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ABSTRACT
It has been shown that digitally manipulated face images can pose
a security threat to automated authentication systems (e.g., when
such systems are used for border control). In such scenarios, a mali-
cious actor can, in many countries, apply for an identity document
using a manipulated face image, which can then be used to gain
fraudulent access to a system. Research has shown that humans
and algorithms struggle to detect digitally manipulated face images,
especially when the type of manipulation is unknown or when
evaluated across multiple types of manipulations. In this work, we
consider the detection performance of algorithms and humans on
datasets consisting of retouched, face swapped andmorphed images.
Specifically, we investigate the joint performance of algorithms and
humans in a differential detection scenario where both a trusted
and suspected image are presented simultaneously. To this end, we
propose a conditional face image manipulation detection approach
where the human decision is only considered when the algorithm
is unsure about the decision outcome. The results show that the
automated algorithm performs better than the human detectors and
that combining the decisions of algorithms and humans, in general,
leads to an increased detection performance. To our knowledge,
this is the first study to explore the joint detection performance of
algorithms and humans in a differential face manipulation detection
scenario and when using a variety of face image manipulations.
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1 INTRODUCTION
Due to recent breakthroughs in artificial intelligence, and the acces-
sibility to advanced image alteration software, the proliferation of
digitally manipulated content has become a serious societal prob-
lem, with significant implications in identity and security related
contexts [10, 22]. It is becoming progressively more challenging
to know when digital content is authentic or fake (i.e., bona fide
or manipulated) [13, 21]. For example, research has demonstrated
that digitally manipulated facial images can present a security risk
in authentication systems using automated face recognition, such
as those used in border control systems [10]. Common digital ma-
nipulations include retouching [16], face morphing [5] and face
swapping [22] (also called deepfakes). To address these issues, algo-
rithms have been developed for detecting different types of digitally
manipulated face images. Most approaches, consider only a single
or a few related digital manipulations although some works have
proposed algorithms for detecting different types of digital manipu-
lations (e.g., using multi-task learning [4] or anomaly detection [9]).
In numerous relevant application scenarios (e.g., when applying for
a travel document in many countries), human examiners manually
have to verify the authenticity of face images which have been sub-
mitted. Therefore, it is also important to explore how well humans
perform at this task. Someworks have investigated the performance
of humans for detecting different types of digitally manipulated
face images but only a few works (e.g., [2, 6]) have explored the per-
formance in a differential detection scenario where both a trusted
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and suspected image are available during detection. This scenario is
relevant in the real world (e.g., when used in a biometric system), as
both suspected (reference) and trusted (probe) images are available
during authentication [10]. To our knowledge, none of the existing
studies consider the joint performance of humans and algorithms
in a differential detection scenario.

In this work, we consider the data acquired in the Darmstadt
Face Manipulation Detection (DFMD) test [2] and compare the
performance of a differential anomaly detection approach with the
performance of humans across different experiments. Furthermore,
we investigate and propose a framework for conditionally combin-
ing the decisions of humans and algorithms to obtain improved
detection performance (see Figure 1). An application-oriented ap-
proach is taken in this work, where the effect and degree of human
involvement in decision-making is considered and explored across
different scenarios. In summary, this work makes the following
contributions:

• A comprehensive analysis of the capabilities of algorithms
and humans in detecting digitally manipulated face images
given a differential detection scenario.

• A framework for combining the decisions of algorithms and
humans for detecting manipulated face images.

• A detailed evaluation of the joint detection performance of
algorithms and humans across multiple test conditions and
multiple types of face manipulations.

