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Abstract

Possible molecular origin of ferroelectricity in the nematic phase is discussed in detail considering

a number of models based on direct dipole-dipole interaction and electrostatic interaction between

surface charge densities. A more model which combines dipole-dipole interaction and short-range

orientational-translational correlations is also considered . In particular we derive a contribution

to the total free energy of the long-range tail of the dipole-dipole interaction potential and show

that this contribution depends on the sample shape and on the boundary conditions. As a result

this shape dependent contribution may strongly effect the transition into the ferroelectric phase

depending on the actual boundary conditions maintained experimentally.

We also consider two conjugated thermodynamic potentials which depend on the electric field

in the medium and on the displacement field, respectively. It is shown that the actual polarization

corresponds to the minimum of one of these potentials depending on the boundary conditions

which may have significant experimental consequences. In the framework of the general Landau

de Gennes theory, which employs both potentials, the ferroelectric properties of different nematic

cells are considered including the ones with fixed applied voltage and free cells with disconnected

electrodes.
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I. INTRODUCTION

A possibility of proper ferroelectric ordering in isotropic fluids and nematic liquid crystals

in particular was attracting a significant attention during several decades. Such a possibil-

ity was initially supported by a simple idea that the interaction between sufficiently large

molecular dipoles sooner or later will result in a long range polar order. This idea was indeed

supported by early computer simulations [1–6] of the system of soft and hard dipolar spheres

at low densities. In addition, the ferroelectric phase in the system of dipolar spheres has also

been predicted theoretically using the density functional theory at low densities [5] It should

be noted, however,that the theoretical analyses of the dipole-dipole interaction in the frame-

work of a molecular-statistical theory is not straightforward due to its strong anisotropy and

the long range character. In particular, the dipole-dipole interaction potential vanishes after

integration over all orientations of the unit intermolecular vector which makes it difficult to

account for this interaction in the standard molecular-field approximation. Another diffi-

culty is related to the fact that the contribution of the dipole-dipole interaction to the total

free energy depends on the shape of the sample [7] due to the long-range tail of the poten-

tial. These difficulties have been partially addressed in refs. [8–10], where the ferroelectric

ordering of soft spheres has also been predicted, but it is important to note that the theory

is only valid in the zero density approximation and thus it can hardly be applied to realistic

dipolar fluids.

Later it has been realised that the elementary description cannot be valid even in the

case of very low densities. Indeed, more detailed computer simulations indicate [4, 11–13]

that spheres with sufficiently large dipoles tend to form chains rather then exhibiting the

ferroelectric phase. The formation of chains is not taken into consideration neither in the

mean field theory nor in the low density approximation based on virial expansion and thus

the early molecular theories cannot describe the results of these simulations. The formation

of chains and their equilibrium distribution at low densities can be described using the

theory of living polymers [14–16] but at higher densities such an approach is again not valid

as at the computer simulation indicate that at high densities there are no individual chains

and also no long range polar order [12]. Thus the formation of the ferroelectric phase in

the system of dipolar spheres seems to be highly unlikely which, in fact, corresponds to

the existing experimental data as no ferroelectric phase has been observed so far in low
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molecular isotropic fluids composed of weakly anisotropic molecules regardless of the value

of the molecular dipole. Similar difficulties arise also in the molecular theories of nematic

liquid crystals composed of strongly polar molecules [17–22] which employ the model of the

ellipsoid of revolution or the sphere cylinder with the permanent dipole which is parallel to

the molecular axis and located either at the molecular centre [17–21] or anywhere on the

molecular axis. The model with tilted dipoles has also been analysed recently by Bisi, Sonnet

and Virga [22]. No ferroelectric phase was found in [17–19] while the theories presented in

[20, 21] predict the ferroelectric ordering. The difference between these contradicting results

is mainly related to the way how the long range part of the dipole-dipole interaction potential

is accounted for in the molecular-statistical theory as discussed in Section 2.

Very recently the proper ferroelectric nematic phase has finally been discovered in few

liquid crystal materials composed of strongly polar molecules [23–26], and the spontaneous

polarization, second harmonic generation and giant dielectric susceptibility have been stud-

ied experimentally by several groups [25–32, 37]. It should be noted that the molecular

structure of these ferroelectric materials is very specific. The total molecular dipoles are

very large but they are composed of several smaller dipoles which are located in different

parts of the molecule and tilted with respect to the primary molecular axis. In addition such

molecules possess a significant lateral group. It has also been shown that minor changes in

the molecular structure may result in the loss of the ferroelectric phase even when the to-

tal molecular dipole remains approximately the same [27, 33–36]. A review of ferroelectric

nematic materials has been published recently by R.Mandle [34]. Thus one may conclude

that the polar interaction between such mesogenic molecules appears to be rather complex

and the system can hardly be described using a simple model of the ellipsoid or a sphere

cylinder with the central dipole.

In this review we critically analyse the possible molecular origin of ferroelectric ordering

in strongly polar nematic liquid crystals (LCs) as well as in isotropic dipolar fluids in simple

and qualitative way without considering the formal aspects of the corresponding molecular-

statistical theories. We first consider the role of strong dipole-dipole interaction in isotropic

fluids composed of dipolar hard spheres and then use the results to analyse a number of more

realistic molecular models for ferroelectric nematics with a special emphasis on the role of

short range intermolecular correlations combined with electrostatic interactions between

different molecular fragments.
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II. CAN DIPOLE-DIPOLE INTERACTION PROMOTE FERROELECTRICITY

IN FLUIDS?

In the general case the proper ferroelectric ordering (i.e. the ferroelectric phase where

the spontaneous polarization is the primary order parameter) should be determined by some

polar intermolecular interaction. However, it is not obvious that the electrostatic dipole-

dipole interaction is always the primary microscopic cause of the ferroelectric ordering. The

dipole-dipole interaction is indeed responsible for the emergence of the ferroelectric phase in

some crystals but it is not clear yet if it can promote ferroelectricity in dipolar fluids without

positional order. In this section we discuss the properties of the dipole-dipole interaction and

its contribution to the free energy of the system of dipolar spheres which is the simplest fluid

system capable of exhibiting the ferroelectric phase, at least in principle. Our conclusions

will then be applied also to the ferroelectric nematics.

A. Anisotropy of the dipole-dipole electrostatic interactions

The dipole-dipole electrostatic interaction potential is given by the following well known

expression

Vdd(d1,d2, r12) =
1

r312
((d1 · d2) − 3(d1 · u12)(d2 · u12)) , (1)

where di, i = 1, 2, is the permanent dipole of the molecule i, r12 is the intermolecular vector

and u12 = r12/r12 is the unit intermolecular vector.

One notes that the dipole-dipole interaction potential is not only strongly anisotropic

but it also possesses opposite signs for different mutual orientation of the two dipoles. As

shown in Fig.1, the lowest interaction energy Vdd = −2d1d2R
−3
12 corresponds to ”nose to

tail” configuration when d1 = d2 = u12. In contrast, the ”side by side” orientation of the

two parallel dipoles corresponds to the positive energy Vdd = +d1d2R
−3
12 . The antiparallel

configuration of the two side by side dipoles also corresponds to the negative energy Vdd =

−d1d2R
−3
12 but it is higher than the energy of the parallel ”head to tail” configuration.

