection efficiency 

LSCA Laser Speckle Contrast Analysis 

LSCI Laser Speckle Contrast Imaging 

DSCA Diffuse speckle contrast analysis  

DWS Diffusing wave spectroscopy  

DUS Doppler ultrasound 

PDT Photodynamic therapy 

TCD Transcranial Doppler ultrasound 

pO2 Oxygen partial pressure  

CMRO2 Cerebral metabolic rate of oxygen  

FPGA Field Programmable Gate Arrays  



D Core diameter of multimode fiber  

d Speckle diameter 

SNR Signal to noise ratio 

g Anisotropy factor 

𝜇𝑠 Scattering coefficient  

𝜇𝑠
′  Reduced scattering coefficient 

〈∆𝑟2(𝜏)〉 mean square displacement of moving scatterers 

𝐷𝐵 Effective diffusion coefficient for moving particles 

𝑉2 mean square velocity 

𝑟1 Distance between the detector and an approximated positive isotropic 

imaging source for a semi-infinite geometry 

𝑟2 Distance between the detector and an approximated negative isotropic 

imaging source for a semi-infinite geometry 

𝐺1/𝑔1 Unnormalized/normalized electric field autocorrelation function 

𝐺2/𝑔2 Unnormalized/normalized intensity autocorrelation function 

𝜆 Wavelength 

𝑘0 Wavenumber in the medium 

n Refraction index 

𝛼 Fraction of scattering events due to dynamic 

𝛽 Coherent factor 

𝜏 Correlation delay time 

𝑅𝑒𝑓𝑓 Effective reflection coefficient 

𝜌 Distance between source and detection fibers 

𝐽0 The zeros order Bessel function of the first kind 

𝑠0 Point-like monochromatic light source 

𝑙𝑐 Coherence length 

Δ𝜆  The optical bandwidth 

w frequency corresponding to time in Fourier domain  

𝑞 The radial spatial frequency  

p Layer number of tissues 

𝜔 The source modulation frequency  

T The correlator bin time interval  

𝑇𝑖𝑛𝑡 Integration time (measurement duration) or the measurement time window 

𝜏𝑐 Decay constant 

〈𝑀〉 Average number of photons within bin time T 

I Detected photon count 

𝑚 Bin index 

s Photon pathlength  

ToF Time-of-flight  

𝑡 Photon time-of-flight 

NL Nth-order 

SVR Support vector regression  

EEG electroencephalogram 

ECG electrocardiogram 

2DCNN 2-dimentional convolution neural networks 

3D Three-dimensional 

LSTM Long short-term memory 

RNN Recurrent neural network 

StO2 cerebral tissue oxygenation 

 

 



1. Introduction 

Blood flow (BF) in a healthy person ensures stable delivery of oxygen and energy substrates (glucose 

and lactate) to and timely removal of metabolic waste products from organs1. Specifically, well-

regulated cerebral blood flow (CBF) ensures healthy brain functions2,3, brain metabolisms4,5, and 

supports metabolic responses to external stimuli6,7. The average CBF for an adult human is around 50 

ml/(100 g min)8 and 10-30 ml/(100 g min) for a newborn9. Irregular CBF can cause brain damage 

through ischemic injury or stroke10,11. 

Effective real-time BF monitoring can aid in the diagnosis and management of broad range of medical 

conditions such as stroke, traumatic or hypoxic-ischemic encephalopathy (HIE)12,13, neurological 

disorders, cardio-cerebral diseases, cancer treatment strategies, tissue perfusion in peripheral vascular 

diseases14, brain health/functions15, wound healing, sepsis and shock16, skeletal muscle17 injuries or 

tissue viability during surgeries. 

Available real-time BF measurement tools are predominantly Doppler ultrasound based. However, 

Doppler ultrasonography requires a highly-skilled operator at the bedside and is operator-dependent18. 
Cerebral perfusion can be mapped using medical imaging scanners, including positron emission 

tomography (PET)19, single photon emission computed tomography (SPECT)20, xenon-enhanced 

computed tomography (XeCT)21, dynamic susceptibility contrast magnetic resonance imaging (DSC-

MRI)22, and arterial spin labelling MRI (ASL-MRI)23–25. However, these techniques only provide 

‘snapshot’ observations, are inappropriate for continuous monitoring, and typically require moving 

patients to imaging suites, which is unpractical for many patients. Additionally, a supine scan is 

necessary for MRI, PET and CT techniques. Further, PET, SPECT, and CT present additional risks of 

radiation exposure. Laser Doppler flowmetry (LDF)26 is another perfusion technique, but it can only 

measure superficial tissue blood flow; thus, tissue samples must be thin to permit adequate sampling. 

Thus, there is a critical need to develop bedside techniques that are free from the limitations mentioned 

above and can noninvasively monitor microvascular BF in deep tissue at the bedside with a high 

sampling rate and at a low cost. For a thorough comparison of the  modalities mentioned above, readers 

can refer to previous reviews3,8,27.  

In the late 1970s, Jöbsis observed a spectral window in the near-infrared (low optical absorption, 𝜇𝑎 

and reduced scattering, 𝜇𝑠
′ , ~ 650-950 nm) wherein photons can penetrate deep/thick tissues up to 

several centimetres28–30. Subsequently, near-infrared spectroscopy (NIRS) or diffuse optical 

spectroscopy (DOS) was applied to study deep tissue hemodynamics, including cerebral oxygenation 

and cerebral blood volume (CBV), as early as the mid-1980s31,32. However, traditional NIRS primarily 

measures blood oxygenation saturation and hemoglobin concentrations, instead of tissue blood flow. 

Although NIRS can estimate tissue perfusion, this requires injecting exogenous contrast agents (such 

as indocyanine green)33–35, limiting its applications in continuous monitoring.        

Diffuse light correlation techniques, on the other hand, are rooted in the fundamental principles of 

dynamic light scattering (DLS). These methods, sometimes called ‘quasi-elastic light (QELS) scattering’ 

techniques36–39, measure light intensity fluctuations scattered from samples to observe motions of 

sample constituents, e.g., Brownian motions of particles or macromolecules. Conventionally, DLS can 

provide detailed information about the dynamics of scattering media by using photon correlation 

techniques to analyze scattered light fluctuations39. However, QELS belongs to the single-scattering 

regime36,40 and is unsuitable for turbid media in which the incident light is scattered multiple times. In 

1987, Maret and Wolf41 reported experimental measurements of the intensity autocorrelation function 

in the multiple-scattering regime and suggested a simple method for analyzing the measurements. One 

year later, Stephen derived a theoretical framework that extends QELS to the multiple-scattering 

regime42.  



Near-infrared diffuse correlation spectroscopy (DCS), also known as diffusing wave spectroscopy 

(DWS)43,44 relates multi-scattered light’s fluctuations to the underlying dynamics of scattering media. 

Despite the name, DCS is not a traditional spectroscopic technique45–47 that uses multiple wavelengths; 

instead, it is a laser speckle method that analyzes light scattered over long distances through tissue. 

DCS, LDF48,49, laser speckle contrast imaging (LSCI)50, and diffuse speckle contrast analysis 

(DSCA)51,52 are all based on laser speckles. Diffuse temporal correlation spectroscopy was first 

introduced by Boas and Yodh53 and then formally named as ‘DCS’ by Cheung et al. in 200154. It 

provides a theoretical framework that describes the underlying phenomenon using the popular diffuse 

approximation to the radiative transfer equation. Notably, a comprehensive diffuse correlation theory 

of diffuse speckle fields for predicting particle motions in highly scattered media was first introduced 

by Boas and Yodh in 199555,56. The DCS theoretical model can be used to estimate deep-tissue 

microvascular blood flow index (BFi), which is a good surrogate for in vivo BF57. In the last two decades, 

DCS technologies have been further developed56,58,59, validated, and employed for non-invasive BF 

measurements in deep tissue (up to ~ 2 centimeters60,61), such as skin, muscle25,62–68, breast tumor69–75 

and the brain11,13,76–82. In 2001, the combination of DCS with NIRS/DOS was first introduced for 

cerebral monitoring in rats83 and then in adult brains in 200484. This combination allows for 

simultaneous monitoring of tissue BF and oxygenation.     

A diagram of the history of DCS development is shown in Fig. 1(a). Fig. 1(b) displays the number of 

DCS publications over the past 20 years, with more than 400 publications to date (we only counted 

articles containing “DCS”). Fig. 1(c) presents DCS measurements from human brain tissue, organizing 

current studies by ρ (x-axis) and the blood flow sampling rate (y-axis). It highlights a trend towards 

employing parallel or multispeckle and interferometric DCS for higher sampling rates at a larger ρ. 

Additionally, it indicates the depth required to penetrate the scalp (refer to the top of Fig. 1(c)) and 

outlines different speed regimes needed to measure: 1) general changes, at a sampling rate of less than 

1 Hz; 2) pulsatile blood flow, at 1-10 Hz; and 3) very rapid events, potentially detectable at rates greater 

than 10 Hz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 1 (a) The roadmap of DCS historical development; (b) the number of published DCS papers based on 

PUBMED (*value for 2024 extrapolated as of the date of writing); (c) blood flow sampling rate vs measurement 

depths. PDCS: parallelized DCS, iDCS: interferometric DCS.  

 

Fig. 2 illustrates the principle of DCS. Briefly, a long-coherence laser emits NIR light through an optical 

fiber to the tissue, Figure 2(a), and the recorded light intensity exhibits temporal fluctuations, Figure 

2(b). These fluctuations are attributed to the motion of moving scatterers, such as red blood cells (RBC). 

To quantify the motion of RBC, a hardware or software correlator calculates the normalized intensity 

autocorrelation, 𝑔2(𝜏) as shown in Figure 2(c). Typically, DCS systems are implemented in a reflection 

geometry, where a source and a detector are placed at a finite distance, 𝜌. Photons travelling from the 

source to the detector follow a “banana-shaped”, stochastic scattering profile, as shown in Fig. 2(d), 

where the penetration depth of these DCS instruments is roughly between 𝜌/3~𝜌/285. Fig. 2(c) and 

2(e) show that the 𝑔2(𝜏) curves decay faster with increased flow or 𝜌. The slope or the decay rate 

provides information about the optical properties and the motion of the scatters. The largest 𝜌 in the 

current state-of-the-art is 4 cm, corresponding to a depth of about 2 cm60.  

 



 

Fig. 2 The DCS principle for blood flow measurements. (a) The schematic of DCS measurements in the semi-

infinite geometry. Highly coherent laser light is used to illuminate the sample via optical fibers. The source and 

detector fibers are placed on the tissue surface within a distance 𝜌; (b) the scattered light intensity fluctuates due 

to moving scatterers (e.g., red blood cells); (c) two intensity autocorrelation curves (g2(τ)) showing different flow 

rates. (d) Photons scattered from moving particles travel along “banana-shaped” paths between source and 

detection fibers; (e) Autocorrelation functions for different 𝜌. 

Although there have been around 13 review DCS papers3,31,76–80 in the last two decades, new approaches 

have emerged, including theoretical layered models, artificial intelligence (AI) methods for DCS 

analysis, and the use of novel sensors like highly integrated complementary metal-oxide-semiconductor 

(CMOS) single-photon avalanche diodes (SPAD) cameras. These aspects were not covered in previous 

reviews, which is why this review summarizes and systematically compares various analytical layered 

models, including continuous-wave (CW)-, time-domain (TD)-DCS, AI-enhanced DCS analysis 

methods, as well as the use of SPAD cameras in DCS. Furthermore, we also derived analytical models 

for the frequency domain (FD)-DCS, which was newly introduced in 202291. The main contributions of 

this review include: 

• We thoroughly derive and compare different layered analytical models used in CW-, TD-, 

and FD-DCS, highlighting their strengths and applications (Section 2). 

• We discuss novel AI-enhanced DCS analysis strategies, addressing their effectiveness and 

potential (Section 4). 

• Section 3.3 examines new applications of CMOS SPAD cameras and compares them with 

existing sensors used in DCS.  

• Section 3.5 compares TD-DCS and CW-DCS systems and emphasizes the benefits of TD-

DCS and its potential for future development. 

• Discussion and outlooks are provided in Section 6. 

This review aims to serve as a practical information resource for researchers and newcomers venturing 

into the field, offering a clearer understanding of the evolving DCS landscape and equipping them with 

the necessary knowledge to navigate it effectively. 

 

 



2. Theory background  

The propagation of light in highly scattering media such as biological tissues can be characterized by 

an absorption coefficient 𝜇𝑎 and a reduced scattering coefficient 𝜇𝑠
′  using the radiative transfer equation 

(RTE)89. Similarly, to study the photon propagation under dynamic scatterers, the correlation transport 

equation (CTE)3,87 is adopted to obtain the field (electrical) autocorrelation function 𝐺1(𝜏)  under 

general conditions of photon migration. The primary difference between the CTE and RTE lies in the 

fact that CTE describes the time-dependent specific intensity, reflecting an angular spectrum of the 

mutual coherence function. In the NIR spectral window, the unnormalized 𝐺1(𝜏) can be expressed as, 

𝐺1
𝑇(𝒓, Ω̂, 𝜏) = 〈𝐸(𝒓, Ω̂, 𝑟) ∙ 𝐸∗(𝒓, Ω̂, 𝑡 + 𝜏)〉, where 〈∙∙∙〉 denotes a time average. 𝐸(𝒓, Ω̂, 𝑡) is the electric 

field at the position 𝒓 and time 𝑡 propagating in the Ω̂ direction, inside the tissue that can be described 

by CTE92–94 applicable for CW systems analogous to RTE: 

 ∇ ∙ 𝐺1
𝑇(𝒓, Ω̂, 𝜏)Ω̂ + 𝜇𝑡𝐺1

𝑇(𝒓, Ω̂, 𝜏) = 𝑆(𝒓, Ω̂) + 𝜇𝑠 ∫𝐺1
𝑇(𝒓, Ω̂′, 𝜏) 𝑔1

𝑠(Ω̂, Ω̂′, 𝜏)𝑓(Ω̂, Ω̂′)𝑑Ω̂′,                 (1) 

where 𝜇𝑡 = 𝜇𝑠 + 𝜇𝑎 is the transport coefficient. 𝑆(𝒓, Ω̂) is the source distribution; 𝑔1
𝑠(Ω̂, Ω̂′, 𝜏) is the 

normalized field correlation function for single scattering; and 𝑓(Ω̂, Ω̂′) is the normalized differential 

cross-section.   