2 RELATEDWORK
Some existing works have investigated the detection performance
of humans on different types of manipulated face images. In [13],
the authors showed that face images which have been entirely
synthetically generated using deep learning-based methods are
indistinguishable from pristine images to humans. Some works
(e.g., [8, 11]) have investigated the performance of humans and
algorithms at detecting so-called deepfake videos. In [11], using a
relatively small number of subjects per deepfake video, the authors
found that deepfake videos can fool both humans and algorithms.
In [8], the authors perform a more extensive study with more than
15,000 participants and show that human observers and state-of-
the-art deepfake detection algorithms achieve similar performance,
although making different mistakes. Furthermore, they show that
participants who know the prediction of an algorithm are more
accurate than either humans or algorithms alone but also that these
participants seem to be more biased towards responding the same
as the algorithm. In [12], the authors performed a psychophysical
study of human performance in detecting three kinds of digital
manipulations (i.e., retouched, morphed and face swapped images)
using two test procedures: two-alternative forced-choice (2AFC)
and ABX paradigms. The authors obtained an average accuracy
of 75.43% for the 2AFC trials and 62.92% in the ABX trials when
evaluated on 227 participants. In [17], the authors extended these
experiments and found that combining multiple human examiner
decisions can lead to an increased overall detection accuracy espe-
cially when factoring in the confidence of the examiners’ decisions.
In [7], the authors investigate the ability of humans for no-reference
and differential face morphing attack detection considering both
governmental employees with relevant professional expertise (e.g.,

Figure 1: Overview of the proposed framework for combining
human and algorithm decisions.

border guards and document examiners) and a control group. The
authors find that morphed face images cannot always be reliably
detected by humans but that some experts (e.g., face comparison
experts), in general, perform better for face morphing attack de-
tection on the used tests. Furthermore, the results show that the
best automated algorithms in general outperform the human ob-
servers for both no-reference and differential face morphing attack
detection.

In [6], the authors investigated the capabilities of human examin-
ers in a differential detection scenario considering three manipula-
tion types (i.e., beautification, geometric distortion and morphing).
The experiments involved 235 participants and consisted of 30 im-
age pairs where approximately 33.33% of the suspected images was
bona fide, 20% was beautification, 26.67% was geometric distortion
and the remaining 20% was morphing. The authors found that some
manipulations, especially morphing, can be difficult for humans
to detect. In contrast to [6], this study considers the DFMD 1 and
DFMD 2 tests which involve more participants (787) and image
pairs (120) and the work focuses on the fusion of humans and al-
gorithm decisions. A more detailed overview on relevant studies
that consider human performance in detecting manipulated face
images can be found in [12].

3 EXPERIMENTAL SETUP
The experiments are based on the DFMD 1 and DFMD 2 tests [2],
which consist of data from 787 participants. Information about the
participants is given in Table 1, which shows the gender and age
distributions of the participants, whether a participant was using
face analysis capabilities in a professional setting, and the order in
which they took DFMD 1 and DFMD 2. As further described in [2],
the experiments involve participants who have shown various face
processing skills, including individuals with proven exceptional
face processing skills, also called super-recognisers [1, 3, 18, 19].
The research presented in [2] finds a strong correlation between
the ability to recognize faces exceptionally well and the proficiency
in detecting manipulated face images.

3.1 Procedures
The procedures employed in this paper extend the experimental pro-
cedures of [12] to a differential detection scenario [2]. Specifically,
the FRGCv2 [14] database and the same manipulation techniques
are used. The experimental procedures are adjusted to consist of a
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Table 1: Distribution of DFMD participant information based
on self-reported data and the order of procedures.

Category Subcategory Distribution

Gender

Female 67.85%
Male 31.26%
Non-Binary 0.38%
N/A 0.51%

Age

18-30 10.42%
31-40 28.46%
41-50 28.59%
51-60 24.40%
61+ 8.13%

Professional Expertise No 95.68%
Yes 4.32%

Procedure Order

1 16.65%
1,2 35.32%
2 18.04%
2,1 29.99%
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Figure 2: Examples of manipulated images generated from
FRGC. (a) face swap, (b) morphing, and (c) retouching.

set of trials where both a trusted (bona fide) and suspected image
are presented in each trial. The participant’s task is then to deter-
mine if the suspected image is manipulated by comparing the image
to the trusted image of the considered subject. The manipulated
images consist of retouched [16], swapped [10] and morphed [20]
images and have been selected to ensure that no apparent artefacts
are present in the images. Examples of the different manipulation
types are given in Figure 2.