From the molecular point of view one of the most important properties of the dipole-dipole

interaction potential is the anomalous behaviour of its volume integral. Indeed the volume

integral of the potential can be expressed as the following double integral:∫
V

Vdd(d1,d2, r12)dV =

∫ ∫
1

r312
((d1 · d2) − 3(d1 · u12)(d2 · u12)) r

2
12dr12d

2u12. (2)
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FIG. 1: —The lowest and the highest energy configurations of the two interacting dipoles.

One notes that the integral of the dipole-dipole potential over all orientations of the unit

intermolecular vector u12 vanishes identically, i.e∫
1

r312
((d1 · d2)− 3(d1 · u12)(d2 · u12)) d

2u12 = 0. (3)

On the other hand the integral over the intermolecular distance r12 diverges logarithmically

: ∫ ∞
D

1

r312
((d1 · d2)− 3(d1 · u12)(d2 · u12)) r

2
12dr12 →∞. (4)

From the rigorous mathematical point of view this means that the volume integral of the

dipole-dipole potential is ill defined, i.e. the value of the integral depends on the order of

integration. The important physical consequence of this is that the integral of the dipole-

dipole potential over the finite sample depends on the shape of the sample due to the long

range character of the potential. This property is particularly important for the correct
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account of the dipole-dipole interaction in the molecular theory as discussed in the next

subsection.

B. Dipole-dipole interaction and the possibility of ferroelctric order in the system

of dipolar spheres.

Let us assume that the system of hard spheres with sufficiently large dipoles may exhibit

the orientationally ordered ferroelectric phase promoted by the dipole-dipole interaction.

Then in the mean field approximation the contribution of the dipole-dipole interaction po-

tential to the free energy density of the homogeneous polar phase is expressed as:

∆FMF =
1

2
ρ2
∫ ∫

Θ(r12 −D)
1

r312
((d1 · d2)− 3(d1 · u12)(d2 · u12)) f1(a1 · n)f1(a2 · n)×

r212dr12d
2u12d

2a1d
2a2 − ρE0

∫
df1(a · n)d2a, (5)

where ρ is the number density, the unit vectors a1, a2 are in the direction of the permanent

dipoles d1,d2, respectively and f1(a1 · n) is the orientational distribution function of the

polar phase which depends on the coupling between the molecular axis a1 and the director

n. Here Θ(r12 −D) is the step function, Θ(r12 −D) = 0 if the two spheres penetrate each

other and Θ(r12 − D) = 1 if they do not. This function describes the steric cut off which

means that the centres of the two spheres cannot bc closer then D. Finally the last term is

a contribution from a coupling between the molecular dipole and the external electric field

E0.

Eq.(5) contains the multiple integral over r12,u12, a1 and a2 and one can naively integrate

the dipole-dipole potential over u12 and conclude that the dipole-dipole contribution to the

free energy vanishes. However, this conclusion is incorrect for the reasons discussed in the

previous subsection. Indeed, the dipole-dipole contribution Eq.(5) can be expressed in terms

of the volume integral of the dipole-dipole interaction potential:

∆FMF/V =
1

2
ρ2
∫ (∫

V

Θ(r12 −D)Vdd(d1,d2, r12)dV

)
f1(a1 · n)f1(a2 · n)d2a1d

2a2. (6)

As discussed in the previous subsection, the volume integral of the dipole-dipole potential is

ill defined as it depends on the order of integration. The integral vanishes is the integration

over u12 is performed first and it diverges if one begins with the integration over r12. This
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result is not effected by the fact that the integration is performed in the range r12 > D (due

to the steric cut off) as the divergence occurs when r12 →∞. Thus the whole contribution of

the dipole-dipole potential to the free energy is also ill defined and cannot be evaluated in a

straightforward way. This result illustrates some general difficulties arising in the statistical

theory of systems with long range intermolecular interactions. One notes also that these

difficulties are not related to the mean-field approximation and remain in any molecular-

statistical theory. For example, in the second virial approximation which is valid at very

small densities, the free energy density of the orientationally ordered system of dipolar hard

spheres can be written in the well known form:

F/V = ρKBT

∫
f1(a · n)log[4πf1(a · n)]d2a

−1

2
kBTρ

2

∫
f1(a1 · n)f1(a2 · n)

∫
r12>D

(exp(−βVdd(1, 2))− 1) d3r12d
2a1d

2a2, (7)

where β = 1/kBT .

The integral over the Maier function exp(−βVdd(1, 2)) − 1 in Eq.(7) is complicated but

at large distance r12 between the interacting dipoles the dipole-dipole potential is small ,

and hence the nondimensional parameter βVdd(1, 2) � 1. As a result, for sufficiently large

r12, the Maier function exp(−βVdd(1, 2)) − 1 ≈ −βVdd(1, 2)) and hence for large r12 one

arrives at the same ill defined integral of the dipole-dipole potential as in the mean-field

approximation.

It should be noted that the difficulties related to the long-range tail of the dipole-dipole

interaction are well known in the theory of dielectric properties of solid crystals. The problem

has been generally solved long ago using the method of lattice sums proposed by Ewald

[38]. The method of lattice sums, however, cannot be directly applied to fluid ferroelectric

materials because there is no positional order. On the other hand the general idea behind

the Ewalds’s theory is also valid for any system with spontaneous polarization including

ferroelectric nematic LCs. In fact one has to separate the short range and long range

contributions to the total free energy of the ferroelectric phase and establish a relationship

with the average electric field in the system. This can be achieved by splitting the integral

in Eq.(4) into two different parts.

According to Eq.(4) the contribution of the dipole-dipole interaction to the mean-field
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free energy contains the following volume integral of the potential:∫
V

Θ(r12 −D)Vdd(d1,d2, r12)dV =

∫
r12>D

Vdd(d1,d2, r12)d
3r12. (8)

This integral can be expressed as a difference to the following terms:∫
r12>D

Vdd(d1,d2, r12)d
3r12 =

∫
Vdd(d1,d2, r12)d

3r12 −
∫
r12<D

Vdd(d1,d2, r12)d
3r12, (9)

where the first term in the right hand side of Eq.(9) is the integral of the dipole-dipole

potential over the whole volume of the sample and the second term is the integral of the

potential over the excluded volume (see Fig.2) of the two spheres. The excluded volume

is a sphere with the diameter of 2D and with the centre located at the centre of one of

the spheres. The centre of the second sphere cannot be located inside the excluded volume

because the spheres cannot penetrate each other.

The second integral in Eq.(9) over the spherical excluded volume can be taken analytically

[39] (pp. 139-43):

−
∫
r12<D

Vdd(d1,d2, r12)d
3r12 = −4π

3
(d1 · d2). (10)

One notes that the result does not depend on the sphere diameter D.