For a time dependent source, Eq.  (1) becomes: 

       ∇ ∙ 𝐺1
𝑇(𝒓, Ω̂, 𝜏, 𝑡)Ω̂ + 𝜇𝑡𝐺1

𝑇(𝒓, Ω̂, 𝜏, 𝑡) +
1

𝑣

𝜕

𝜕𝑡
𝐺1

𝑇(𝒓, Ω̂, 𝜏, 𝑡) = 𝑆(𝒓, Ω̂, 𝑡) +

                                                      𝜇𝑠 ∫𝐺1
𝑇(𝒓, Ω̂′, 𝜏, 𝑡) 𝑔1

𝑠(Ω̂, Ω̂′, 𝜏, 𝑡)𝑓(Ω̂, Ω̂′)𝑑Ω̂′,                                      (2)                                   

where 𝑣 is the light speed in the medium.  

DCS BF measurements can be analyzed using the correlation diffusion equation (CDE)3,58, derived from 

CTE using the standard diffusion approximation. The derivation procedure is summarized in Figure 3. 

 

 

Fig. 3 Green’s function for DCS derivation process 

Furthermore, DCS instruments can be divided into three categories according to the light illumination 

strategy. Figure 4(a) depicts the simplest approach, which employs a CW laser. It is straightforward, 

and the instrumentation is relatively simple. The frequency-domain approach, Figure 4(b), utilizes an 

amplitude-modulated laser, with the modulation frequency set to the radio-frequency (RF) range (from 

tens to a thousand MHz). The time-domain (TD) approach, as shown in Figure 4(c), uses a short pulse 

laser and measures the delayed and temporally broadened output pulse. Time domain measurements 

have the most information content; however, they are more complex and expensive than the other two 

methods.  

 



 

Fig 4. Three common illuminations schemes with the detected light intensity over time are depicted. (a) DCS data 

collected at different ρ to improve depth sensitivity for continuous wave (CW) light source. As a rule of thumb, 

the mean penetration depth in the reflection geometry is between one-third and one-half of the source-detector 

separation95. (b) intensity modulated (FD) light source, (c) time-resolved approaches.  

The depth sensitivity of the DCS measurements can be improved using advanced techniques, such as 

TD- and FD-DCS. However, it may not be sufficient to minimize the superficial layer contamination. 

For this aim, different analytical models have been introduced to account for the contribution of the 

individual layers. These models typically include parameters of the optical system (e.g., the wavelength) 

and presumptions of optical tissue properties (e.g., 𝜇𝑎 , 𝜇𝑠
′ , n) to fit mathematical models to the 

measurements. A summary of the analytical models commonly used in DCS analysis is shown in Figure 

5. 

 

 

Fig. 5 Analytical models including the source and the detector for DCS (a) homogenous semi-infinite model, (b) 

two-layer analytical model, (c) three-layer analytical model. Here, 𝜇𝑎(𝑛)and 𝜇𝑠(𝑛)
′  are the absorption and reduced 

scattering coefficients in the n-th layer, respectively. ∆i is the thickness of Layer 𝑖.    

 

2.1 CW Semi-infinite homogenous (one layer) model 

In traditional DCS systems, the tissue is commonly considered a homogenous semi-infinite medium, as 

shown in Figure 5(a). Under the standard diffusion approximation96, we reduce Eq. (1) to CDE as:  

                                 (−
𝐷(𝒓)

𝑣
∇2 + 𝜇𝑎 +

1

3
𝛼𝜇𝑠

′𝑘0
2〈∆𝑟2(𝜏)〉) 𝐺1(𝒓, 𝜏) = 𝑆(𝒓),                                      (3) 

where 𝑮𝟏(𝒓, 𝝉) ≡ 〈�⃗⃗� (𝒓, 𝝉) ∙ �⃗⃗� ∗(𝒓, 𝒕 + 𝝉)〉  is the electric field autocorrelation function. 𝐷(𝒓) = 𝒗/

(𝟑𝝁𝒔
′ ) is the photon diffusion coefficient, 𝑣 is the speed of light in the medium, and 𝜇𝑠

′ = 𝜇𝑠(1 − 𝑔) is 

the reduced scattering coefficient, where 𝑔 ≡ 〈𝑐𝑜𝑠𝜃〉 (ranging from -1 to 1) is the scattering anisotropy 

factor. 𝒌𝟎 is the wavenumber in the medium, 𝜶 represents the probability that a light scattering event is 

with a moving scatterer (e.g., a flowing red blood cell), and 〈∆𝑟2(𝜏)〉 represents the mean square 

displacement of moving scatterers, and is commonly described using two different models, including 

the Brownian motion and random ballistic models in biological tissues. For the Brownian motion, 



〈∆𝑟2(𝜏)〉 = 6𝐷𝐵𝜏97, where 𝐷𝐵 is an ‘effective’ diffusion coefficient for moving particles. For random 

ballistic flow, 〈∆𝑟2(𝜏)〉 = 6𝑉2𝜏2 , where 𝑉2  is the mean square velocity of the scatterer in the 

vasculature.  

In particular, for a semi-infinite, homogenous system with a point source 𝑆(𝑟 ) = 𝑆0𝛿(𝒓), 𝐺1(𝒓, 𝜏) is 

the solution of Eq. (3), obtained using an image source approach following Kienle and Patterson98 as,  

                                           𝐺1(𝑟 , 𝜏) =
3𝜇𝑠

′𝑆0

4𝜋
[
𝑒𝑥𝑝(− 𝐾𝑟1)

𝑟1
−

𝑒𝑥𝑝(−𝐾𝑟2)

𝑟2
],                                                 (4)                                      

where 𝐾 = √3𝜇𝑠
′𝜇𝑎 + 𝛼𝜇𝑠

′2𝑘0
2〈∆𝑟2(𝜏)〉 , 𝑟1  and 𝑟2  are the distances between the detector and the 

source/image source, respectively. 𝑟1 = √𝜌2 + 𝑧0
2  and 𝑟2 = √𝜌2 + (𝑧0 + 2𝑧𝑏)

2 ; 𝑧0 = 1/𝜇𝑠
′  is the 

depth at which a collimated source on the tissue surface can be approximated as a point source; 𝑧𝑏 =

2(1 + 𝑅𝑒𝑓𝑓)/3𝜇𝑠
′(1 − 𝑅𝑒𝑓𝑓) and 𝑅𝑒𝑓𝑓 = −1.440𝑛−2 + 0.71𝑛−1 + 0.668 + 0.0636𝑛 is the effective 

reflection coefficient, 𝑛 =
𝑛𝑡𝑖𝑠𝑠𝑢𝑒

𝑛𝑎𝑖𝑟
≈ 1.33. Typically, 𝜶𝐷𝐵 is referred to as the blood flow index (BFi) 

in biological tissues99. In practice, the Brownian model can fit the observed correlation decay curves 

better over a wide range of tissue types, including rat 77,79,83,100, piglet 101,102, human brains84,103–109, mouse 

tumours110,111, human skeletal muscles25,62–64,112, and human tumors69,113–115. 

2.2 CW two-layer model  

We have stated above that the DCS theory is based on the correlation transport55,92,93, approximated by 

CDE94,96. By assuming that light propagates in a homogenous medium, the simple solution of Eq. (3) 

has been widely used in the DCS community116. However, biological tissues117 are usually layered 

encompassing unique physiological and optical properties118,119. Gagnon120 et al. first proposed a two-

layer analytical model, based on Kienle et al.’s model for reflectance spectroscopy with the two-layered 

geometry in Figure 5(b).   

We assume that an infinitely thin beam shines the turbid two-layered medium. The first layer of the 

two-layer medium has a thickness ∆1, and the second layer is semi-infinite. The beam is scattered 

isotropically in the upper layer at a depth of 𝑧 = 𝑧0, where 𝑧0 = 1/(𝜇𝑎1 + 𝜇𝑠1
′ ). We also assume that 

the Brownian movement is independent in each layer, meaning that the particles can not move from 

one layer to another in the medium. The incident light is perpendicular to the surface of the turbid 

medium (on the x-y plane). Then Eq. (3) becomes: 

      (−𝐷1∇
2 + 𝜇𝑎1 + 

1

3
𝑘0

2𝜇𝑠1
′ 〈∆𝑟1

2(𝜏)〉) 𝐺1
1(𝑥, 𝑦, 𝑧, 𝜏) = 𝑆(𝑥, 𝑦, 𝑧 − 𝑧0),   0 ≤ 𝑧 ≤ ∆1,                     (5)         

           (−𝐷2∇
2 + 𝜇𝑎2 + 

1

3
𝑘0

2𝜇𝑠2
′ 〈∆𝑟2

2(𝜏)〉) 𝐺1
2(𝑥, 𝑦, 𝑧, 𝜏) = 0,         ∆1≤ 𝑧,                                       (6) 

 

where 𝐷𝑖 = 1/3(𝜇𝑎(𝑖) + 𝜇𝑠(𝑖)
′ ) is the diffusion constant of Layer 𝑖. The mean-squared displacement 

〈∆𝑟𝑖
2(𝜏)〉 = 6𝐷𝐵(𝑖)𝜏 for Layer i.  

Although Kienle et al.’s derivations121–123 are initially for diffuse reflectance spectroscopy (DRS), we 

re-derive them for DCS following the same procedure and obtain the solution of Eqs. (5) and (6) at z = 

0 (Layer 1) in the Fourier domain by 

      �̃�1
1(𝒒, 𝑧, 𝜏) =

sinh [ℶ1(𝑧𝑏+𝑧0)]

𝐷1ℶ1
×

𝐷1ℶ1 cosh[ℶ1(∆1−𝑧)]+𝐷2ℶ2 sinh[ℶ1(∆1−𝑧)]

𝐷1ℶ1 cosh[ℶ1(∆1+𝑧𝑏)]+𝐷2ℶ2 sinh[ℶ1(∆1+𝑧𝑏)]
−

sinh [ℶ1(𝑧0−𝑧)]

𝐷1ℶ1
,                  (7)             

where ℶ𝑗
2 = (𝐷𝑗𝒒

2 + 𝜇𝑎𝑗 + 2𝑐𝜇𝑠𝑗
′ 𝑘0

2𝐷𝐵𝑗)/𝐷𝑗, j =1 and 2, 𝒒 is the radial spatial frequency and  



                                                                   𝑧𝑏 =
1+𝑅𝑒𝑓𝑓

1−𝑅𝑒𝑓𝑓
2𝐷1.                                                                  (8) 

And 𝐺1
1(𝝆, 𝑧 = 0, 𝜏) at 𝒓 = {𝜌, 𝑧 = 0} on the medium surface is then obtained from the inverse spatial 

Fourier transform as, 

                                         𝐺1
1(𝝆, 𝑧 = 0, 𝜏) =

1

2𝜋
∫ �̃�1

1(𝒒, 𝑧 = 0, 𝜏)𝒒𝑱𝟎(𝒒𝝆)
∞

0
𝑑𝒒,                                   (9) 

where 𝐽0  stands for the zeroth order Bessel function of the first kind computed by the MATLAB 

function besselj.  

2.3 CW three-layer model  

Also, in the three-layer DCS model103,124–126, 𝐺1(𝑟, 𝑧, 𝜏) can be modelled similarly by CDE. A turbid 

medium consisting of 3 slabs was considered as shown in Figure 6(c). Each slab has a thickness ∆𝑝=

𝐿𝑝 − 𝐿𝑝−1, p =1, 2, 3. To solve 𝐺1(𝑟, 𝑧, 𝜏), Eq. (3) can be revised for the three-layer model as: 

                             [∇2 − (3𝜇𝑎
(𝑝)

𝜇𝑠
′(𝑛)

+ 6𝑘0
2𝜇𝑠

′2𝐷𝐵
(𝑝)

𝜏)] 𝐺1(𝑟, z, 𝜏) = −𝑠0𝛿(𝑟 − 𝑟′),                             (10) 

where 𝑠0  is a point-like monochromatic light source located at 𝑟′ = {𝜌′ = 0, 𝑧′} inside Layer 1; 𝜌 

represents the transverse coordinate. The field autocorrelation at the tissue surface, 𝐺1(𝑟, 𝑧 = 0, 𝜏),  can 

be obtained by solving Eq. (10) in the Fourier domain with respect to 𝜌 as: 

                                        �̂�(𝒒, 𝑧, 𝜏) = ∫𝑑2𝜌𝐺1(𝑟, 𝜏)exp (𝑖𝒒 ∙ 𝜌),                                                       (11)                                       

where 𝒒 is the radial spatial frequency. Thus, in the Fourier domain Eq. (10) can be rewritten: 

                                      [
𝜕2

𝜕𝑧2 − 𝜅2(𝒒, 𝜏)] �̂�(𝒒, 𝑧, 𝜏) = −𝑠0𝛿(𝑧 − 𝑧′),                                                  (12) 

where 𝜅(𝑝)
2 (𝒒, 𝜏) = 3𝜇𝑎

(𝑝)
𝜇𝑠

′(𝑝)
+ 6𝑘0

2𝜇𝑠
′2𝐷𝐵

(𝑝)
𝜏 + 𝒒2.                                                                  

We divided the top layer into two sublayers: Sub-layer 0 (0 < 𝑧 < 𝑧′) identified by 𝑝 = 0, and Sub-

layer 1 (𝑧′ < 𝑧 < 𝐿1), identified by 𝑝 hereafter. The solution of Eq. (12) at Layer 𝑝 (𝑝 = 1, 2, 3) can 

be written as: 

                                   �̂�𝑝(𝒒, 𝑧, 𝜏) = 𝐴𝑝 exp(𝜅(𝑝)𝑧) + 𝐵𝑝 exp(−𝜅(𝑝)𝑧),                                             (13)     

where 𝐴𝑝 and 𝐵𝑝 are constant factors for Layer 𝑝 determined by the boundary conditions: 

 

 �̂�0(𝒒, 𝑧, 𝜏) − 𝑧0
𝜕

𝜕𝑧
�̂�0(𝒒, 𝑧, 𝜏) = 0,   𝑧 = 0 

             

(14) 

   �̂�0(𝒒, 𝑧, 𝜏) = �̂�1(𝒒, 𝑧, 𝜏),                𝑧 =  𝑧′ 
𝜕

𝜕𝑧
�̂�0(𝒒, 𝑧, 𝜏) =

𝜕

𝜕𝑧
�̂�1(𝒒, 𝑧, 𝜏) + 3𝜇𝑠

′1,           𝑧 =  𝑧′ 

�̂�𝑝(𝒒, 𝑧, 𝜏) = �̂�𝑝+1(𝒒, 𝑧, 𝜏),    𝑧 = 𝐿𝑝, 𝑝 = 1,2 

𝐷𝑝
𝜕

𝜕𝑧
�̂�𝑝(𝒒, 𝑧, 𝜏) = 𝐷𝑝+1

𝜕

𝜕𝑧
�̂�𝑝+1(𝒒, 𝑧, 𝜏),  𝑧 = 𝐿𝑝, 𝑝 = 1,2 

�̂�3(𝒒, 𝑧, 𝜏) + 𝑧3
𝜕

𝜕𝑧
�̂�3(𝒒, 𝑧, 𝜏) = 0, 𝑧 = 𝐿3 

                                                               

where 𝑧0~1/𝜇𝑠
′1  and 𝑧3~1/𝜇𝑠

′3 are the extrapolation lengths taking into account internal reflections at 

external (𝑧 = 0 and 𝑧 = 𝐿4) boundaries.  

Substituting Eq. (13) into Eq. (14), we can obtain 𝐴𝑝  and 𝐵𝑝  (𝑝 =  1, 2, 3). The Fourier transform 

�̂�0(𝒒, 𝑧, 𝜏) measured at 𝑧 = 0 (the surface of the slab) is then obtained by substituting 𝐴0 and 𝐵0  into 

Eq. (13) under Δ3 → ∞ to obtain: 



                                                               �̂�0(𝒒, 𝑧, 𝜏) =
𝑁𝑢𝑚

𝐷𝑒𝑛𝑜𝑚
 ,                                                             (15) 

where 𝑁𝑢𝑚 and 𝐷𝑒𝑛𝑜𝑚 when  𝑝 = 3 and ∆3→ ∞ are: 

𝑁𝑢𝑚 = 3𝜇𝑠
′1𝑧0(κ1𝐷1𝑐𝑜𝑠ℎ(κ1(Δ1 − 𝑧′))(κ2𝐷2 cosh(κ2Δ2) + κ3𝐷3sinh (κ2Δ2)) +

              κ2𝐷2(κ3𝐷3cosh (κ2Δ2) + κ2𝐷2sinh (κ2Δ2))sinh (κ1(Δ1 − 𝑧′))),                                       (16)     

 𝐷𝑒𝑛𝑜𝑚 = κ2𝐷2 cosh(κ2𝐷2) (κ1(𝐷1 + κ3𝐷3𝑧0) cosh(κ1𝐷1) + (κ3𝐷3 +

                 κ1
2𝐷1𝑧0)sinh (κ1𝐷1)) + (κ1(κ3𝐷1𝐷3 + κ2

2𝐷2
2𝑧0) cosh(κ1𝐷1) + (κ2

2𝐷2
2 +

                   κ1
2κ3𝐷1𝐷3𝑧0)sinh (κ1𝐷1))sinh (κ2Δ2).                                                                              (17) 

By performing the inverse Fourier transform of Eq. (15) with respect to 𝒒, �̂�0(𝒒, 𝑧, 𝜏) can be obtained 

as: 

𝐺0(𝑟, 𝜏) =
1

(2𝜋)2
∫𝑑2 𝒒�̂�0(𝒒, 𝑧 = 0, 𝜏) exp(−𝑖𝒒 ∙ 𝝆) 

                                               =
1

2𝜋
∫𝑑𝒒 �̂�0(𝒒, 𝑧 = 0, 𝜏)𝑞𝐽0(𝜌𝒒),                                                        (18)                                                      

where 0J  denotes the first-kind zero-order Bessel function. 

This three-layered solution has been tested with Monte Carlo simulations and used to analyze in vivo 

measurements 124,125,127. 

Figure 6 (a), (b), and (c) show g1 curves for semi-infinite, two-, and three-layer analytical models, 

respectively. Typically, in DCS data analysis, the measured 𝑔2 is fitted with one of the models shown 

in Figure 6, using the Siegert relation 𝑔2(𝜏) = 1 + 𝛽𝑔1
2(𝜏). Usually, the homogenous semi-infinite 

analytical model is used in data analysis, assuming free diffusion for speckle decorrelation, giving rather 

poor agreement with experimental scenarios. This is because homogeneous fitting is more sensitive to 

the dynamic properties of the superficial layers. Compared with the semi-infinite model, two- and three-

layered models can separate the signal between the superficial and brain layers. The layered models can 

mitigate the discrepancies between the one-layer model and realistic tissues. The accuracy of the three-

layer analytical model has been investigated in previous studies87,103,125. Although multi-layered models 

provide a superior fit to measured data and are more accurate, they are susceptible to measurement 

noise, and much longer BFi estimation time is needed126.   

 

 

 

 

 

 

 

 



 

Fig. 6 (a) Representative 𝑔1(𝜏) simulated from a sample with 𝜌 = 10 𝑚𝑚 (blue solid line) and = 30 𝑚𝑚 (green 

solid line), varying 𝐷𝐵 from 1 × 10−6𝑚𝑚2/𝑠 to 1 × 10−8𝑚𝑚2/𝑠 (blue and green dot lines), 𝜇𝑎 = 0.013𝑚𝑚−1, 

𝜇𝑠
′ = 0.86𝑚𝑚−1, 𝜆 = 785𝑛𝑚. (b) Representative 𝑔1(𝜏) data simulated from a sample with 𝜌 = 10 𝑚𝑚 (blue 

solid line) and = 30 𝑚𝑚 (green solid line), characterized with 𝜇𝑎
(1)

= 0.013𝑚𝑚−1 , 𝜇𝑠
′(1)

= 0.86𝑚𝑚−1 , ∆1=

10𝑚𝑚 , 𝐷𝐵
(1)

= 1 × 10−6𝑚𝑚2/𝑠 , (Parameters for the top layer); 𝜇𝑎
(2)

= 0.018𝑚𝑚−1 , 𝜇𝑠
′(2)

= 1.11𝑚𝑚−1 , 

varying 𝐷𝐵
(2)

 from 1 × 10−6𝑚𝑚2/𝑠 to 1 × 10−8𝑚𝑚2/𝑠 (Parameters for the bottom layer; blue and green dot 

lines); (c) Representative 𝑔1(𝜏) data simulated from a sample with 𝜌 = 10 𝑚𝑚 (blue solid line) and = 30 𝑚𝑚 

(green solid line) characterized with 𝜇𝑎
(1)

= 0.013𝑚𝑚−1 , 𝜇𝑠
′(1)

= 0.86𝑚𝑚−1 , 𝐷𝐵
(1)

= 1 × 10−8𝑚𝑚2/𝑠 , ∆2=

5𝑚𝑚, (Parameters for the first layer); 𝜇𝑎
(2)

= 0.018𝑚𝑚−1, 𝜇𝑠
′(2)

= 1.11𝑚𝑚−1,  𝐷𝐵
(2)

= 1 × 10−6𝑚𝑚2/𝑠, ∆2=

7𝑚𝑚  (Parameters for the second layer); 𝜇𝑎
(3)

= 0.03𝑚𝑚−1 , 𝜇𝑠
′(3)

= 1.19𝑚𝑚−1 , varying 𝐷𝐵
(3)

from 1 ×

10−6𝑚𝑚2/𝑠 to 1 × 10−8𝑚𝑚2/𝑠 (Parameters for the third layer), the spatial frequency  𝑞 ∈ (0, 30]𝑚𝑚−1. All 

graphs are plotted using homemade software using MATLAB (Mathworks, Inc.). 

2.4. TD semi-infinite (one layer) model 

For TD-DCS systems, 𝑮𝟏(�⃗� , 𝝉, 𝒕) obeys the time-dependent correlation equation: 



                 (−
𝐷(𝒓)

𝑣
∇2 + 𝜇𝑎 +

1

3
𝛼𝜇𝑠

′𝑘0
2〈∆𝑟2(𝜏)〉 +

𝟏

𝝂

𝝏

𝝏𝒕
)𝐺1(𝒓, 𝑡, 𝜏) = 𝑆(𝒓, 𝒕).                      (19) 

For a semi-infinite medium, it is straightforward to obtain the analytical solution of Eq. (19) under the 

boundary condition128. Thus 𝐺1(𝜌, 𝑡, 𝜏) on the tissue surface (𝑧 = 0) is 129:  

                    𝐺1(𝜌, 𝑡, 𝜏) = 𝑐 (
3𝜇𝑠

′

4𝜋𝑐𝑡
)

3

2
exp[−(𝜇𝑎 + 2𝜇𝑠

′𝐷𝐵𝑘0
2𝜏)𝑐𝑡] exp (−

3𝜇𝑠
′𝜌2

4𝑐𝑡
) × [exp (−

3𝜇𝑠
′𝑧0

2

4𝑐𝑡
) −

                                                    exp (−
3𝜇𝑠

′(𝑧0+2𝑧𝑏)2

4𝑐𝑡
)].                                                                             (20)                                                       

Thus, 𝑔1(𝜏, 𝑠) for a photon pathlength 𝑠 can be written as: 

                                            𝑔1
𝑠𝑖𝑛𝑔𝑙𝑒(𝜏, 𝑠) =

 𝐺1(𝜌,𝑡,𝜏)

𝐺1(𝜌,𝑡,𝜏=0)
 

                                                                    = exp (−2𝜇𝑠
′𝐷𝐵𝑘0

2𝑠𝜏).                                                      (21)                   

However, it is not easy to measure the pathlength of a photon in tissues. Therefore, the total scattered 

electric-field autocorrelation function 𝑔1(𝜏, 𝑠) is obtained by incoherently summing the contributions 

over all 𝑠 44,130. Thus 𝑔1(𝜏, 𝑠) is a weighted average over all possible pathlengths as: 

𝑔1(𝜏) = ∫ 𝑃(𝑠)𝑔1
𝑠𝑖𝑛𝑔𝑙𝑒(𝜏, 𝑠)𝑑𝑠

∞

0

 

                                                                   = ∫ 𝑃(𝑠)exp (−2𝜇𝑠
′𝐷𝐵𝑘0

2𝑠𝜏)𝑑𝑠
∞

0
.                                      (22)    

where 𝑃(𝑠) represents the probability that an incident photon travels a distance 𝑠 before emerging from 

the medium; it can be calculated as 131: 

                 𝑃(𝑠) =
𝑣

(4𝜋𝐷𝑠/𝑣)3/2 exp(−𝜇𝑠𝑠) × [exp (−
𝑟1
2

4𝐷𝑠
) − exp (−

𝑟2
2

4𝐷𝑠
)],                                         (23)  

where the variables are the same as in Eq. (4) and 𝑠 = 𝑣𝑡, with 𝑡 being the photon time-of-flight (ToF) 

and 𝑣 the speed of light in the medium.  

By employing a sufficiently narrow time gate, Eq. (22) can be simplified, and the normalized time-

gated 𝑔1(𝜏) is modelled by a single exponential term: 

                                                                       𝑔1(𝜏) = exp (−2𝜇𝑠
′𝑘0

2𝑣𝑡𝐷𝐵),                                           (24) 

Then 𝑔2(𝜏) can be linked to 𝑔1(𝜏)through the Siegert relation: 

                                                                         𝑔2(𝜏) = 1 + 𝛽|𝑔1(𝜏)|
2.                                                            (25)                                                                                  

2.5. TD two-layer model 

For the second layer model, Eq. (19) can be rewritten: 

                [∇2 − (3𝜇𝑎
(𝑝)

𝜇𝑠
′(𝑝)

+ 6𝑘0
2𝜇𝑠

′2𝐷𝐵
(𝑝)

𝜏) −
3𝜇𝑠

′

𝑣

𝜕

𝜕𝑡
] 𝐺(𝑟, 𝜏, 𝑡) = −3𝜇𝑠

′𝛿(𝑟 − 𝑟′).                     (26)        

Similarly, we can derive the Fourier transform of 𝐺(𝑟, 𝜏, 𝑡) for the real space (𝜌, 𝑧), as well as time 𝑡, 

and then solve Eq. (26) in the Fourier space (𝒒, 𝑧, 𝑤). 

                            �̂�(𝑞, 𝑧, 𝑤, 𝜏)=∫𝑑𝑡𝑒𝑥𝑝(𝑖𝑤𝑡) ∫ 𝑑2𝜌 𝐺(𝜌, 𝑧, 𝑡, 𝜏)exp (𝑖𝑞 ∙ 𝜌),                             (27) 

yielding 

   [
𝜕2

𝜕𝑧2 − (3𝜇𝑎
(𝑝)

𝜇𝑠
′(𝑝)

+ 6𝑘0
2𝜇𝑠

′2𝐷𝐵
(𝑝)

𝜏 − 3𝜇𝑠
′(𝑝)

∙
𝑖𝑤

𝑐
) − 𝒒2] �̂�(𝑞, 𝑧, 𝑤, 𝜏) = −3𝜇𝑠

′𝛿(𝑧 − 𝑧′).        (28) 



                                                                      

The solution of Eq. (28) can be written as: 

                                        �̂�(𝑞, 𝑧, 𝑤, 𝜏) = 𝛾𝑝 exp(Ψ𝑝𝑧) + 𝜑𝑝exp (−Ψ𝑝𝑧),                                    (29)      

 where Ψ𝑝 = √(3𝜇𝑎
(𝑝)

𝜇𝑠
′(𝑝)

+ 6𝑘0
2𝜇𝑠

′2𝐷𝐵
(𝑝)

𝜏 − 3𝜇𝑠
′(𝑝)

∙
𝑖𝑤

𝑐
) + 𝒒2  , 𝛾𝑝  and 𝜑𝑝  are constant for Layer 

𝑝 (𝑝 = 1, 2), determined by the boundary conditions:   

 

                   �̂�0(𝒒, 𝑧, 𝑤, 𝜏) − 𝑧0
𝜕

𝜕𝑧
�̂�0(𝒒, 𝑧, 𝑤, 𝜏) = 0,   𝑧 = 0 

    (30) 

                  �̂�0(𝒒, 𝑧, 𝑤, 𝜏) = �̂�1(𝒒, 𝑧, 𝑤, 𝜏),                𝑧 =  𝑧′ 
𝜕

𝜕𝑧
�̂�0(𝒒, 𝑧, 𝑤, 𝜏) =

𝜕

𝜕𝑧
�̂�1(𝒒, 𝑧, 𝑤, 𝜏) + 3𝜇𝑠

′1,           𝑧 =  𝑧′ 

�̂�𝑝(𝒒, 𝑧, 𝑤, 𝜏) = �̂�𝑝+1(𝒒, 𝑧, 𝑤, 𝜏),    𝑧 = 𝐿𝑝, 𝑝 = 1,2 

𝐷𝑝
𝜕

𝜕𝑧
�̂�𝑝(𝒒, 𝑧, 𝑤, 𝜏) = 𝐷𝑝+1

𝜕

𝜕𝑧
�̂�𝑝+1(𝒒, 𝑧, 𝑤, 𝜏),  𝑧 = 𝐿𝑝, 𝑝 = 1,2 

�̂�3(𝒒, 𝑧, 𝑤, 𝜏) + 𝑧3
𝜕

𝜕𝑧
�̂�3(𝒒, 𝑧, 𝑤, 𝜏) = 0, 𝑧 = 𝐿3 

                          

Thus, we can obtain the solution of Eq. (28): 