The contribution of the integral (10) to the total free energy is determined by the corre-

sponding average of (10) with the orientational distribution functions according to Eq.(7):

∆F
(1)
MF/V =

1

2
ρ2
∫ (
−4π

3
(d1 · d2)

)
f1(a1 · n)f1(a2 · n)d2a1d

2a2 = −2π

3
P2, (11)

where the polarization P is the average molecular dipole P = ρ
∫
df1(a · n).

The first term in Eq.(9) together with the last term in Eq.(6) give rise to the following

contribution:

∆F
(2)
MF =

1

2
ρ2
∫
Vdd(d1,d2, r12)f1(a1 · n)f1(a2 · n)d2a1d

2a2d
3r1d

3r2

−ρ
∫

df1(a · n)E0d
2ad3r,= −1

2

∫
P(r · E(r)d3r, (12)

where we have taken into account that the actual macroscopic electric field E in the medium

is expressed as [7]

E(r) = E0 −
∫

T(r− r′)P(r′)d3r′, (13)

where Tαβ is the dipole-dipole tensor:

Tαβ(R) =
1

R3
(δαβ − 3uαuβ) , (14)
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FIG. 2: excluded volume for two hard spheres.

and where u = R/R,R = r− r′.

Combining Eqs.(11) and (12) one obtains the final expression for the contribution of the

dipole-dipole interaction to the total free energy:

∆FMF =
1

2

∫ (
−4π

3
P2(r)−P(r) · E(r)

)
d3r. (15)

Thus one concludes that the total contribution of the dipole-dipole interaction is composed

of two different terms. The first term is negative and is proportional to the square of the

spontaneous polarization P. Hence it promotes the ferroelectric ordering in the system of

strongly polar spheres.

In contrast, the second term in Eq.(15) is the contribution from the long range part of the

dipole-dipole interaction and appears to be the energy of the electrostatic field in the volume

of the sample. This contribution depends on the shape of the sample and on the boundary
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FIG. 3: Chains formed at low densities by dipolar hard spheres (a) or by anisometric hard particles

with opposite charges at the two ends.

conditions. For example, in the spherical or the infinite flat sample both the spontaneous

polarization and the macroscopic electric field are homogeneous. If such samples are sur-

rounded by the conducting medium (for example, if the flat sample is sandwiched between

short circuited conducting electrodes) the macroscopic electric field vanishes everywhere in

the sample and hence the second term in Eq.(15) also vanishes. In contrast, in the spon-

taneously polarized spherical sample in vacuum the macroscopic electric field E = −4πP/3

and hence the whole free energy contribution (15) vanishes. In this case the dipole-dipole

interaction does not promote ferroelectricity. In a similar way, in the infinite flat sample in

vacuum the electric field E = −4πP and the total contribution to the free energy density is

positive, i.e. +4πP 2 which opposes the ferroelectric ordering.

One notes that some of these results have also been obtained in [8–10] and the conclusion
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has been made that at sufficiently large value of the permanent dipole the system of dipolar

spheres should undergo a transition into the ferroelectric phase, at least at low densities. This

simple conclusion, however, does not seem to be correct and is not supported by advanced

computer simulations. Indeed, the detailed simulations [4, 11–13] indicate that spheres with

sufficiently large dipoles prefer to form polar flexible chains rather then exhibit the long

range ferroelectric order (see Fig.3 a). In other words it is more energetically favorable

for two dipolar spheres to occupy the head -to-tail configuration, which corresponds to the

lowest energy, rather then to maintain the long-range polar order. At higher densities the

individual chains are no longer observed but at the same time the ferroelectric ordering is

also not observed. The formation of polar chains is a correlation phenomenon and it cannot

be described in the mean-field or low density approximation. Thus one may concludes that

also at liquid densities the dipolar order cannot be described in the mean-field approximation

and a very sophisticated molecular statical theory is required which takes into consideration

strong short-range orientational-translational correlations.

We have considered the possibility of the ferroelectric order in the system of dipolar

spheres in much detail here because a very similar approach can also be used in the theory

of nematic liquid crystals composed of elongated rigid molecules with central dipoles. We

will see in the next section that the main conclusions which we have arrived at so far are

also valid for such model polar nematics.

III. MOLECULAR MODELS FOR FERROELECTRIC NEMATICS.

A. Rigid molecules with central dipoles.

In the generalised molecular-field approximation the free energy of the polar nematic LC

composed of uniaxial rigid molecules with single permanent dipoles can be written in the

form:

F = F0ρkBT

∫
f1(a · n)log[4πf1(a · n)]d2ad3r

−1

2
λ(ρ)

∫ ∫
(Θ(r12 − ξ(1, 2))− 1) f1(a1 · n)f1(a2 · n)d3r1d

3r12d
2a1d

2a2

+
1

2
ρ2
∫ ∫

Θ(r12−ξ(1, 2))U(a1, a2, r12)(f1(a1·n)f1(a2·n)d3r1d
3r12d

2a1d
2a2−ρ

∫
df1(a·n)E0d

2a,

(16)
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where the first term is the orientational entropy which depends on the orientational distri-

bution function f1(a · n) and the second term is the so called packing entropy, where the

coefficient λ(ρ) is some function of the number density ρ which depends on a particular

approximation, and Θ(r12 − ξ(1, 2)) is the steric cut off function defined after eq.(6). The

third term in Eq.(16) is a contribution from the pair intermolecular interaction potential

U(1, 2) = U0(1, 2) + Vdd(1, 2) which is a sum of the nonpolar interaction potential U0(1, 2)

and the dipole-dipole interaction potential Vdd(1, 2) given by eq.(1). Here the steric cut-off

function restricts the domain of integration to be r12 > ξ(1, 2) where ξ(a1, a2,u12) is the

distance of minimum approach between the centres of the two rigid molecules. This function

depends on the molecular shape. Finally the last term is a coupling between the molecular

dipoles and the external electric field.

Assuming that the molecular shape is nonpolar and there are no other polar intermolec-

ular interactions, the ferroelectric ordering can only be promoted by the dipole-dipole inter-

action which makes the following contribution to the free energy:

∆F
(N)
MF =

1

2
ρ2
∫
d2a1d

2a2

∫
r12>ξ(1,2)

d3r12Vdd(1, 2)f1(a1 · n)f1(a2 · n)dr1

−ρ
∫

df1(a · n)E0d
2a. (17)

Similar to the case of dipolar spheres considered in the previous section the contribution (17)

contains the integral of the dipole-dipole interaction potential outside the excluded volume

defined by the condition r12 > ξ(1, 2):∫
r12>ξ(1,2)

Vdd(1, 2)d3r12. (18)

As discussed above this volume integral is ill defined as it depends on the order of integration.