                 �̂�0(𝑞, 𝑧 = 0,𝑤, 𝜏) =
3𝜇𝑠

′𝑧0[Ψ1𝐷1 cosh(Ψ1(∆1−𝑧0))+Ψ2𝐷2sin (Ψ1(∆1−𝑧0))]

Ψ1(𝐷1+Ψ2𝐷2𝑧0) cosh(Ψ1∆1)+(Ψ2𝐷2+Ψ1
2𝐷1𝑧0)sinh (Ψ1∆1)

.                       (31)  

The inverse Fourier transform for 𝐺(𝜌, 𝑧, 𝑡, 𝜏) at 𝑧 = 0 is: 

𝐺0(𝜌, 𝑧 = 0, 𝑡, 𝜏) =
1

2𝜋
∫𝑑𝑤 exp(−𝑖𝑤𝑡)

1

(2𝜋)2
∫𝑑2𝑞 �̂�0(𝑞, 𝑧 = 0,𝑤, 𝜏) exp(−𝑖𝑞 ∙ 𝜌) =

                                 
1

(2𝜋)2
∫𝑑𝑤 ∫𝑑𝑞�̂�0(𝑞, 𝑧 = 0,𝑤, 𝜏)𝑞𝐽0(𝜌𝑞)exp (−𝑖𝑤𝑡).                                         (32)                                                                         

 

2.6. TD three-layer model  

We start from Eq. (26), but derive similarly with Section 2.3 and ∆3→ ∞, to obtain derive 𝐺(𝜌, 𝑧, 𝑡, 𝜏) 

for the three-layer model as the same with Eq. (32), where �̂�0(𝑞, 𝑧 = 0, 𝑤, 𝜏) =
𝑁𝑢𝑚

𝐷𝑒𝑚𝑜
 , where 𝑁𝑢𝑚 and 

𝐷𝑒𝑚𝑜 are shown below respectively, 

𝑁𝑢𝑚 = 3𝜇𝑠
′𝑧0[Ψ1𝐷1 cosh(Ψ1(∆1 − 𝑧′)) (Ψ2𝐷2 cosh(Ψ2𝐷2) + Ψ3𝐷3 sinh(Ψ2𝐷2)) +

Ψ2𝐷2(Ψ3𝐷3 cosh(Ψ2𝐷2) + Ψ2𝐷2sinh (Ψ2𝐷2))sinh (Ψ1(∆1 − 𝑧′)).                                              (33) 

𝐷𝑒𝑚𝑜 = Ψ2𝐷2 cosh(Ψ2∆2) [Ψ1(𝐷1 + Ψ3𝐷3𝑧0) cosh(Ψ1∆1) + (Ψ3𝐷3 + Ψ1
2𝐷1𝑧0) sinh(Ψ1∆1)] +

[Ψ1(Ψ3𝐷1𝐷3 + Ψ2
2D2

2𝑧0) cosh(Ψ1∆1) + (Ψ2
2D2

2 + Ψ1
2Ψ3𝐷1𝐷3𝑧0)sinh (Ψ1∆1)]sinh (Ψ2∆2) .                                                                                     

(34) 

𝐺0(𝑞, 𝑧 = 0, 𝑡, 𝜏) measured on the top of the surface (𝑧 = 0) of the slab is the inverse Fourier transform 

of �̂�0(𝑞, 𝑧 = 0,𝑤, 𝜏), 

            𝐺0(𝑞, 𝑧 = 0, 𝑡, 𝜏) =
1

(2𝜋)2
∫𝑑𝑤 ∫𝑑𝑞�̂�0(𝑞, 𝑧 = 0,𝑤, 𝜏)𝑞𝐽0(𝜌𝑞)exp (−𝑖𝑤𝑡).                          (35)   

Figure 7 displays the numerical simulation g1 for time-domain DCS from the semi-infinite, two-, and 

three-layer analytical models. Figure 7(a) is 𝑔1(𝜏) for the early gate and late gate; Figure 7(b) is 

corresponding 𝑔2(𝜏) for the early gate and late gate and Figure 7(c) is the 𝑔2(𝜏) at different gate and 

lag time. Figure 7(d) is performed for 𝜌 = 10 mm, two pathlengths are selected, t = 4.67×10-10 s and t 



= 9.34×10-10 s. Similarly, Figure 7(e) is performed for 𝜌 = 10 mm, two pathlengths are selected, t = 

4.67×10-10 s and t = 1.40×10-9 s.   

 

 

Fig. 7 (a) Simulated 𝑔1(𝜏) with Eq. (24) 𝑔2(𝜏) with (25), with 𝜌 = 10 𝑚𝑚, 𝐷𝐵 = 1.09 × 10−8𝑚𝑚2/𝑠, 𝜇𝑎 =

0.013𝑚𝑚−1 , 𝜇𝑠
′ = 0.86𝑚𝑚−1 , 𝜆 = 785𝑛𝑚 , 𝑠 = 135 𝑚𝑚  (ToF = 450 ps, data provided by Samaei132); (b) 

Simulated 𝑔1(𝜏) from Eqs. (31) and (32) with 𝜇𝑎
(1)

= 0.013𝑚𝑚−1 , 𝜇𝑠
′(1)

= 0.86𝑚𝑚−1 , Δ1 = 10𝑚𝑚 , 𝐷𝐵
(1)

=

1 × 10−6𝑚𝑚2/𝑠 , 𝜇𝑎
(2)

= 0.018𝑚𝑚−1 , 𝜇𝑠
′(2)

= 1.11𝑚𝑚−1 , 𝐷𝐵
(2)

= 1 × 10−6𝑚𝑚2/𝑠 , 𝑞 ∈ (0, 30] , 𝑤 ∈

(0 20]Hz and 𝑡 = 4.67 × 10−10𝑠 and 𝑡 = 9.34 × 10−10𝑠. We adopted these parameters from Ref.133 (c) 𝑔1(𝜏) 

with 𝜇𝑎
(1)

= 0.013𝑚𝑚−1 , 𝜇𝑠
′(1)

= 0.86𝑚𝑚−1 , 𝐷𝐵
(1)

= 1 × 10−6𝑚𝑚2/𝑠 , Δ1 = 2𝑚𝑚 , 𝜇𝑎
(2)

= 0.018𝑚𝑚−1 , 

𝜇𝑠
′(2)

= 1.11𝑚𝑚−1, 𝐷𝐵
(2)

= 1 × 10−7𝑚𝑚2/𝑠, 𝜇𝑎
(3)

= 0.03𝑚𝑚−1, 𝜇𝑠
′(3)

= 1.19𝑚𝑚−1, 𝐷𝐵
(3)

= 1 × 10−6𝑚𝑚2/𝑠, 

𝑞 ∈ (0, 30]𝑚𝑚−1, 𝑤 ∈ (0 20]Hz, and 𝑡 = 4.67 × 10−10𝑠 and 𝑡 = 1.40 × 10−9𝑠. The settings are the same with 

Ref.133. 

2.7. Frequency domain semi-infinite model 

We also obtain 𝐺1(𝜌, 𝜔, 𝜏) when modulated illumination is used, 𝐺1(𝜌, 𝜔, 𝜏) follows a slightly different 

CDE as: 

                    [∇2 − 3𝜇𝑠
′ (𝜇𝑎 + 2𝜇𝑠

′𝑘0
2𝐷𝐵𝜏 −

𝑖𝜔

𝑣
)] 𝐺1(𝜌, 𝜔, 𝜏) = −3𝜇𝑠

′𝑠0𝑒
−𝑖𝜔𝑡,                                  (36)          

where 𝜔 is the source modulation frequency and 𝑠0𝑒
−𝑖𝜔𝑡 is the modulated source term. For a semi-

infinite homogeneous tissue, the solution of Eq. (36) is given by 

                   𝐺1(𝜌, 𝜔, 𝜏) =
3𝜇𝑠

′

4𝜋
[
exp(−𝐾𝐷(𝜔,𝜏)𝑟1)

𝑟1
−

exp(−𝐾𝐷(𝜔,𝜏)𝑟2)

𝑟2
],                                             (37)                       

where 𝐾𝐷(𝜔, 𝜏) = √3𝜇𝑠
′(𝜇𝑎 + 2𝜇𝑠

′𝑘0
2𝐷𝐵𝜏 − 𝑖𝜔/𝑣) is the frequency-dependent wave vector. The 

other parameters are the same as before. Figure 8 shows 𝑔1(𝜏) for the FD semi-infinite model. By fitting 



the measurement data from FD-DCS systems to Figure 8, we can extract optical properties (𝜇𝑎 and 𝜇𝑠
′ ) 

and blood flow simultaneously by multi-frequency measurements. In contrast, the traditional CW-DCS 

system is only used for blood flow measurements. Another merit is that the laser source for FD-DCS is 

much cheaper than CW-DCS and TD-DCS systems. There are two reasons: 1) FD-DCS removes the 

necessity for collocating the source and phase-sensitive detectors; 2) FD-DCS can be executed by 

simply substituting the source of a traditional DCS system with an intensity-modulated coherent laser.   

 

 

 

Fig. 8 Numerical simulated FD 𝑔1(𝜌, 𝜔, 𝜏) at 𝜌 = 25𝑚𝑚 with various modulation frequency. Image adopted 

from Ref.91.  

2.8. Noise model 

In most simulation reports134–137, a proper estimate of measurement noise is needed to reflect practical 

scenarios. A noise model suitable for photon correlation measurements was previously developed for a 

single scattering limit 138,139. Later on, the noise model developed by Koppel139 for fluorescence 

correlation spectroscopy (FCS) in the single scattering limit was introduced into DCS in 200679. In DCS, 

the noise comes from photon counting statistics138, and it has been derived79 with the standard deviation 

of (𝑔2(𝜏) − 1), 𝜎(𝜏) estimated as:  

 𝜎(𝜏) = √
𝑇

𝑇𝑖𝑛𝑡
[𝛽2

(1+𝑒−𝑇
𝜏𝑐⁄ )(1+𝑒−𝜏

𝜏𝑐⁄ )+2𝑚(1−𝑒−𝑇
𝜏𝑐⁄ )𝑒−𝜏

𝜏𝑐⁄

1−𝑒−𝑇
𝜏𝑐⁄

+ 〈𝑀〉−2 (1 + 𝛽𝑒
−𝜏

2𝜏𝑐
⁄ ) + 2〈𝑀〉−1𝛽(1 +

                          𝑒−𝜏
𝜏𝑐⁄ )]

1/2

,                                                                                                                (38) 

where 𝑇 is the frame exposure time (equal to the correlator bin time interval). 𝑇𝑖𝑛𝑡 is the integration 

time (measurement duration) or the measurement time window. 𝜏𝑐 is the speckle correlation time. 〈𝑀〉 

(〈𝑀〉 = 𝐼𝑇, where 𝐼 is the detected photon count rate) is the average number of photons within bin time 

𝑇, 𝑚 is the bin index. To obtain 𝜏𝑐, 𝑔2(𝜏) usually approximated with a single exponential function as 

𝑔2(𝜏) ≈ 1 + 𝛽exp (− 𝜏
𝜏𝑐⁄ ) under the Brownian motion model79. Once 𝜏𝑐 is obtained, we can obtain 

𝜎(𝜏).  This noise model was then adopted by140–143.  



Fig. 9 shows noise (orange line) and noiseless (blue line) 𝑔2(𝜏). The noise model predicted standard 

deviations for 𝑔2(𝜏) at each 𝜏 was applied by randomly sampling a normal distribution, where the 

𝑇𝑖𝑛𝑡 = 1𝑠  and 10 s and the delay time 1 × 10−6 𝑠 ≤ 𝜏 ≤ 1 × 10−1𝑠  (128 data points) was used. 

Considering realistic photon budgets, the photon count rate at 785 nm was assumed  to be 8.05 kcps135 

at ρ of 30 mm. In Fig. 9, the DCS measurement noise decreases as 𝜏 increases. 

 

 

 

Fig. 9 simulated 𝑔2(𝜏) curves with 𝜌 = 30𝑚𝑚 on a homogeneous sample with 𝜇𝑎 = 0.01𝑚𝑚−1, 𝜇𝑠
′ = 1.2𝑚𝑚−1, 

𝜆 = 785𝑛𝑚, 𝛽 = 0.5 , 𝑇𝑖𝑛𝑡 = 1 𝑠 (green line) and 𝑇𝑖𝑛𝑡 = 10 𝑠 (blue line), and 𝐷𝐵 = 2 × 10−9𝑚𝑚2/𝑠, noise free 

(red solid line) and with Eq. (33) considered added assuming a  8.05 kcps at 785 nm135.  

3 Instrumentation  

A DCS system consists of a laser source, source/detection fibers and sensors. Figure 10 shows 

representative systems for CW-, TD-, FD-, and Hybrid DCS systems. Figures 10(a) and (b) depict 

portable CW- and TD-DCS systems, respectively. The primary difference lies in the pulsed laser 

(VISIR-500) in the TD system. Figure 10(c) showcases the FD-DCS system, representing the latest 

DCS technology in the frequency domain. Lastly, Figure 10(d) presents a typical hybrid DCS system144. 

However, very few companies have initiated commercialization of DCS systems, including 

Hemophotonics, ISS Inc. (http://www.hemophotonics.com), and ISS Inc. 

(https://iss.com/biomedical/metaox).  

 

http://www.hemophotonics.com/
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Fig. 10 (a) Sunwoo et al.’s CW-DCS system; the figure adopted from Ref.145; (b) Tamborini et al.’s TD-DCS 

system; the figure adopted from Ref.146; (d) Block diagram of Sadhu et al. FD-DCS system; the figure adopted 

from Ref.147; (d) Carp et al.’s144 hybrid DCS system; the figure adopted from https://iss.com/biomedical/metaox. 

3.1 Lasers 

There are three types of laser used in DCS: CW, modulated, and pulsed lasers corresponding to CW-, 

FD-147, and TD-DCS systems. As was mentioned above, the estimated BFi is derived from intensity 

fluctuations of the speckle pattern of back scattered light from the tissue surface, and the bright and 

dark patterns arise because photons emerging from the sample have travelled along different paths that 

interfere constructively and destructively at different detector positions3,89,97. Consequently, one of the 

main challenges is to select a laser with a long coherence length97, 𝑙𝑐, designated by Eq. (39) assuming 

that the measured power spectral density has a Gaussian profile148, 

                                                    𝑙𝑐 =
𝝀𝟐

𝚫𝝀
 ,                                                                           (39) 

where 𝝀 is the central wavelength and Δ𝜆 is the optical bandwidth. The diffusion theory and Monte 

Carlo simulations of light transport show that the minimum coherence length must be longer than the 

width of the photon path-length distribution149, typically around 5𝜌 ~10𝜌  (e.g., 100 mm for 𝜌 =

10𝑚𝑚)150. For homodyne measurements, the coherence length needs to be substantially longer than the 

spread of pathlengths in tissue (which is within an order of 𝜌), and in heterodyne, care needs to be taken 

that the difference in length of the reference vs. sample arms, when summed with the expected 

pathlength variation, should also be substantially lower than the laser coherence length. Therefore, 

generally, the minimum coherence length is recommended as 𝒍𝒄,𝒎𝒊𝒏 ≫ 10𝜌~15𝜌 , and since most 

practical DCS systems utilize 𝜌 ~ 3 cm3,135,151, the coherence length should be 35~50 𝑐𝑚, accounting 

for the variations of differential pathlength distances152.  

For clinical applications, the laser power should comply with the American National Standard for Safe 

Use of Lasers (ANSI)153 limit for safe skin exposure with an proper irradiance. Spacers or prisms150,154–

https://iss.com/biomedical/metaox


156 are often between source fiber and sample to illuminate a larger area, which allows a higher laser 

power (more photons) while maintaining the same maximal permissible exposure (MPE) limit for 

intensity. Typically, lasers with wavelengths of 670 nm157, 760nm132, 785 nm150,158, 850 nm135,144,159, or 

1064 nm160 are employed. Although NIR wavelengths provide a higher number of photons for the same 

output power (P = E/t = h c / λ, E is photon energy), a higher MPE (more photons) and a deeper 

penetration depth, the photon detection efficiency (PDE) of most detectors is typically reduced for 

longer wavelengths. As a result, 785 nm and, more recently, 850 nm lasers are the most prevalent choice 

for most DCS techniques. This trade-off between the laser and the detector PDE is discussed in detail 

below.  

Regarding TD-DCS, we can pinpoint the photons (either through gating or time-correlated single-

photon counting161) that exhibit a similar path length in the tissue to provide depth-resolved information. 

This allows relaxing the requirement for a high coherence length compared with the scenario in which 

all the photon paths are considered. Moreover, the laser pulse width limits the maximum coherence 

length for a pulsed laser. Usually, a narrow laser pulse is preferable for precise depth-resolved 

measurements, however, a narrow pulse means a lower 𝑙𝑐, meaning a 𝑔2 curve is closer to the noise 

floor. Therefore, there is a trade-off between 𝑙𝑐 and the pulse width146. In fact, 𝑔2′𝑠 maximum amplitude 

depends on 𝑙𝑐, with β ranging from 0 for incoherence light to 1 for linearly polarized light (0.5 for 

unpolarized light) with 𝑙𝑐 longer than the longest photon path. Therefore, the main limitation of the 

broad use of TD-DCS is the availability of an ideal pulsed laser considering power settings, pulse width, 

coherence, stability, and robustness. To obtain a more in-depth investigation, readers can check 

Refs.132,146,162. In Table 1, we extend the conclusions made by Samaei et al.132, Ozana, et al.162 and 

Tamborini et al.146 to show the relevant parameters of pulse lasers.  

 
Table 1 Parameters of laser source used in TD-DCS, adopted from Samaei, et al.132, Ozana, 

et al.162 and Tamborini, et al.163. 

 

Laser  

Central 

wavelength 

(nm) 

Temporal 

Coherence length 

(mm) 

Spectrum 

bandwidth 

[nm] 

Pulse width 

(ps) 

Average 

output 

power (mw) 

VIRIS-500 767 38 N.A. 550 50 

LDH-P-C-N-

760 132 
760.4 6.1 0.095 106 12 

Ti: Sapphire 132 763.8 6.3 0.093 185 50 

VisIR-765-HP 

“STED”163  
765.7 38 N.A. 535 ≤ 1500 

PicoQuant 

GMBH162 
1064 60 N.A. 600 100 

 

3.2 Source and detection fibers 

In DCS experiments, a pair of source and detection fibers are strategically placed on the tissue surface, 

with a separation of ρ (ranging from millimeters to centimeters). The laser emits long-coherence light 

through the source fiber into tissues, and the fiber collects the scattered light to a sensor. This distance 

ρ then defines the extent of the scattering paths of all detected photons, and thereby, the maximal 

measurement depth of DCS, as illustrated above in Fig. 2(d). The diagrams in Fig. 11(a), (b), and (c) 

illustrate three fibers with distinct modes, namely single-mode, few-mode, and multi-mode. Usually, a 

multi-mode fiber (core diameter D = 62.5, 200, 400, 600, 1000 𝜇𝑚)115,162,164,165 is used for the source 

side. Here, it should be noted that a larger diameter fiber translates to a larger illumination area allowing 

a higher laser power (more photons) at the same MPE limit for intensity (see Section 3.1). For the 

detection, previously published DCS systems used single-mode (e.g., 5 𝜇𝑚 )17,70,115,164,166–174, few-

mode80,103, or multi-mode fibers141,157,175,176. Single-mode fibers are usually directly coupled to the 



respective detector. For parallelized DCS with SPAD arrays, multi-mode fibers are used for detection. 

In that case, the fiber is placed at a distance z to the detector, to match the speckle diameter (d) to the 

diameter of the detector’s active area, according to Ref.177 

                                                    𝑑 =
𝝀 𝒛

𝑫
 ,                                                                           (40) 

Thus, adjusting the distance between fiber and detector (z) allows controlling the speckle size on the 

detector and therefore the number of measured speckles per pixel. Using single-mode fibers limits the 

measured light intensity because only the fundamental mode of light can be transported, limiting ρ’s 

dynamic range. Unlike conventional fibers, few-mode fibers allow not only the fundamental mode but 

also a few higher-order modes of light. Expanding the fiber diameter and numerical aperture (NA) in 

few-mode fibers to encompass multiple speckles enhances the detected signal intensity, consequently 

enhancing the signal-to-noise ratio (SNR). However, the multiple speckles detected by the few-mode 

fibers exhibit uncorrelated behaviour, and the decrease in β largely counteracts the SNR enhancement. 

Finally, this flattens the autocorrelation function curve, potentially diminishing the sensitivity of DCS 

flow measurements178,179. To further increase the detected light intensity, multi-mode fibers with a larger 

core diameter have been used to accommodate larger sensor arrays (e.g., 5 × 5, 32 × 32, 192 × 128, 500 

× 500 SPAD arrays). Usually, these SPAD arrays are set up in a way (Eq. (40)) that each pixel measures 

a single speckle on average. However, these detectors only have fill factors of 1-15% so there can be 

mismatches in the position.  

Additionally, the PDE of SPAD arrays is often lower than single detectors, reducing 𝑆𝑁𝑅141,157,175,180,181. 

For more details on large SPAD arrays, see Section 3.3. He et al.182 compared single-mode, few-mode, 

and multi-mode fibers on the detection side, and concluded that few-mode and multi-mode detection 

fibers can improve SNR compared with single-mode fibers, but it reduces 𝛽. 

 

Fig. 11 Different optical fibers: (a) a single-mode fiber (SMF), (b) a few-mode fiber, (3) a multi-mode fiber. 

3.3 Sensors  

Detectors are pivotal in DCS systems for accurate BF measurements, with the advances being intricately 

connected to the adoption of new high-efficiency massively parallel detectors.  

In early DCS systems, photomultipliers (PMTs) were commonly employed for detecting single 

photons94,183. However, PMTs are bulky, so early systems only contain a few channels. Additionally, 

driving these PMTs requires a high bias voltage, at least hundreds of volts, to start the electron 

multiplication process. These requirements pose challenges for developing compact and portable 

devices.    



In the last two decades, avalanche photon diodes (e.g., APDs, such as the SPCM series, Excelitas, 

Canada)137,167,182 were used nearly exclusively in  DCS systems, replacing PMTs. APDs, known for 

their high sensitivity, leverage an internal avalanche multiplication effect for capturing single photons. 

These detectors offer several benefits compared with PMTs, including lower cost, simpler operations, 

and a smaller size. Although APDs offer high quantum efficiency, they are prone to higher dark current 

and noise in low-light conditions184. Additionally, these detectors are typically single-channel devices. 

In DCS, each speckle grain carries independent information about the dynamic scattering process. By 

averaging the autocorrelation signals from multiple speckles, we can enhance the SNR. However, 

advances in CMOS manufacturing technologies have enabled the integration of large SPAD arrays on 

a single chip, offering highly parallel single-photon detection.  

Highly integrated CMOS SPAD arrays were boosted first by 3D/time-resolved fluorescence imaging 

applications185–187, and later Richardson et al.’s low-noise SPAD structures188 emerged  from the EU6 

MEGAFRAME project189. These SPAD arrays contain either time-correlated single-photon counting 

(TCSPC) or time-gating modules for time-of-flight or traditional photon counting measurements190–196 .  

Using SPAD arrays in a multispeckle approach directly enhances SNR, with an enhancement of the 

square root of the number of independent speckle measurements. Using such new sensors in DCS 

experiments is straightforward without increasing the setup complexity. Dietsche et al.105 verified this 

method by grouping 28 individual SPADs, enhancing SNR by √28. Johansson et al.180 first developed 

a 5 × 5 SPAD DCS system to demonstrate an improved SNR on milk phantoms and in vivo blood 

occlusion tests, followed by 32 × 32157,197–199, 192 × 128181, and 500 × 50060,175. These systems 

significantly improve SNR by a factor of √𝑁, where N is the number of individual pixels. Figure 12 

highlights the evolution of SPAD-based DCS systems (from APD to the state-of-the-art large SPAD 

arrays 500 × 500) with an enhanced SNR gain from 1 to ~500.  

 

Fig. 12 SNR-vs-pixels plot adopted from Wayne et al.175, with different SPAD sensors employed in DCS systems.  

Besides SNR and PDE, the exposure time of SPAD arrays is another critical consideration, as it defines 

the interval between two adjacent time lags ∆𝜏 of the autocorrelation curves. Especially for fast decay 

rates (e.g., at large source-detector separations or for high flow rates), the relatively slow frame rate of 

large SPAD arrays (3 μs for 32 × 32157,197,199 or 10 μs for 500 × 500175) can be a limiting factor in in 

vivo experiments. Another limitation of the SPAD arrays, though, is the difficulty in light coupling and 



the thinner active areas – thus an element of the SPAD array has a sensitivity lower than a dedicated 

SPAD. Nevertheless, the large number of elements allows one to exceed the performance of individual 

SPADs. Figure 13 shows the primary processing of a Parallelized DCS (PDCS) system157. 

 

Fig. 13 An schematic layout of the SPAD array with representative raw data of temporal light intensity fluctuations 

from single pixels and the corresponding intensity autocorrelation curves. The blue and red lines in the rightmost 

figure represent the autocorrelation curves of a single pixel and the whole SPAD array (1024 pixels), respectively. 

Data and plots are adopted from Liu et. al.157. 

Commercial CMOS cameras are also used in DCS due to their larger array sizes, higher fill factors, and 

lower cost. However, they do not have single-photon sensitivity. To address this, Zhou et al.200 

employed a heterodyne detection method to enhance the signal; they also used MMFs to capture 

multiple speckle patterns, thereby increasing the throughput. They successfully conducted pulsatile 

blood flow measurements. Meanwhile, Liu et al.201 integrated a CMOS detector into a wearable, fiber-

free probe, enabling the testing of CBF in neonatal pigs. Of note, the heterodyne detection approach 

can also be applied in SPAD-based DCS systems, where it offers at least a doubling of SNR and reduced 

sensitivity to dark counts and environmental light202. 

Very recently, superconducting nanowire single-photon detectors (SNSPDs), a relatively new class of 

photo-detectors, have been used in TD-DCS systems203,204. SNSPD has many advantages, including a 

high PDE of >80% at longer wavelengths (e.g., 1064 nm), and a better timing resolution (< 20 ps)205,206. 

Nevertheless, SNSPD detectors come with a high cost, necessitating cryostats to maintain an 

operational temperature of 2 -3.1 K206. Moreover, their cooling time spans several hours, and they are 

noisy and emit a significant amount of heat, constraining their practical applicability in clinical settings. 

Table 2 summarizes the existing DCS systems with SPAD and representative non-SPAD sensors.  

Table 2 shows the existing SPAD-DCS systems. Some SPAD are equipped with a TCSPC module, and 

TD-DCS systems can timetag detected photons to obtain their ToF, allowing distinguishing early and 

late arriving photons from fewer or more scattering events respectively, thereby enabling depth-

resolved evaluation of BFi within tissues.   

 



Table 2 Existing DCS systems using SPAD array and other representative sensors 

Approaches Detector Laser, wavelength 

(nm) 
𝑁𝑝𝑖𝑥𝑒𝑙 Applications PDE Fill 

factor 

Frame rate 

(kHz/kfps) 
𝜌 

(cm) 

year Ref. 

CW SPAD 785 5 × 5 
Phantom, blood 

perfusion 
8% 1.5% 1000 2.5 2019 180 

CW SPAD 785 
32 × 32 

 
Food, skin 8% 1.5% 333 1.1 2020 141 

CW SPAD 670 
32 × 32 

 

Phantom, 

in vivo 
16% 1.5% 333 2.1 2021 207 

CW SPAD 785 500 × 500 
Milk phantom, 

rotating diffuser 
15% 10.6% 92.2 3.3 2023 175 

CW SPAD 785 192 × 128 rotating diffuser 8% 13% 26 N.A. 2023 208 

CW SPAD 785 
500 × 500 

128 × 500 

Human forearm 

and brain, in 

vivo 

15% 10.6% 

100 for 

arm, 

300 for 

brain 

4 

 
2024 60 

iDCS SPAD 785 1 × 1 
Intralipid 

phantom 
61% N.A. N.A. 3.6 2020 202 

LW-iDCS 
InGaAs Linescan 

camera 
1064 2048 × 1 

Human brain, in 

vivo 
N.A. N.A. 300 3.5 2023 209 

iDWS CMOS 852 512 × 2 
Human brain, in 

vivo 
N.A. N.A. 333 2.5 2018 200 

fiDWS Line-scan CMOS 852 512 × 2 
Human brain, in 

vivo 
>35% N.A. 333 4 2021 61 

πNIRS CMOS 785 1024×1024 

Forearm, 

forehead, 

human brain 

80% N.A. 16 2.5 2022 176 

TD SNSPD 785 N.A. 
Phantom, in 

vivo 
99% N.A. N.A 1 2023 203 

 

Notes: iDCS stands for interferometric diffuse correlation spectroscopy; iDWS is interferometric diffusing wave spectroscopy; fiDWS presents functional interferometric 

diffusing wave spectroscopy; πNIRS is abbreviation of parallel interferometric near-infrared spectroscopy, 𝜌 is source-detection separation; SNSPD stands for 

superconducting nanowire single-photon detectors; PDE is photon detection efficiency. 