Indeed, the integral vanishes if the integration over u12 is performed first, and the integral

diverges after integration over r12. It should be noted that this result does not depend on

the molecular shape or the shape of the excluded volume as the divergence occurs at large

r12 due to the long range tail of the dipole-dipole potential. Now the integral (18) can be

expressed as a difference of the two terms similar to Eq.(9):∫
r12>ξ(1,2)

Vdd(d1,d2, r12)d
3r12 =

∫
Vdd(d1,d2, r12)d

3r12 −
∫
r12<ξ(1,2)

Vdd(d1,d2, r12)d
3r12.

(19)
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Here the first term is the integral of the dipole-dipole potential over the whole sample which

is exactly the same as in the case of dipolar spheres (see the first term in Eq.(9)). Thus it

can be expressed in terms of the macroscopic electric field E in the medium and together

with the last term in Eq.(7) yields the following contribution to the total free energy which

is the same as Eq.(12):

∆F
(2)
MF = −1

2

∫
P(r · E(r)d3r. (20)

The second term in Eq.(19) gives rise to the following contribution to the free energy density

which depends on the macroscopic polarization P:

∆F
(1)
MF/V =

1

2
ρ2
∫ ∫

r12<ξ(1,2)

Vdd(d1,d2, r12)d
3r12f1(a1 · n)f1(a2 · n)d2a1d

2a2. (21)

Here the function ξ(1, 2) depends on the relative orientation of the two rigid molecules and

it cannot be evaluated analytically even for simple shapes like ellipsoids of revolution of

spherocylinders. As a result Eq.(21) cannot be significantly simplified in the general case.

At the same time it is possible to expand Eq.(21) in powers of the polarization P keeping only

the quadratic term which determines the transition temperature into the ferroelectric phase.

In the case of small polarization the orientational distribution function can be expanded

keeping the first linear term:

f1((a · n), (a ·P)) = (4π)−1 (1 + 3(a · p) + ...) . (22)

where p is the nondimensional polar order parameter, p = P/ρd. Substituting Eq.(22) into

Eq.(21) one obtains the following quadratic contribution to the free energy:

∆F
(1)
MF/V = C1P

2, (23)

where

C1 =
9

2

∫
r12<ξ12

d3r12
1

r312
((a1 · a2)− 3(a1 · u12)(a2 · u12)) (a1 · a2)

d2a1

4π

d2a2

4π
, (24)

where we have assumed that the molecular dipole is parallel to the primary molecular axis,

i.e. d = ad.

The integral (24) over the excluded volume has been evaluated numerically by Terentjev

and Petschek for two ellipsoids of revolution [40], and the following interpolation formulae

has been obtained:

C1 = −2π

3

(
1− (1− D

L
)2/3
)

+
2

3

(D/L) (1− (D/L))

(1− (D/L))2 + 6(D/L)2
(25)
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where L is the molecular length and D is the molecular diameter.

A simple estimate for the constant C1 can be obtained for strongly anisometric molecules

when D � L:

C1 ≈
8π

9

D

L
. (26)

One notes that in this limiting case the constant C1 is positive. Moreover, according to

Eq.(25) the constant C1 is positive for all L > 2D and hence for any reasonable anisome-

try of the mesogenic molecules the electrostatic interaction between central dipoles, which

are parallel to the long molecular axis, does not promote the ferroelectric ordering for any

value of the dipole.. This qualitative result is also valid if the dipole is located anywhere

on the molecular axis [42]. It should be noted also that our conclusions are formerly valid

in the molecular-field approximation. However, using the analogy with the system of dipo-

lar spheres one expects that at low densities short-range correlations between elongated

molecules with large dipoles will result in the formation of chains with adjacent molecules

in side by side antiparallel configuration. Such correlations are expected to be important

also at liquid densities, and they will most probably suppress long range ferroelectric order.

Thus the simple model of a rigid molecule with large permanent dipole cannot be used to

explain the ferroelectric ordering in polar nematics and more sophisticated models are re-

quired. This is not surprising from the experimental point of view as it is well known that

small changes in the location and orientation os some molecular dipoles may lead the loss

of the ferroelectric phase despite the fact that the total dipole remains approximately the

same.

B. Models based on polarized charge distribution

Existing ferroelectric nematic LCs are composed of strongly polar molecules with several

dipoles located in various parts of the molecular structures. In this case it may be more

reasonable to to consider a model with a certain charge distribution on the molecular surface

with some areas positively charged and other areas with negative charge density. The

simplest model of this kind is the rigid elongated molecule with effective positive charge

+Q at one end and the corresponding negative charge −Q at another end (see Fig.4).

The electrostatic interaction energy between such molecules is the sum of all charge-charge
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FIG. 4: Low energy configuration for two mutually shifted rod-like molecules with modulated

surface charge density.

interaction potentials:

UQQ(1, 2) =
Q2

R++

+
Q2

R−−
− Q2

R+−
− Q2

R−+
, (27)

where Rij is the distance between the charge i in the molecules 1 and the charge j in the

molecule 2 which depends on the relative orientation of the two molecules, i, j = (+,−).

The contribution of this charge-charge interaction to the mean-field free energy is given

by the same Eq.(17) where the dipole-dipole interaction potential is replaced by the potential

(27). The free energy contribution contains a similar volume integral of the charge-charge

potential: ∫
r12>ξ(1,2)

UQQ(1, 2)d3r12. (28)

One can readily see that if the distance l between the charge and the end of the molecule
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is sufficiently small, the integral (28) is dominated by the parallel head to tail configuration

which corresponds to the lowest energy. In this configuration the predominant term in the

potential (27) is the interaction energy between the positive charge of one molecule and the

neighboring negative charge of the second molecule: −Q2/R+− sin−Q2/2l. One notes that

this term is negative and hence the corresponding contribution to the free energy is also

negative, and one can make a premature conclusion that the charge-charge interaction may

promote ferroelectric ordering. This conclusion, however, is incorrect for the same reason as

the corresponding conclusion in the case of dipolar hard spheres. Similar to the system of

dipolar spheres the lowest energy corresponds to parallel head to tail configuration and hence,

at low densities, it is more energetically favorable for the system of elongated molecules with

two opposite charges to form chains rather then to exhibit the nematic ferroelectric phase

(See Fig.3 b).

In the high density nematic phase there are no individual chains but there should be

strong head to tail parallel correlations. At the same time one expects that equally strong

antiparallel side by side correlations should exist in all directions perpendicular to the long

molecular axis (see Fig.4). These correlations cannot be taken into account in the molecular-

field approximation and at present there is no theory which can account for them. Thus it

is reasonable to assume that charge-charge interactions in the this simple model cannot be

responsible for the ferroelectric ordering in the nematic phase.