 



3.4 Correlators (incl. on-FPGA correlators) 

To date, most DCS instruments employ commercial hardware correlators11,66,83,84,111,112 to process 

detected signals and record the arrival of a Transistor-Transistor Logic (TTL) digital pulse for every 

photon from a photon counting detector. A commercial correlator210, for example, uses the distribution 

of arrival times to quantify the temporal fluctuation of detected intensity. Traditionally, correlators 

embed a multi-𝝉 processor211–213 to compute the autocorrelation functions over a long delay period; this 

design was derived from early experiments in DLS214 and diffusing wave spectroscopy (DSW)105, 

primarily conducted on non-biological samples.  

There are two kinds of hardware digital correlators, linear and multi-𝝉 correlators, as shown in Fig. 14. 

Usually, the multi-𝝉 framework is based on a logarithmic spacing spanning a massive lag-time range 

with a small number of channels without substantial sampling errors. Additionally, the multi-𝝉 scheme 

significantly reduces the computational load compared with linear correlators. Although hardware 

correlators can operate at a faster sampling speed and offer real-time computing with a wide lag time 

dynamic range, they are relatively costly and not flexible since the fixed number of bits per channel 

results in a fixed lag time scale. Meanwhile, software correlators 215,216 (e.g., Fourier transform software 

correlators217) have also been developed. They show comparable performances with commercial 

hardware correlators and exhibit notable advantages in flexibility, cost-effectiveness, and seamless 

adaptability to evolving PC and data acquisition technologies. For most DCS applications with SPAD 

array, the autocorrelations are usually post-processed from raw data175,180,197,207. Table 3 shows the 

existing commercial correlators.  

 

 

Fig. 14 Diagrams for linear- and multi-tau correlators provided by the CCO of LS Instruments, Dr Ian Block. 

 

 

 

 



Table 3 Existing commercial correlator. 

Company Correlator Ref. 

LSI Instruments LSI Correlator 218 

Becker & Hickl GmbH SPC-QC-004 219 

ALV ALV-5000/EPP 220 

Photon Force, Ltd. On-FPGA in PF’s MF32 Sensor 221 

Note: Correlator.com provided good correlators to the DCS community. 

 

3.5 Comparison between CW-, TD- and FD-DCS  

Conventionally, enhancing depth sensitivity in CW-DCS measurements involves using a larger 𝜌. This 

allows detecting photons with longer pathlengths. An inherent drawback of this approach is the reduced 

detection of photons at a large 𝜌, reducing the SNR of 𝑔2. Although Yodh et al.130 have demonstrated 

pathlength-resolved DCS, their method required nonlinear optical gating and high laser powers, which 

are unsuitable for in vivo applications. Sutin et al.129 first reported a novel time-domain (or pathlength-

resolved) DCS on phantoms and a rat brain, showing the potential for clinical applications. Compared 

with CW-DCS, there are many advantages in TD-DCS: 

Firstly, TD-DCS can measure the time point spread function (TPSF) of the tissue. Consequently, we 

can apply photon diffusion theories developed for time-domain near-infrared spectroscopy (TD-NIRS) 

to estimate tissue optical properties using the TPSF. Thus, we reduce errors in estimating dynamical 

properties, as we do not need to assume optical property values as traditional CW-DCS systems do129.  

Secondly, TD-DCS adds one further variable time, which can be exploited to select photons to increase 

the depth sensitivity222. Typically, the photons with a longer pathlength travelled deeper into the 

medium before reaching the detector. In contrast, those taking a shorter pathlength from source to 

detector reach only superficial tissue layers as shown in Fig. 4(c). Time-of-flight (ToF) measurements 

can achieve a higher depth resolution, as the ToF is proportional to the pathlength through the medium. 

Consequently, when computing the autocorrelation only with photons showing a ToF below a specific 

threshold, we can estimate the dynamic properties of the superficial layers, whereas a longer ToF allows 

for assessing deeper layers. 

Thirdly, the pulsed laser utilized in the TD-DCS system can be integrated into the TD-NIRS setup223. 

This integration enables simultaneous measurements of NIRS and DCS, providing a comprehensive 

understanding of blood flow and hemodynamics variations. A temporal resolution of approximately 

one second and a favourable SNR in dynamic in vivo measurements was validated224. 

However, the primary obstacle preventing the broad adoption of TD-DCS is the need for an optimal 

pulsed laser (in power, pulse width, coherence, stability, and cost, around 6-fold more expensive than 

CW lasers). The effect of each of these factors has been evaluated in different studies, and various data 

processing strategies have been introduced to overcome the destructive influence of the instrument 

response function (IRF)225 and the limited coherence length of the emitter. Moreover, Colombo et al.226 

demonstrated the contamination of non-moving scatters on the TPSF using a coherent pulsed laser 

utilized in the TD-DCS technique. Samaei et al.132 have conducted the systematic discussion. Another 

drawback is that using narrow time gates to calculate the autocorrelation limits the SNR due to the 

scarcity of photons. Consequently, its applicability to in vivo experiments on human tissue is also 

restricted224. Although Ozana et al.162 have designed a functional TD-DCS system that combines an 

optimized pulsed laser (a custom 1064 nm pulse-shaped, quasi transform-limited, amplified laser 

source), it is still costly, primarily due to the SNSPD.  

Unlike CW-DCS, both TD- and FD-DCS can retrieve dynamic optical properties (e.g., BFi) and static 

optical properties (e.g., 𝜇𝑎  and 𝜇𝑠
′ ), which are typically assumed in the conventional CW-DCS 



measurements. FD-DCS eliminates the requirement for collocated sources and phase-sensitive detectors, 

promising a portable and cost-effective system. Through data acquisition at a single 𝜌 , FD-DCS 

effectively minimizes partial volume effects. This technology eliminates the need for extensive 

calibration in data analysis by acquiring flow and absorption from intensity-normalized data. FD-DCS 

shows high-speed acquisition, as flow and oxygenation information are inherently present in the dataset. 

Moreover, the implementation of FD-DCS is simplified by replacing a traditional DCS system’s source 

with an intensity-modulated coherent laser. The detection mechanism remains unchanged, leading to 

reduced development time and cost.                   

Typically, to separate deep from superficial blood flow signals for CW-DCS, adding more detectors at 

different 𝜌  to obtain multiple-distance measurements is needed, as is shown in Fig. 4(a), which, 

however, increases the cost. Fig. 4(b) shows that FD-DCS can measure BFi, 𝜇𝑎 and 𝜇𝑠
′  simultaneously. 

Table 4 summarizes representative existing TD-DCS systems. TD-DCS uses time-gating and TCSPC 

electronics to separate photons travelling the superficial layers from those that propagating deeper into 

the tissue, as illustrated in Fig. 4(c). General linear models (GLM) have been used for CW-DCS data 

from multiple source-detector separations (𝜌) to regress out the effect of superficial flow. Therefore, 

large- 𝜌 DCS data is expressed as a linear combination of superficial blood flow (measured at a small 

𝜌) and the desired deep blood flow227, a method derived from fNIRS228.  

In contrast to fNIRS, which measures flow volume, DCS directly measures the BFi, which is related to 

flow speed. Since the flow speed differs significantly over different vessel diameters and tissue layers, 

the relation between superficial BFi and deep BFi is not linear. Therefore, new analysis tools that 

integrate additional data on vasculature structure are required to derive more accurate deep flow 

estimation from such multiple-distance DCS measurements. 

 

 

 



 

Table 4 Representative existing time-domain DCS systems 

Year Laser 
Wavelength 

(nm) 

Average power 

(mW) 

Repetition rate 

(MHz) 

Detection 

technique 
IRF FWHM (ps) Applications Ref. 

2016 DBR 852 50 150 
Red-enhanced 

SPAD 
150 

Homogenous liquid 

phantom and small animal 
129 

2017 Ti: Sapphire 785 NA 100 SPAD 100 

Two-layer liquid phantoms, 

forearm muscle, and adult 

human forehead 

224 

2018 
VisIR STED, 

PicoQuant 
767 50 NA 

Red-enhanced 

SPAD 
500 

Homogenous liquid 

phantoms 
229 

2018 Ti:Sapphire 785 NA 100 

Gated single-

photon 

avalanche diode 

350 Forearm muscle 230 

2019 VisIR-500 767 ≤ 1500 ≤ 80 SPAD 550 

Homogenous liquid 

phantoms, forearm muscle, 

and adult human forehead 

163 

2019 Ti:Sapphire 785 NA 100 SPAD 400 
Homogenous liquid 

phantoms 
225 

2020 Ti:Sapphire 1000 30 100 InGaAs PMT NA 

Homogenous liquid 

phantoms and forearm 

muscle 

231 

2021 
LDH-P-C-760, 

Picquant 
760 12 80 SPAD 90 

Two-layer liquid phantoms, 

forearm muscle, and adult 

human forehead 

232 

2022 

Custom-made 

two-stage fiber 

amplified pulsed 

laser 

1064 100 1-100 SNSPD 150-600 

Two-layer liquid phantoms 

and adult human forehead 

 

162 

2023 Ti:Sapphire 785 NA 100 SNSPD 100-200 

Homogenous liquid 

phantoms and adult human 

forehead 

203 

Note: SPAD stands for Single-Photon Avalanche Diode, and SNSPD stands for Superconducting Nanowire Single-Photon Detectors 

 



4. Data processing 

The accuracy and performance of multilayered analytical models have been extensively evaluated in 

prior literatures120,124,125,127,232–235. In addition to the analytical models described in Section 2, other data 

processing methods have been introduced to distinguish cerebral and extracerebral information. Baker 

et al.236 introduced a pressure measurement paradigm combined with the modified Beer-Lambert law237 

and multi-distance measurement to reduce the extracerebral contamination from the signal associated 

with the deep layers. Furthermore, Samaei et al.232 extended the bi-exponential model utilized in 

interferometric near-infrared spectroscopy (iNIRS)238 to describe the TD-DCS signals influenced by 

scatterers moving at different speeds. They also conducted experimental validation using layered 

phantoms and in vivo experiments.  

Traditionally, to extract BFi and β, we fit measured 𝑔2 with Eqs. (4), (9), (18), (24), (32), and (35) in 

Section 2 by minimizing the cost function 𝜒2 = ∑ [𝑔2,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝜌, 𝜏𝑖) − 𝑔2,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝜌, 𝜏𝑖)]
2

𝑖 . 

Nonlinear least square fitting routines, e.g., Levenberg-Marquardt103,136, fminsearchbnd124 are usually 

used to quantify BFi. These approaches, however, are iterative, and sensitive to data noise. To address 

these constraints, the Nth-order (NL) algorithm239,240, least-absolute minimization (L1 norm), and 

support vector regression (SVR) were introduced143. Yet, with the NL framework, the extraction of BFi 

is determined by the chosen linear regression approach143. Although L1 norm and SVR are novel for 

processing DCS data, they are sensitive to signal deviations241. For example, the computation time for 

BFi is 28.07 and 52.93 seconds242 (using the Lenovo ThinkCentre M8600t desktop with a 3.4GHz CPU 

and 16GB memory) when employing L1 norm and SVR, respectively, still too slow for real-time 

applications. 

In 1986, Dechter introduced “deep learning” (DL) to the machine learning community243. With rapid 

advances in computing technologies, DL has become a game-changer in many fields, including 

photonics244, chemistry245, biology246, and medical diagnosis (such as electroencephalogram (EEG) and 

electrocardiogram (ECG)247,248), but is not yet broadly used in DCS. Recently, Zhang et al.249 proposed 

the first recurrent neural network (RNN) regression model to DCS, followed by 2D convolution neural 

networks (2DCNN)250, long short-term memory (LSTM)251 and ConvGRU252. LSTM, as a typical RNN 

structure, has proven stable and robust for quantifying relative blood flow in phantom and in vivo 

experiments251. 2DCNN, on the other hand, tends to require massive training datasets for complex 

structures, demanding memory resources. ConvGRU, the newest deep learning method introduced to 

DCS, has also exhibited excellent performances in BFi extraction. Although the training of DL takes a 

long time, once it is done, DL is much faster than traditional fitting methods and more promising for 

real-time analysis and display. Fig. 14 and Table 5 summarize existing DL methods applied to DCS. It 

shows that DCS-NET’s training is much faster than two-dimensional CNN, approximately 140-fold 

faster. Although the remaining models, RNN, LSTM and ConvGRU have fewer total layers, they are 

limited to a specific 𝜌126. Xu et al.199 introduced a different DL approach and trained a deep neural 

network on DCS data of temporal speckle fluctuations from 12 fibers at different surface locations to 

reconstruct videos of flow dynamics 8 mm beneath a decorrelating tissue phantom. The reconstructed 

images had a millimetre-scale spatial resolution and a temporal resolution of 0.1-0.4 s.  

 



 

Fig. 14 The existing deep learning model applied in DCS, including RNN253, 2DCNN250, LSTM 254, ConvGRU252 

and DCS-NET. All of the graphs are re-printed from the published literatures.  

 

Table 5. Comparison of Existing AI methods for BFi estimation 

Model Training Parameters Training time Total layer 𝝆 (mm) Year 

DCS-NET126 25506 ~ 13 (minute) 18 5 to 30 2024 

RNN249 174080 N/A 20 25 2019 

CNN(2D)250 75552 ~ 30.5 (hour) 161 27.5 2020 

LSTM251 1161 N/A 2 15 2021 

ConvGRU252 11557 N/A 10 20 2022 

LSTM174 N/A N/A 5 30 2023 

Note: the training parameters of RNN and CNN(2D) are not given in the literature; we calculate them according 

to the structure shown in the literature. 

 

 

 

 

 

 

 

 

 

 

 



5. Applications  

DCS has a broad range of applications. The integrated DCS systems with near-infrared spectroscopy 

(NIRS)85, Doppler ultrasound, time-resolved near-infrared technique (TR-NIR)255,256, and frequency-

domain NIRS90 are powerful for collecting abundant information90. This integration yields valuable 

insights into tissue oxygenation, blood oxygen metabolism, and hemodynamics233,257. Consequently, 

DCS has been used for neuromonitoring and has the potential for monitoring tissue and skeletal muscle 

blood flow, tumor diagnosis and therapy, and neonate cardio-cerebrovascular health evaluation. 

The hypothesis proposed by Roy and Sherrington suggests that the increase in CBF is attributed to 

increased neuronal metabolic activity258. There exists a strong correlation between changes in CBF and 

psychological conditions. The tight coupling between neuronal activity and cerebral perfusion has been 

demonstrated in many articles259–262. As a result, studying regional CBF allows for observing local 

neuronal activities, performing diagnoses, and developing treatment procedures. Many articles have 

been published in the last decade. Interested readers can also refer to these review articles3,85,88,263. 

This section categorizes DCS applications into three categories: animals, human pediatrics, and human 

adults. The structure of this section includes: first, we provide a comprehensive overview of DCS 

applications in animals. We list application scenarios and preclinical trials. Next, we delve into DCS 

applications in neonates, focusing on perinatal care, cardio-cerebral diseases in neonates, neonatal brain 

development, and children's brain health. Finally, we explore DCS applications in adults, categorizing 

them into four sections: neuroscience, cardio-cerebrovascular diseases, skeletal muscle, and exercise 

physiology, as well as tumor diagnosis and therapy.  

 

5.1 Animals 

DCS has been applied to animals since the end of the 1990s to estimate the burn depth in pigs264, as 

shown in Fig. 15(b). In 2001, Cheung et al. proposed a hybrid instrument integrating DCS with NIRS 

was applied to probe rat vascular hemodynamics265. Carp et al. used DCS to examine CBF during 

hypercapnia-induced cerebrovascular perturbation, with MRI-ASL as the standard measuring 

reference100. Furthermore, Menon et al. conducted the first DCS application in tumor monitoring266. 

They assessed tumor oxygenation in athymic nude mice (aged 6-8 weeks) bearing hypervascular human 

melanoma xenografts, achieved through vascular endothelial growth factor (VEGF) transfection. They 

combined DCS with Doppler ultrasound (DUS) to investigate microvessel density (MVD), BF, blood 

volume (BV), blood oxygen saturation, tissue oxygen partial pressure (pO2), and oxygen consumption 

rate.  

Moreover, DCS is pivotal in monitoring tumor blood flow changes in animal studies related to 

photodynamic therapy (PDT). Marrero et al.267, Yu et al.268, and Busch et al.269 have employed DCS to 

monitor BF in tumors before, during, and after PDT. Sunar et al.111 also used DCS to assess anti-vascular 

and ionizing radiation therapies. Farzam et al.169 observed a dropped BFi in the high oxygen saturation 

tumor region using DCS and DOS after anti-vascular chemotherapy. These preclinical investigations 

have paved the way for human cancer research and clinical applications. Table 5.1 shows the DCS 

applications in animals.  

Ischemia monitoring assesses potential damage to the brain or the secondary brain injury and 

paraparesis. Experiments have been conducted to study the perturbation of hemodynamics and cerebral 

blood metabolism induced by ischemia brain injury in rats270, piglets271 and sheep272, see Fig. 15. 

Notably, Diop et al. developed a method integrating (TR-NIR) and DCS to quantify the absolute 

cerebral metabolic rate of oxygen (CMRO2)
271,273. 

 



 

Fig. 15 (a) Detailed schematics of measurements on sheep, featuring the instrument and its thin fiber optic probe, 

images adopted from Ref.272; (b) The setup for pig experiments. The shaded areas on the pig indicate burns of 

various depths. Figures were reproduced from Ref264; (c) The non-contact scanning system set-up for mice. (black 

lines: outline of the bones; red lines: outline of the graft). Figures were reproduced from Ref.274; (d) Experiment 

setup with the placement of optical fibers and pressure sensor as well as the catheter on the exposed skull of 

monkey. The traces at the right show an example of changes in cerebral blood flow (∆CBF) and ICP. Figures were 

reproduced from Ref.275. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



Table 5.1 Classification of DCS application on animals. 

Application Subject Overview System Reference 

Hypercapnia 

Rodent 
rCBF and blood oxygen 

information 
DCS & NIRS 265 

Rodent 
DCS: rCBF; 

MRI: validation 

DCS & MRI 

(ASL) 
100 

Tumor 

diagnosis/therapy 

Rodent 
Tumor oxygen status 

monitoring 
DCS & DUS 266 

Rodent 

Tumor blood flow 

monitoring before, during 

and after PDT 

DCS 267–269 

Anti-vascular therapy and 

ionizing radiation of 

malignant mouse 

melanoma tumor models 

Contrast-enhanced 

DUS & DCS 
111 

Hemodynamic response to 

anti-vascular 

chemotherapy 

DOS & DCS 169 

Ischemia 

Rodent rCMRO2 
DOT & DPDW & 

DCS 
270 

Piglet 
Absolute CMRO2 and 

CBF 
DCS & TR-NIRS 271,273 

Sheep Spinal cord ischemia DCS & DOS 272 

Neurovascular 

coupling 
Rodent 

Effects of the secondary 

and late cortico-cortical 

transmission in 

neurovascular coupling 

EEG & DOI & 

DCS 
276 

Head injury Piglet 

Hemodynamic changes 

monitoring after a head 

injury 

DRS & DCS 101,102 

Intracranial 

pressure 
Monkey 

Cerebral blood flow 

monitoring as an indicator 

of intracranial pressure 

DCS 275 

Diffuse optical 

correlation 

tomography 

Rodent 
Measuring blood flow 

contrast 
DCT 178,274,277 

 

To further investigate vessel hemodynamics, diffuse correlation tomography (DCT) has been developed 

by measuring blood flow perturbation, contributed by optical heterogeneities, to provide blood flow 

contrast imaging of the region of interest178,274,277. DCT is a safe and cost-effective imaging technique, 

providing 3D imaging rather than just point measurements, real-time monitoring, and functional 

information on hemodynamics. DCT can complement other imaging modalities, such as MRI, CT, or 

PET scans, by providing additional functional and physiological information.  

 

5.2 Pediatrics 

The cortex of newborns is more easily detectable as the scalp and skull are much thinner in newborns 

and more light reaches the cerebral tissue than in adults. Thus, neonates are an attractive population for 

bedside DCS measurements, as discussed below. Generally, DCS is often combined with NIRS, which 

can measure human blood metabolism278,279 or transcranial Doppler ultrasound (TCD). The synergy 

between these approaches enables comprehensive measurements of microvascular blood flow and 

oxygen metabolism in neonatal human subjects85.  

 



5.2.1 Perinatal care 

Babies born before 37 weeks of pregnancy are premature, and preterm birth is the leading cause of 

neonatal mortality280. According to the World Health Organization (WHO) 2023 report, there are 

around 13.4 million premature babies worldwide281. Perinatal health refers to health from 22 completed 

weeks of pregnancy until seven completed days after birth. Premature babies are more likely to suffer 

from brain injuries such as HIE, stroke, and periventricular leukomalacia, related to neurological 

deficits282. To study brain hemodynamics and blood oxygen metabolism of premature neonates, Roche-

Labarbe et al. developed a hybrid instrument combining DCS for measuring CBF and quantitative FD-

NIRS for assessing cerebral tissue oxygenation (StO2) and CBV. The results indicate that the CBF-

CBV correlation is unstable in premature neonates283. In addition, Germinal matrix-intraventricular 

hemorrhage (GM-IVH) in premature neonates can be monitored by measuring CBF and CMRO2 to 

identify the vulnerability of potential brain damage in newborns284. Buckley et al. used DCS for 

continually monitoring CBF in the middle cerebral arteries of low birthweight premature infants during 

a postural manipulation. They discovered a significant correlation between TCD and DCS 

measurements81. CBF monitoring during the first three days after birth was conducted to assess the risk 

of brain injury due to CBF instabilities in preterm infants285. DCS holds a promising potential for 

preterm human infants’ brain health care. 

5.2.2 Neonate cardio-cerebral diseases 

DCS is also a promising tool for the monitoring of congenital heart defects in newborns. Durduran et 

al. used a hybrid NIRS-DCS instrument to study the changes in oxyhemoglobin, deoxyhemoglobin, 

total hemoglobin concentrations, CMRO2, and CBF during hypercapnia. The validation of CBF and 

CMRO2 was conducted using MRI-ASL, and the results showed a good agreement with DCS  

measurements (R = 0.7, p = 0.01)286. Buckley et al.287 and Shaw et al.288 measured changes in cerebral 

hemodynamics and oxygen metabolism during cardiac surgeries using DCS and DOS to evaluate the 

risk of surgery duration and surgical procedures, respectively. In addition, therapeutic hypothermia (TH) 

for neonatal HIE has also been studied using hybrid FD-NIRS and DCS289,290. TH is the standard of care 

for moderate to severe HIE in newborns290. Sutin et al. revealed the effects presented by therapeutic 

hypothermia (TH) on cerebral hemodynamics and blood oxygen metabolism by measuring CBF and 

CMRO2. Researchers pointed out that CMRO2 is a good indicator of TH evaluation and can be measured 

repeatedly at the point of care290. 

5.2.3 Neonates brain development 

Hemodynamics and CMRO2 are potential indicators of neonates’ brain health and development291–293. 

DCS combined with FD-NIRS has also been used to monitor newborns’ brain development, which 

revealed the differences of CBF in cortical regions and CMRO2 in the frontal areas between male and 

female babies with the right-left brain functional asymmetry294. Besides, Dumont et al. used DCS to 

monitor activities in the somatosensory cortex of premature neonates to evaluate brain 

neurodevelopment295. 

5.2.4 Children brain health evaluation 

Busch et al.296 observed CBF attenuation in the brains of children (aged 6-16 years) diagnosed with 

obstructive sleep apnoea syndrome (OSAS) and hypercapnia using DCS. Besides, Nourhashemi et al.297 

combined EEG, NIRS, and DCS to simultaneously capture changes in electrical and optical dynamics 

in children (aged 6-10 years) affected by absence epilepsy. The outcomes revealed a consistent 

correlation among EEG, NIRS, and DCS, suggesting that DCS holds promise in detecting 

hemodynamic changes of pediatric brain disorders. Moreover, DCS has been employed for real-time 

CBF measurements during chronic transfusion therapy for children with sickle cell diseases155,173,298. 

Figure 15 shows representative applications of DCS in neonates.  



 

 

 

Fig. 15 (a) DCS sensor was attached to the infant’s head for blood flow monitoring, figures adopted from Ref.145  

(b) The high-density EEG cap and optical probe (NIRS-DCS) and schematic representation of the location of the 

EEG and optical probes on a child’s head. The figure was reproduced from Nourhashemi et al.297. (c) The hybrid 

DCS system for neonatal blood flow monitoring, figures reproduced from Ref.299. 

5.3 Adults 

In this section, we focus on DCS applications in human adults and divide them into four sections: 

neuroscience study, cardio-cerebrovascular diseases, skeletal muscle and exercise physiology study, 

and tumor diagnosis and therapy evaluation. Figure 16 shows the use of DCS in adults.  

5.3.1 Neuroscience study 

Measuring CBF facilitates investigating neurovascular coupling, brain injuries, stroke, and neurological 

disorders. Neurovascular coupling denotes the connection between regional neural activity and 

subsequent alterations in CBF. The extent and spatial positioning of blood flow fluctuations are 

intricately connected to shifts in neural activity through a sophisticated sequence of coordinated 

processes involving neurons, glial cells, and vascular elements300. DCS can quantify changes in human 

cerebral blood flow in response to various stimuli, including but not limited to sensorimotor cortex 

activation301, visual cortex activation104,106, Broca’s area activation302, transcranial magnetic stimulation 

(TMS)303, and vasoactive stimuli304. These studies presented noninvasive and straightforward means of 

monitoring cognitive neuronal activity in human brains. Older adults with mild cognitive impairment 

exhibit significantly higher CBF increments during motor and dual-task activities, whereas their 

counterparts display normal cognitive functions305. Another investigation highlighted the consistency 

of CBF with the posture changes within a healthy population (aged 20 to 78 years). Zavriyev et al. 

examined the role of DCS during hypothermic circulatory arrests (HCA) therapy among older people 

(mean age 61.8 ± 19.4 years)154. These findings offer good references for future research on age-related 



alterations in CBF109. In addition, DCS has been effectively applied for assessing cerebral 

hemodynamics under hypotension306, obstructive sleep apnea296, and adult comatose307. However, most 

state-of-the-art DCS setups are relatively limited for measuring blood flow in deeper cerebral tissue 

since the most common source-detector separations only enable measurements at ~1-1.5cm depth, 

which barely penetrates the non-cerebral tissues of the scalp and skull. 

5.3.2 Cardio-cerebrovascular diseases 

Several studies have assessed human artery diseases and treatment outcomes. Carotid endarterectomy 

(CEA), for instance, has been associated with hypoperfusion syndrome in the internal carotid artery 

(ICA), leading to potential cerebral ischemia. Evaluating and monitoring cerebral hemodynamics 

during and after CEA emerges as a critical measure to assess associated risks. Shang et al. conducted a 

comparative analysis between DCS and EEG, revealing that DCS-measured CBF exhibited more 

prompt responses to ICA clamping than EEG measurements308. Furthermore, Kaya et al. integrated 

DCS with NIRS to demonstrate the feasibility of real-time cerebral hemodynamics and oxygen 

metabolism monitoring during CEA procedures309. Mesquita et al. also established a physiological 

connection between CBF and oxygenation in patients with peripheral artery disease310. CBF during the 

cardiac cycle has been acquired using DCS before and during ventricular arrhythmia in adults311. DCS 

has also been used for monitoring CBF312,313 and critical closing pressure (CrCP)314 of ischemic stroke 

patients, intrathecal nicardipine treatment after subarachnoid hemorrhage315, and thrombolysis therapy 

evaluation in ischemic stroke316. Notably, in the neurocritical care unit, DCS coupled with NIRS is a 

good bedside monitoring tool for individualized CBF management and manipulation of head-of-bed 

treatment for patients with critical brain injuries151,317. 

5.3.3 Skeletal muscle and exercise physiology 

DCS has found applications in investigating human skeletal muscle physiological states, offering a 

valuable approach for assessing tissue vascular diseases and enhancing clinicians' understanding. For 

instance, Yu et al. compared muscle blood flow and oxygenation between healthy individuals and those 

with peripheral arterial disease during cuff occlusion and plantar flexion exercise318. Subsequently, they 

integrated MRI-ASL with DCS to monitor BFi during cuff inflation and deflation319. Shang et al. 

characterized muscle blood flow, oxygenation, and metabolism in women with fibromyalgia during leg 

fatiguing exercise and arm arterial cuff occlusion320. Matsuda et al. evaluated local skeletal muscle 

blood flow during manipulative therapy (MT), suggesting that MT can enhance blood flow with 

minimal effects on systemic circulatory function321.  

Nevertheless, conventional technologies such as DUS, electromyography (EMG), and MRI encounter 

challenges when measuring physiological signals due to motion-induced artifacts, leading to inaccurate 

blood flow measurements. DCS offers more reliable measurements against experimental variations322. 

However, it is noteworthy that muscle fiber motion artefacts may still result in overestimating the 

change in BFi. Sang et al. have proposed methods to extract accurate blood flow measurements, 

including the co-registration of a dynamometer64. Alternative techniques, such as hardware-integrated 

gating17,323 and a random walk correction model with FD-NIRS68, have been introduced to address fiber 

motion artefacts in DCS measurements. 