A more sophisticated model based on electrostatic interaction has been proposed by

Madhusudana [41]. Mahusudana has considered a cylindrical rigid molecule with uniaxial

surface charge density specified by four density waves (see Fig.5) of the same wavelength and

different amplitudes and phases. As a result some parts of the surface are negatively charged

while the adjacent parts are characterised by positive charge density. One can readily see

that the parallel side by side configuration with full overlap is energetically unfavorable

because all neighboring parts of the two molecules possess the charge densities of the same

sign and hence the molecules repel each other in this configuration. In contrast, in the

antiparallel side by side configuration with full overlap the molecules attract each other

and thus the antiparallel orientation of the adjacent molecules is more favorable. It has

been shown in [41], however, that for some values of the parameters the minimum of the

interaction energy is achieved when the adjacent molecules are parallel but one of them

is shifted with respect to another in such a way that the negatively charged pars of the
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molecular surface are in contact with the positively charged ones. This conclusion has also

been supported by considering a cluster of parallel molecules with molecular cross sections

located on the hexagonal lattice [41]. This is an indication that the electrostatic interaction,

proposed by Madhusudana, may be responsible for ferroelectric ordering in nematic LCs.

At the same time this result does not seem to be sufficient because one has to show that

the contribution of this electrostatic interaction to the free energy is negative and sufficiently

large to overcome the orientational entropy. Only in this case the interaction can drive the

transition into the ferroelectric phase. In the mean-field approximation such a contribution is

given by Eq.(6) where the dipole-dipole potential is replaced by the corresponding interaction

between surface charges. In the simple case of parallel molecules the contribution to the

free energy density is determined by the integral of the potential over the intermolecular

vector r12. This integral is an average over all configurations of the two molecules and not

just over the two ones considered in [41]. Taking into account that the the potential itself

is a four fold integral over the surface densities of the two molecules, the final free energy

contribution contains the seven fold integral which is difficult to evaluate even numerically.

C. Orientational-positional correlations and the origin of ferroelectric ordering.

We have seen in the previous two subsections that various dipole-dipole and charge-charge

interactions between rod-like polar molecules can hardly be responsible for the ferroelectric

ordering in nematic LCs, at least in the framework of simple models. This is partially related

to the fact that dipole-dipole potential vanishes after integration over all intermolecular unit

vectors which means that there is a delicate balance between negative and positive energies

of parallel and antiparallel configurations, respectively. On the other hand, there exists the

nonchiral LC phase where the simple dipole-dipole may indeed drive the transition into the

ferroelectric phase which has been observed experimentally. This is the ferroelectric smectic

A phase exhibited by bent-core molecules with large transverse dipoles [45–47]. In the case

of perfect smectic order the centres of bent-core molecules are located in the smectic planes.

Then it is reasonable to assume in the first approximation that the interaction of molecules

within one smectic layer is significantly stronger than the interaction between different layers.

In this case it is sufficient to average the dipole-dipole interaction over the intermolecular

vector r12 assuming that r12 is parallel to the smectic plane. As a result one obtains the
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following 2D integral:

< Vdd(1, 2) >2D=

∫ ∫
r12>D

1

r312
((d1 · d2)− 3(d1 · u12)(d2 · u12)) r12dr12du12, (29)

where u12 is the 2D unit intermolecular vector which is also parallel to the smectic plane.

It is interesting to note that, in contrast to the 3D case, the integral (29) is not ill defined.

Indeed, the integral does not vanish after the integration over the 2D unit vector u12 and

it does not diverge when r12 → ∞. As a result the integral (29) can easily be evaluated

analytically:

< Vdd(1, 2) >2D= −1

2
D−1(d1 · d2). (30)

One can readily see from Eq.(30) that in the 2D case the averaged dipole-dipole interaction

potential is negative and is increasing proportionally to the square of the dipole moment.

Thus for sufficiently large dipoles the negative contribution of the dipole-dipole interaction

to the free energy, which promotes the ferroelectric ordering, can overcome the positive

contribution from the orientational entropy which promotes the disordered phase. A detailed

molecular-statistical theory based on these ideas together with phase diagrams is presented

in [48].

Simple estimates presented above cannot be directly applied to nematic LCs because

they do not possess any translational order. However, similar results can also be obtained

by taking into account orientational-translational intermolecular correlations. The existence

of such correlations indicates that different relative orientations of the two molecules have

different probability and hence the averaging of the dipole-dipole potential appears to be

more complicated. From this point of view the strong smectic order corresponds to very

strong positional correlations when the two adjacent molecules are located either in the

same smectic layer or in adjacent layers, while all intermediate configurations have very

low probability. In order to take these correlations into account one has to go beyond the

mean-field approximation. The corresponding correlation statistical theories of anisotropic

fluids are very complex but at the same time there exists the second order thermodynamic

perturbation theory which enables one to estimate the contribution of a certain part of the

pair interaction potential mediated by pair correlations.

In the second order thermodynamic perturbation theory [43] the free energy of the polar
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nematic can be written in the form:

F = F0+
1

2
ρ2
∫
g2(1, 2)f1((a1·n))f1((a2·n))

1

r312
((d1 · d2)− 3(d1 · u12)(d2 · u12)) d

3r12da1da2,

(31)

where F0 is the ground state free energy which does not depend on the dipole-dipole inter-

action. Here g2(1, 2) = g2(a1, r12, a2) is the pair correlation function in the nonpolar phase

which depends on the relative orientation of the molecules 1 and 2. The correlation function

can generally be expanded in the so-called spherical invariants:

g2(a1, r12, a2) =
∑
l,λ,L

JlλL(r12)T
lλL(a1,u12, a2), (32)

where the invariants T lλL(a1,u12, a2) contain the unit vector a1 to the power l, the vector

a2 to the power L and the unit vector u12 to the power λ.

Taking into account only few first order terms which depend only on two unit vectors,

the pair correlation function can be approximated in the following elementary way:

g2(a1, r12, a2) ≈ g20(r12) +G(r12)
(
(a1 · u12)

2 + (a2 · u12)
2
)

+N(r12)(a1 · a2)
2 + ..., (33)

where the coefficients g20(r12), G(r12) and N(r12) rapidly decay with the increasing r12 as

the correlations are short-range.

Substituting Eq.(33) into Eq.(31) one obtains the following contribution to the free energy

in the case of perfect orientational order:

∆F = −8π

15
P 2

∫
G(r12)

1

r12
dr12, (34)

where P = ρd is the polarization. One notes that the integral
∫
G(r12)

1
r12
dr12 is finite due

to the rapid decrease of the function G(r12).

The free energy contribution Eq.(34) obviously promotes the ferroelectric ordering but

this conclusion crucially depends on the sign of the function G(r12) which must be positive.

It should be noted also that elementary calculations presented in this subsection are based

on the interaction between total effective molecular dipoles, i.e the particular structure of the

polar molecules does not seem to be important here. However, the last conclusion is incorrect

because in this model the ferroelectric ordering is impossible without strong intermolecular

correlations of the particular type. Such correlations are expected to be strongly effected by

location and orientation of permanent dipoles within the molecular structure or, equivalently,

by the charge distribution at the molecular surface.
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Indeed, let us consider the second term G(r12) ((a1 · u12)
2 + (a2 · u12)

2) in the expansion

of the correlation function. If the function G(r12) is positive the maximum of the correlation

function corresponds to u12 ‖ a i.e. it promotes the slide of a molecule with respect to the

neighboring one. It is interesting to note that in the Madhusudana model [41] the minimum

energy configuration of the two neighboring molecules is the one where a molecule is shifted

with respect to the second one.