5.3.4 Tumor diagnosis and therapy evaluation 

DCS has been employed in the diagnosis of human breast cancer, prostate, and neck tumors. Durduran 

et al. conducted an initial comparative analysis of blood flow disparities between tumor and normal 

tissues in the human breast. The investigation revealed a noteworthy increase in blood flow within 

tumor tissues324. This observation paves the way for noninvasive tumor diagnosis. Choe et al. used DCS 

in human breast cancer diagnosis74. Besides, the findings align with the results reported by Durduran et 

al., which underscored the increased blood flow within tumor regions. Besides, noncontact DCT has 



been adopted for three-dimensional (3-D) visualizing of blood flow distribution in human breast tumors, 

showing that DCS is a promising technique for localizing human tumors325.  

Yu et al. combined DCS with NIRS to measure BF and oxygenation in human prostate cancer114 and 

head/neck tumors113 to assess treatment. Also, DCS has been used to evaluate the photosensitizer 2-

1[hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH)- mediated PDT (HPPH-PDT). They showed 

that HPPH-PDT could induce a significant drug photobleaching with a reduction of blood flow and 

blood oxygenation326. In addition, DCS can evaluate chemotherapy327,328 or radiation delivery329 in 

human tumors.  

However, more patient statistics are needed when DCS is applied to human tumor diagnosis and therapy. 

Currently, most earlier prediction studies involved 7 to 11 patients330, segmented into two or three 

response groups. This is additionally complicated by different definitions of responding and non-

responding groups utilized by each research team. Longitudinal studies in larger patient populations for 

a more extended monitoring period are needed for more precise clinical application references. Besides, 

more precise DCS theoretical models according to application scenarios are also needed90,331. 

 

Fig. 16 (a) Hybrid DCS system applied to the human forehead, image reprinted from Ref.332;  (b) Experimental 

configuration with a contactless probe, figures adopted from Ref.333; (c) Schematic of hybrid instrument, hybrid 

Imagent/DCS instrument for simultaneous measurement of tumor oxygenation and blood flow during 

chemoradiation therapy, images adopted from Ref.334; (d) Drawing of a subject cycling on a stationary bicycle 

with a multi-distance FDNIRS-DCS probe attached to the right superficial rectus femoris. The figure was adopted 

from Ref.154; (e) Hybrid DCS/NIRS device for muscle measurement. Figures were adopted from Ref.323; (f) 

Diagram of DCS working on a breast, figures adopted from Ref.325. 

In addition to the applications listed above (Figures 14, 15, and 16), DCS has also been used for critical 

care335, anesthesiology336, and thyroid blood flow measurements337. DCS is a relatively new and 

evolving technology, and its applications continue to expand as new studies emerge and sensor 

technologies advance. DCS’s non-invasive and portable nature makes it particularly attractive for 



studying dynamic physiological processes in vivo. Theory models have evolved from semi-infinite to 

multi-layer models to obtain more precise measurements and expanded from CW-DCS to TD- and FD-

DCS. Besides, DCT can visualize blood flow contrast deep in tissues, making it more understandable 

for blood-related disease diagnosis and therapy. However, DCT shows a limited SNR and requires a 

long data processing time; therefore, it is still not applied to clinical applications. Thus, efforts are 

necessary to propel the development of DCS further, and we expect that DCS will offer increasingly 

reliable BFi measurements and find expanded applications in the future.  

 

6. Discussion and outlook 

Non-invasive DCS techniques have great potential for early diagnosis, prognosis, and a broad range of 

clinical conditions. Although DCS is simple and cost-effective, human applications still face challenges. 

Increasing DCS’s SNR is crucial for effective probing through thick near-surface tissue layers, 

especially at larger source-detector separations. A solution for increasing SNR is simply increasing the 

amount of light delivered to tissues under the maximum permissible exposure (MPE) limited by safety 

standards (ANSI safety limit338) or using high photon detection efficiency sensors that collect more 

scattered photons. Additionally, with new CMOS manufacturing techniques, the improvement in SNR 

has been shown in multi-speckle DCS systems using SPAD arrays with 5 × 5180, 32 × 32197,199,207, 192 

× 128181, or 500 × 500175 pixels. The latest parallelized DCS system with a SPAD array of 500×500 

pixels has already been demonstrated to boost the SNR by 500, compared to a single SPAD pixel of the 

same device. In 2020, a SPAD camera with 1024×1000 pixels was demonstrated195, although its 

relatively low frame rate of 24 kfps still prevented a practical use in DCS. We believe this ongoing 

development of larger and faster SPAD technologies195,339 will continue to boost the SNR of DCS, 

thereby allowing feasible measurements at longer source-detection separation and effectively enabling 

the measurement of deeper blood flow.         

Another method that has a similar goal is the interferometric approach based on a Mach-Zehnder 

interferometer. Over the past five years, the interferometric detection for diffusely scattered light in 

biological tissues has been investigated61,200,202,238,340–345. There are many advantages, including:  

1) offering comparable or superior functionality to photon counting but at a significantly lower cost per 

pixel61,202,342,346;  

2) altering the temporal coherence of light proves to be an effective and adaptable method for attaining 

Time-of-flight (ToF) resolution or discrimination within an interferometric arrangement, eliminating 

uncertainties for precise signal interpretation238,343,344,346;  

3) holding significant promise for analyzing blood flow fluctuations, whereas conventional DCS is 

hindered by its expensive nature and limited throughput61,105;  

4) insensitive to ambient light, which is a considerable benefit for practical use cases. Recently, 

Robinson et al.209 proposed long wavelength (1064 nm), interferometric DCS (LW-iDCS), which 

outperforms the long wavelength DCS (LW-DCS) based on SNSPD347 in terms of SNR and 

implementation cost. However, the drawback of this approach is its relatively complex setup with a 

reference arm and higher stability requirements for the platform accommodating the setup.  

One of the substantial advantages of the TD-DCS technique, as described in Section 3.5, is its capability 

to reduce the superficial layer contamination by selecting photons propagated into the deep tissues. 

Although TD-DCS measurements are typically conducted at a short ρ, due to the limited coherence 

length of the currently available emitters, this feature overcomes the influence of short ρ measurements 

and provides a higher depth sensitivity than CW-DCS methods. Therefore, TD-DCS requires a pulsed 

lasers and a TCSPC (or time-gating) module, which increases cost. To reduce the cost, Moka et al.147 



proposed FD-DCS. A faster acquisition speed can be achieved using FD-DCS as BF and oxygenation 

information is implicit in the collected data. This can be a good solution for some traditional DOS and 

DCS systems. Moreover, implementing FD-DCS is simplified using an intensity-modulated coherence 

laser, which can be cost-effective.  

Indeed, large arrays comprising thousands of SPADs equipped either with in-pixel Time-to-Digital 

Converters (TDCs)348–350 or with a set of TDCs shared across various pixels351,352 are being developed 

in cost-effective CMOS process. Despite recent advances in SPAD technologies, state-of-the-art TD-

DCS has not yet been implemented using TCSPC techniques based on TDC techniques353–358. There is 

no doubt that large SPAD arrays with embedded TCSPC can be a parallelizable solution for next-

generation TD-DCS, with a potential breakthrough in the SNR of the measurements and the depth-

encoding. We expect this kind of TD-DCS system to be released in the coming years. 

Combining DCS and DRS66,112,265 for concurrent BF and oxygenation measurements is also a trend. 

Quantifying blood oxygenation, metabolism, and tissue BF is essential for the diagnosis and therapeutic 

assessments of vascular/cellular diseases359–364. However, most relevant instruments assess tissue 

hemodynamics and metabolism by employing optical probes in direct contact with tissue surfaces. 

Contact measurements pose notable challenges, such as an elevated risk of infection in ulcerous tissues 

and potential deformation of delicate tissues (e.g., breasts and muscles) due to probe-tissue contact. 

This deformation can lead to distortions in the measured tissue properties. Thus, noncontact probes have 

been designed for deep tissues165,365,366.  

Regarding data processing, traditional nonlinear fitting methods are usually based on analytical models 

(homogenous semi-infinite  one- 367, two-234,368, and three- layer103,124,125,133 models). However, they are 

computationally demanding and less accurate as the SNR decreases, especially for multi-layer fitting126. 

Deep learning methods have been proposed in DCS analysis since 2019253, including 2DCNN250, 

LSTM174,254, ConvGRU369, and DCS-NET126. New AI techniques will be introduced to DCS 

applications soon.  

Over the past 25 years, we have witnessed the emergence of DCS to quantify BF dynamics of deep 

tissues more accurately with a higher SNR. We expect low-cost, user-friendly DCS technologies will 

be introduced and applied soon. Combining NIRS with DCS will provide a better solution for critical 

bottlenecks in neuroscience and clinical applications.  
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Appendix 1: optical-based blood flow monitoring modalities 

The tree diagram in Figure 17 shows the optical-based blood flow monitoring modalities, including 

LSCI50, LDF26,48, DCS, speckle contrast optical spectroscopy (SCOS), and DSCA51,52, all sharing the 

advantage of non-invasive measurement of blood flow using non-ionizing radiation. Goodman 

developed the fundamental principles linking temporal statistics of fluctuations in laser speckle patterns 

in the 1960s370. In the 1970s, the study of time-varying speckles, induced by motion, emerged as a focal 

point for research. LSCI is an excellent BF imaging technique that transforms a featureless laser speckle 

image of a tissue surface into a high-contrast BF image, but it is only suitable for shallow-depth tissue. 

DSCA methodology has drawn heavily from concepts in LSCI, focusing primarily on measuring 

average values rather than imaging BF. Consequently, advances in LSCI can be readily implemented 

in DSCA with minimal difficulty. After two original papers were published by Ren et al.51,52,371, DSCA 

has been extensively studied theoretically372–374 and experimentally375,376. DSCA can be categorized into 

spatial DSCA and temporal DSCA depending on how the statistics are applied when calculating speckle 

contrast. LDF relies on measuring the Doppler shift caused by moving red blood cells to the illuminating 

coherent light. Since its introduction to the commercial market in the early 1980s, it has maintained a 

modest yet consistent and progressively expanding presence377,378. SCOS, also known as DSCA, was 

initially introduced in Valdes379 et al.’s study. In the research conducted by Kim et al.380, they confirmed 

that SCOS outperforms DCS, delivering over a 10-fold improvement in SNR at a comparable cost. 

Notably, fiber-based SCOS offers a viable avenue for functional neuroimaging in cognitive 

neuroscience and health science domains. Unlike techniques like LDF and LSCI, designed for 

superficial tissue measurement, DCS is a deep-tissue blood flow monitoring modality. Initially 

employing a continuous wave laser source, known as CW-DCS, various approaches have since been 

developed, including heterodyne/interferometric, multi-speckle, time-domain, long-wavelength, and 

Fourier-domain methods. Readers are encouraged to consult the review papers from Carp et al.381, and 

James et al.159 to delve into the detailed comparisons among these approaches.      

  

 

 

 

 



Figure 17. Optics-based blood flow monitoring modalities, including laser speckle contrast imaging (LSCI), 

laser doppler flowmetry (LDF), diffuse correlation spectroscopy (DCS), diffuse speckle contrast analysis 

(DSCA)/speckle contrast optical spectroscopy (SCOS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 2: other novel representative DCS instruments 

We present additional novel representative DCS instrument diagrams not previously shown. Fig. 18(a) 

depicts the optimized functional TD-DCS system162, which integrates a custom 1064 nm pulse-shaped, 

quasi transform-limited, amplified laser source with a high-resolution time-tagging system and SNSPD 

sensors. Fig. 18(b) illustrates the setup of functional interferometric diffuse wave61, with the 

interferometer detection path depicted in horizontal and vertical views. Fig. 18(c) showcases a Fourier 

domain implementation of the off-axis heterodyne parallel speckle detection instrument340. Fig. 18(d) 

is the schematic of the fiber-based SCOS setup and the corresponding data analysis pipeline380. 



 

Figure 18. (a) Schematic diagram of functional TD-DCS at 1064 nm; the figure adopted from Ref.162. (b) 

Schematic of functional interferometric DWS; the figure adopted from Ref.61. (c) Schematic of the off-axis 

heterodyne parallel speckle detection (the Fourier-domain approach); the figure adopted from Ref.340. (d) The 

schematic of the fiber-based SCOS set-up and the corresponding data analysis pipeline380. 

 



Appendix 3: correlation between acquisition time and spatial resolution across various BFi 

measurement modalities 

Fig. 19 illustrates the correlation between acquisition time and spatial resolution across various BFi 

measurement modalities. Although DCS does not have a high spatial resolution, it outperforms others 

regarding acquisition speed. 

 

 

Fig. 19 Available techniques for measuring CBF in terms of the spatial resolution and acquisition time. (Note: 

SPECT: single photon emission computed tomography; PET: positron emission tomography; CT: computed 

tomography; DSC-MRI: dynamic susceptibility contrasts magnetic resonance imaging; ASL: arterial spin labeling; 

TCD: transcranial Doppler; TDF: thermal diffusion flowmetry; LDF: laser Doppler flowmetry; DCS: diffuse 

correlation spectroscopy; NIRS: near-infrared spectroscopy; CHS: coherent hemodynamics spectroscopy).  

 

Appendix 4: DCS simulation tools  

The Monte Carlo (MC) method for simulating light propagation through tissue is a benchmark 

technique382, extensively discussed in Zhu and Liu’s review paper383. MC has been widely used in the 

NIRS and DCS communities. To aid researchers in performing and documenting more intricate 

experimental analyses, various analysis platforms and specialized software tools384,385 have been created. 

The exhaustive NIRS/DCS MC software tools are listed in another review paper88. Here, we only list 

the tools commonly used in DCS, as shown in Table 2.8. MCML, developed by Jacques et al.386, is a 

steady-state MC tool for analyzing multi-layered turbid media using an infinitely narrow photon beam 

as the light source. Operating in a 3D environment, it provides outputs including the radial position, 

angular dependence of local reflectance and transmittance, and the internal distribution of energy 

deposition and fluence rate within the multilayered medium. The program can be easily modified. 

Alternative software packages like Monte Carlo eXtreme (MCX)387 or mesh-based Monte Carlo 

(MMC)388, developed by Fang and his colleagues, can simulate arbitrary optode placements on diverse, 

intricate tissue models with heterogeneity. MCX and MMC can record the path lengths and momentum 

transfer from the detected photons to obtain the electric field autocorrelation function126,367. 

ScatterBrains, developed by Wu et al.389, is an open database of human head models with companion 

optode locations of interest and a toolkit designed for generating specifications to execute MC 

simulations of light propagation, including the code to create input files compatible with MMC. 

Additionally, an illustration of post-processing techniques for DCS is provided. 



                                                            Table 2.8 Existing software tools related to DCS 

Name Language Website 

MCML390 Standalone https://omlc.org/software/mc/ 

MMC388 Standalone/Matlab http://mcx.space/#mmc 

MCX387 Standalone/Matlab http://mcx.space/ 

scatterBrains389 Matlab https://github.com/wumelissa/scatterBrains 
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