In conclusion we would like to emphasise that a consistent molecular-statistical theory

of ferroelectric nematics, which takes into account intermolecular correlations, should also

include a calculation of the correlation function itself. This kind of theory is not available

at present and the corresponding formalism is in progress.

IV. ELECTROSTATICS OF THE FERROELECTRIC NEMATIC PHASE.

A. Two conjugated thermodynamic potentials.

Electrostatic properties of dielectric materials are conventionally described using the two

thermodynamic potentials which depend on the macroscopic electric field in the medium E

or on the electric induction vector D, respectively. In the case of ferroelectric materials one

also employs the so called conditional thermodynamic potentials which also depend on the

polarization P and which are used in the Landau theory of phase transitions. The derivation

and the detailed discussion of these potentials can found, for example, in the seminal book

of Landau and Lifschits ”Electrodynamics of continuum media [44].

In the general case it is possible to introduce the thermodynamic potential F (T,E) which

determines the dielectric properties of the material at fixed electric field E, and the potential

G(T,D) which is defined at fixed D. The electric field at fixed D is determined by the partial

derivative of the potential G(T,D):

E = 4π
∂G(T,D)

∂D
|T , (35)

while the induction D at fixed E is determined as the derivative of F (T,E):

D = −4π
∂F (T,E)

∂E
|T . (36)

These potentials are often called conjugated as they are related by the Legendre transfor-

20

On the origin of the ferroelectric ordering in nematic liquid crystals and the electrostatic properties of ferroelectric nematic materials



mation, i.e.

F (T,E) = G(T,D)− 1

4π
E ·D. (37)

Recall a similar relationship between the Gibbs potential Φ(T, V ) which depends on the

system volume V and the Helmholz potential H(T, P ) which depend on pressure P :

Φ(T, V ) = H(T, P )− PV, (38)

where P and V are also conjugated thermodynamic variables.

In the description of the ferroelectric phase it is convenient to introduce the so called

conditional thermodynamic potentials G̃(T,P,E) and F̃ (T,P,D) [44] which also depend

on the macroscopic polarization P. Here the polarization is determined by minimization of

these potential with respect to P at fixed E or D, respectively:

∂F (T,P,E)

∂P T,E
= 0, (39)

or
∂G(T,P,D)

∂P T,D
= 0, (40)

where we have dropped the tilde over the conventional thermodynamic potentials for sim-

plicity.

Integrating the equation

4π
∂F (T,P,E)

∂E T
= −D = −E− 4πP, (41)

over E at fixed polarization P one obtains the following expression for the potential

F (T,P,E):

F (T,P,E) = F0(P, T )− (P · E)− E2

8π
, (42)

where the potential F0(P, T ) depends only on polarization P. Here we ignore the dependence

of the potential on density and other thermodynamic variables which are not relevant for

this simple consideration.

According to the well known Landau theory the potential F0(P, T ) can be expanded in

powers of polarization P if P is relatively small:

F0(P, T ) =
1

2
α (T − Tc)P 2 +

1

4
bP 4 + ..., (43)

where Tc is the temperature of the second order transition into the ferroelectric phase.
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The potential F (P,E, T ) is defined at fixed macroscopic electric field E. Experimentally

it is possible to control the voltage V applied to the flat nematic LC cell and hence only

the average electric field E0 = V/l where l is the cell thickness. Thus simple expressions

presented in this section are formally valid only in the case of the homogeneous electric field

and polarization. The thermodynamic potentials for inhomogeneous ferroelectric nematics

are more complex and are briefly discussed below.

In the case of fixed electric field minimization of the potential F (P,E, T ) together with

Eq.(42) with respect to P yields the following well known expression for the polarization:

α (T − Tc)P + bP 3 = E. (44)

Differentiating both sides of Eq.(44) with respect to E one obtains(
α (T − Tc) + 3bP 2

) dP
dE

= 1. (45)

Hence the expression for the polarizability χ = dP/dE|E=0 of the ferroelectric material is

obtained from Eq.(45):

χ =
dP

dE
=

1

α (T − Tc) + 3bP 2
. (46)

In the paraelectric phase P = 0 and hence the polarizability obeys the Curie-Weiss law:

χp =
1

α (T − Tc)
. (47)

In contrast, in the ferroelectric phase it follows from Eq.(44) at E = 0 that bP 2 =

−α (T − Tc). Substituting this into Eq.(46) one obtains:

χf =
1

2α (Tc − T )
. (48)

Thus the dielectric susceptibility of the ferroelectric phase is two times smaller than that of

the paraelectric phase which is also a well known result [44].

Substituting Eqs.(43) into Eq.(37) one obtains also the expression for the second potential

G(T,P,D):

G(T,P,D) = F0(P, T ) +
1

8π
(D − 4πP )2

=
1

2
α (T − Tc)P 2 +

1

4
bP 4 + 2πP 2 − (D ·P) +

1

8π
D2. (49)

One notes that the potential G(T,P,D) contains the term 2πP 2 which does not enter the

expression for F (T,P,E). This term is often called ”self energy” and is related to the
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electrostatic energy of the sample. This term is quadratic in polarization P and hence

it shifts the transition temperature into the ferroelectric phase which is now expressed as

T ′c = Tc − 4π/α.

B. Coupling between the polarization and the nematic order parameter.

The standard description presented in the previous subsection is oversimplified as it

does not take into account the role of the nematic order parameter. In the ferroelectric

nematic phase the thermodynamic potentials F and G depend also on the nematic tensor

order parameter Qij = S(ninj − (1/3)δij) which is again determined by minimization of the

corresponding potential. The lowest order coupling term between the polarization and the

nematic tensor has the form −(1/2)BPiQijPj. Neglecting the higher order coupling terms,

the potential F is approximately expressed as:

F (T,P,E) =
1

2
α (T − Tc)P 2 − 1

2
BPiQijPj +

1

4
bP 4 − (P · E)− E2

8π
, (50)

Assuming that the spontaneous polarization P0 at zero electric field is parallel to the director

n (i.e. B > 0)one obtains by minimization of the potential (50):

P0 =
α

b

(
Tc,‖ − T

)1/2
, (51)

where Tc,‖ = Tc + 2SB/3α. Thus the nematic LC undergoes the transition into the ferro-

electric nematic phase at T = Tc,‖.

In the case of nonzero electric field the total polarization can be expressed as a sum of

two contributions, P = P‖ + P⊥, where P‖ is parallel to the director n while P⊥ is normal

to the director. Minimization of the potential (50) yields the two independent equations for

P‖ and P⊥ in the paraelectric nematic phase:

α (T − Tc)P‖ −
2

3
BSP‖ = E‖,

α (T − Tc)P⊥ +
1

3
BSP⊥ = E⊥. (52)

Thus the longitudinal and the transverse dielectric polarizability of the paraelectric nematic

phase are given by the following expressions:

χ‖ =
1

α
(
T − Tc,‖

) , (53)
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and

χ⊥ =
1

α (T − Tc,⊥)
, (54)

where Tc,⊥ = Tc − SB/3α.

It should be noted that only the polarizabiity χ‖ diverges at the second order transition

temperature Tc,‖ into the ferroelectric phase while transverse polarizability χ⊥ remains finite.

C. Different thermodynamic potentials for different boundary conditions and ex-

perimental consequences

As discussed above, there exist two conjugated thermodynamic potentials for ferroelectric

nematics which depend either on the macroscopic electric field E or on the electric induction

D. Thus the equilibrium state of the ferroelectric nematic corresponds to the minimum of

one of these potentials. The correct potential, which should be used in every particular case,

is determined by the boundary conditions.

Let us consider for simplicity the flat nematic LC cell with conducting electrodes on the

two parallel surfaces. It is well known that the electric field in the LC medium can be

controlled experimentally by applying the voltage V . Assuming that the electric field and

the polarization are homogeneous one concludes that the macroscopic electric field E = V/l,

where l is the cell thickness, and E is parallel to the z axis which is normal to the cell surface.

In this case one has to use the potential F (T,P,E) which depends on the electric field and

which is given by Eq.(50). Minimization of this potential yields the following equation for

the equilibrium polarization:

α (T − Tc)P−
1

3
BS (2P(P · n)) + bP 2P = E. (55)

One notes that in the absence of the electric field the minimum of the potential corresponds

toP ‖ n if B > 0 while in the case of nonzero field the total polarization deviates slightly

from n.

The important particular case here corresponds to the LC cell with short circuited elec-

trodes. In this case the applied voltage V = 0 and hence the average electric field in the

LC medium vanishes. Then the spontaneous polarization is determined by Eq.(51) and it is

parallel to the director n.
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Now let us consider the nematic LC cell with disconnected electrodes. In such a system

the electric field cannot be controlled experimentally while the electric induction D can

be specified by fixing the density σ of the external charges at the electrodes because the

normal component Dz = 4πσ. One notes that only the component Dz can be controlled

experimentally in such a cell. Thus the properties of such a system should be described

by minimization of the potential G(T,P, Dz) which is defined as a function of Dz. The

most important particular case of a system with disconnected electrodes is the so called free

sample without any external charges. In this case the normal component of D vanishes, i.e.

Dz = Pz + E = 0 and therefore the electric field in the nematic medium E = −Pz. This

means that in the nematic materials with high spontaneous polarization the macroscopic

electric field in the free cell with disconnected electrodes is also very large. As a result the

electrostatic energy density in the system is also very large and this state is globally unstable.

It is well known that in solid ferroelectrics the positive electrostatic energy is reduced by

splitting into domains. However, in ferroelectric nematics the situation is more complicated

because sharp domain boundaries in a fluid are also unstable. Instead it is more likely that

the ferroelectric nematic cell with disconnected electrodes will exhibit some kind of a striped

structure with inhomogeneous director distribution.

The free energy density G(T,P, Dz) for the homogeneous flat ferroelectric nematic cell

is generally given by the expression G(T,P, Dz) = F (T,P, Ez) + EzDz/4π where we have

taken into account that the electric field in such a cell is always parallel to the z-axis which

is normal to the surfaces. Here F (T,P, Ez) is given by Eq.(50) with E = Ez and hence:

G(T,P, Dz) =
1

2
α (T − Tc)P 2 − 1

2
BPiQijPj +

1

4
bP 4 − PzEz −

E2
z

8π
+ EzDz/4π

=
1

2
α (T − Tc)P 2 − 1

2
BPiQijPj +

1

4
bP 4 + 2πP 2

z − PzDz +
1

8π
D2
z . (56)

It should be noted that here the ”self energy” 2πP 2
z depends only on the z component of

the polarization which contributes to the z component of D.

It is reasonable to assume that in ferroelectric nematics with large spontaneous polariza-

tion the magnitude of the polarization is approximately constant while the orientation of

the polarization in the fluid may easily change, at least in the bulk. In the free cell without

external charges at the electrodes, which correspond to Dz = 0, the positive ”self-energy”

term is minimized when Pz = 0 i.e. the polarization is parallel to the surface of the cell.

However, one should also take into account that the spontaneous polarization is strongly
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coupled with the director because it is defined as the average of the transverse molecular

dipole. Thus in a cell with strong homeotropic anchoring there is a balance between the

electrostatic self energy and the anchoring energy of the director at the surface. As a result

the polarization may tilt with respect to the surface normal. In the case of infinitely strong

anchoring the polarization remains normal to the surface at the surface but may tilt in the

bulk creating an inhomogeneous polarization profile.

The general results presented in this subsection may have significant experimental con-

sequences. In particular, it should be taken into consideration that both the magnitude

and the orientation of the polarization may be different in ferroelectric nematic cells with

applied voltage or with disconnected electrodes, respectively, because the equilibrium state

of the system in these two cases correspond to the minimum of two different thermodynamic

potentials. For example, if the ferroelectric nematic cell is prepared with disconnected elec-

trodes and then the voltage if applied, the orientation of the polarization or the polarization

profile may change even when the applied voltage is small. The thing is that in the free

cell wit disconnected electrodes the macroscopic electric field in the nematic medium is very

large if the spontaneous polarization is large. As discussed above, in this case the electric

field Ez = −4πPz, i.e. it is of the same order as the spontaneous polarization. In contrast,

in the case of small applied voltage the average macroscopic electric field in the ferroelec-

tric nematic is also small, i.e. E = V/l. Thus applying the voltage (or simply connecting

the electrodes which corresponds to zero applied voltage)results in a dramatic reduction of

the electric filed in the nematic medium which may effect the ferroelectric properties. In a

similar way, disconnecting the electrodes after electro-optical measurements under applied

voltage will result in the strong increase of the electric filed which may change the sponta-

neous polarization and thus effect the results, obtained using other experimental techniques

(for example, the optical measurements) which do not require any applied voltage. Also,

if the electrodes are disconnected too fast, some nonzero charge density may be left at the

electrodes, and this will result in nonzero Dz which is coupled with polarization according

to Eq.(56) and which may also effect the ferroelectric properties.
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D. Inhomogeneous polarization and the inhomogeneous electric field

So far we have considered the idealised ferroelectric nematic cell with homogeneous po-

larization and homogeneous macroscopic electric field.However, it is very much possible that

in real ferroelectric nematics the spontaneous polarization follows some spacial pattern (like

in the splay nematic phase) or, at least, there exist a boundary region where the orientation

or the magnitude of the polarization changes from the boundary to the bulk value. It follows

from the general principles of thermodynamics that in such inhomogeneous systems the equi-

librium polarization profile should also correspond to a minimum of some thermodynamic

potential. At the same time the derivation of such a potential is not straightforward. Indeed,

on the first sight it may be possible to introduce the conditional potentials F (T,P,E) and

G(T,P,D) where all fields P,E,D are inhomogeneous, and to use expressions for the po-

tentials obtained in the previous subsections. It should be emphasised, however, that both

the derivation and even the very definition of these potentials are inconsistent because the

inhomogeneous polarization P(r) and the inhomogeneous electric field E(r) in the medium

are not independent.

Indeed, let again consider the homogeneous (in x, y directions) nematic Lc cell where

F (T,P and E) may only depend on z. It follows then from the equation divD = 0 in the bulk

that the component Dz = const across the cell. At the same time Dz = 4πPz(z) + E(z) =

const. Integrating this equation over z from 0 to l one also obtains:

Eav + 4πPav = 4πPz(z) + E(z) = const, (57)

where Pav = (1/l)
∫ l
0
Pz(z)dz and Eav = (1/l)

∫ l
0
E(z)dz are the average polarization and the

average electric field , respectively.

Now the polarization and the electric field can be expressed as a sum of the homogeneous

and inhomogeneous parts, i.e. E(z) = Eav + δE(z) and Pz(z) = Pav + δPz(z). Substituting

these expressions into Eq.(57) one obtains that δE(z) = −4πδPz(z) which means that the

inhomogeneous part of the polarization is linearly related to the inhomogeneous part of the

macroscopic electric field. Thus it is impossible to minimise the thermodynamic potential

with respect to the inhomogeneous polarization keeping the inhomogeneous electric field

fixed because fixing the inhomogeneous part of the electric field means that the corresponding

part of the spontaneous polarization is also fixed. In a similar way it is also impossible to

integrate over E(z) at fixed P (z) which is required in Eq.(41). Thus one concludes that
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the potential F can only depend on the average macroscopic electric field Eav which is

independent from the polarization Pz(z) .Differentiating the potential F (T,Eav, Pz(z) with

respect to to Eav one obtains:

∂F

∂Eav
= −Dz = −Eav − 4πPz,av. (58)

Now Eq.(58) can be integrated over Eav at fixed full polarization P yielding the following

expression

F (T,Eav, Pz(z)) = F0(T,P)− EavPz,av −
1

2
E2
av. (59)

Here the potential F0(T,P) depends on the inhomogeneous polarization and hence one

should include the gradient term into the expansion Eq.(56):

F0(T,P) =
1

2
α (T − Tc)P 2 − 1

2
BPiQijPj +

1

4
bP 4 + κ(∇P)2 + ..., (60)

where (∇P)2 = ∇iPj∇iPj.

V. CONCLUSIONS

In this review we have considered the possible molecular origin of the ferroelectric order-

ing in strongly polar nematic LCs taking into consideration various polar interactions and

orientational-translational correlations. We have seen that electrostatic interaction between

permanent longitudinal molecular dipoles can hardly be responsible for ferroelectric ordering

regardless the value of the dipole or its location within the molecular volume, at least in the

mean-field approximation. In addition, the contribution of the dipole-dipole interaction to

the total free energy of the ferroelectric nematic depends on the sample shape and boundary

conditions. This is related to the long-range character of the dipole-dipole interaction.

Another class of models is based on electrostatic interaction between molecular charge

densities. Such models, in principle, can better reflect the actual polar molecular struc-

ture although simple models can hardly be successful as well. For example, the simplest

possible interaction between the pairs of opposite charges located at the two ends of the

molecule also cannot be responsible for the ferroelectric ordering. This interaction promotes

ferroelectricity in the mean-field approximation but at least at low densities the free energy

is more effectively reduced by formation of polar chains similar to the system of strongly

dipolar spheres. At liquid densities typical for nematic LCs individual chains can no longer
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be stable but there should be strong head to tail parallel correlations counterbalanced by

equally strong antiparallel side by side correlations which are expected to supress the long

range dipolar order.

A more sophisticated model of Madhusudana [41] , based on electrostatic interaction

between surface charge densities is more promising. In this model the molecular surface is

characterised by charge density of alternating sign, and for some values of the parameters the

minimum of the interaction energy between parallel adjacent molecules is achieved when one

molecule is shifted with respect to another in such a way that the negatively charged parts

of the molecular surface are in contact with the positively charged ones. The interaction

energy in this configuration is lower then that of the antiparallel configuration which is

an indication that such interaction may promote the ferroelectric ordering. At the same

time these results are incomplete because it is important to show that the corresponding

intermolecular interaction makes a contribution to the free energy density of the proper sign.

This contribution contains the integral of the potential over the intermolecular vector r12

which is an average over all configurations of the two molecules beyond the two ones which

correspond to the minimum energy. Numerical evaluation of this integral is a challenging

task and has not been undertaken so far.

The third model combines the effect of the dipole-dipole interaction with that of the

short-range orientational-transitional pair correlations. These correlations give additional

statistical weight to some relative configurations of the two adjacent molecules and as a

result even the interaction between permanent molecular dipoles results in the contribution

to the free energy which promotes ferroelectricity. It should be noted that this model is also

incomplete because in principle the corresponding relevant terms in the expansion of the

correlation function should be calculated in the framework of the same molecular-statistical

theory which has not been achieved so far.

The consideration of different molecular models for ferroelectric nematics has been sup-

plemented by the discussion of the general theory of dielectric properties of ferroelectric

nematic LCs based on the two conjugated thermodynamic potentials. The first potential

F (T,P,E) depends on the macroscopic electric field E in the nematic medium and on the

polarization P which is determined by the minimization of this potential. The second po-

tential G(T,P,D) depends on the electric displacement D and the polarization P which

is also determined by minimization. The potential F defines the equilibrium state of the
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system at fixed macroscopic electric field while the potential G specifies the equilibrium

state at fixed D which is related to the density of external charges at the sample surface.

From the experimental point of view the potential F describes the properties of the nematic

LC cell with applied voltage while the potential G corresponds to the same LC cell with

disconnected electrodes. In the latter case the normal component of D is proportional to

the remaining density of external charges at the electrodes (which is equal to zero in the

simplest case of free sample). The most important conclusion here is that the absolute value

and the orientation of the spontaneous polarization corresponds to the minimum of one of

these potentials depending on boundary conditions, i.e they may be different in the same

cell with fixed applied voltage or the density of external charges at the electrodes.

In addition to the general theoretical significance this results in a number of experimental

consequences. For example, if the voltage is applied to the ferroelectic nematic cell which

has been originally prepared with disconnected electrodes,the magnitude and the orientation

of the polarization may change even when the applied voltage is small. This is determined

by the fact that application of a small voltage results in a dramatic reduction of the electric

filed in the nematic medium which may effect the ferroelectric properties. In a similar way,

disconnecting the electrodes after some measurements under applied voltage will result in

the strong increase of the electric field which may change the spontaneous polarization and

thus effect the results obtained applying other experimental techniques to the free cell.

Finally one notes that the properties of ferroelectric nematic liquid crystals are rather

different from the properties of solid ferroelectrics mainly because the spontaneous polariza-

tion may easily rotate in the fluid medium. As a result there are many interesting particular

cases which have not been studied theoretically so far and thus both the molecular and the

continuum theory of ferroelectric nematics is still in progress.
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