The experiment consists of two procedures, referred to as DFMD
1 and DFMD 2, employing different types of stimuli where DFMD 1
has a high prevalence of cases where the suspected image is manipu-
lated (50%) and DFMD 2 has a lower prevalence (25%). An overview
of the two procedures is given in Table 2. For each trial, the partici-
pants are asked to (1) select whether the suspected image is bona

Table 2: Number of times the suspected image is bona fide or
manipulated per procedure. Each procedure has 60 trials.

Procedure Bona fide Morphing Retouching Face swap

DFMD 1 30 15 10 5
DFMD 2 45 7 6 2

(a) Trial stimulus

(b) Trial voting phase

Figure 3: Examples from the online test. (a) Trial stimulus
containing a suspected and trusted image and (b) the trial
voting procedure.

fide or manipulated and (2) provide a confidence value reflecting
how sure they are in their decision ranging from 1 (unsure) to 5
(very sure). Each stimulus is displayed for 15 seconds, after which
the participants have, at most, 90 seconds to make a decision. An
example of a trial stimulus is shown in Figure 3a whereas Figure 3b
shows the voting procedure. Two participants were removed during
the evaluation as they did not provide a confidence value within
the allocated time for, at least, one trial.

3.2 Automated Detection
We utilize the differential anomaly detection method proposed
in [9] for the automated detection procedure. During evaluation, the
model produces an anomaly detection score. In [9], the best model
obtained an average detection equal error rate (D-EER) of 4.23%
when evaluated across multiple types of digital face manipulations
and physical face impersonation attacks. The algorithm has been
trained on only bona fide data by considering the natural changes
between two bona fide images of the same subject. This approach is
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used in this work because it has been trained on only bona fide data,
and as such, like the human participants, it has received no prior
training on the specific manipulations used for the experiments.
Additionally, to our knowledge, it is the only algorithm proposed
for detecting multiple types of digital manipulations in a differential
detection scenario. The model used in this study corresponds to the
best model proposed in [9] using a Variational Autoencoder model.

3.3 Score Normalization
To best compare and combine the decisions of humans and algo-
rithms one must obtain a score range indicating how confident
participants and the algorithm are when making a decision:

Algorithm We normalize the algorithmic scores to a range of
[0,1], where a score close to 1 suggests a high likelihood of the
suspected image being bona fide, while a score approaching
0 indicates a higher probability of image manipulation. This
is achieved using min-max normalization, where the min and
max scores are found by running the algorithm over bona
fide and manipulated images from the FERET dataset [15].
As this dataset differs from the one used for the experiments,
it ensures that the normalization is not unrealistic, analogous
to a real-world scenario where an algorithm’s true min and
max values might not be known. The normalized algorithm
scores are used during the experiments. Furthermore, when
employed as an independent system, a threshold of 0.5 is
used.

Human As described in section 3.1, humans assign a confi-
dence value from 1 to 5 to each decision. Consider a specific
stimulus 𝑠 , a participant 𝑝 with choice class 𝑐 (i.e., bona fide
or manipulated) on 𝑠 and let 𝑣 be the confidence value of 𝑝
for 𝑠 . We can then define a range for 𝑝 on 𝑠 as follows:

HS(𝑐, 𝑣) =
{
𝑣+5
10 if 𝑐 = "bona fide"
6−𝑣
10 otherwise

(1)

In this case, a threshold > 0.5 would indicate that a participant
believes that the suspected image of stimulus 𝑠 contains a
bona fide image.

Normalized scores obtained for the bona fide and manipulated
images on DFMD 1 and DFMD 2 are given in Figure 4.

3.4 Fusion strategies
In this work, we combine the decisions of humans and algorithms by
using score fusion. We consider the normalized human confidence
scores and the normalized algorithm score as the basis for the fusion.
The following fusion strategies are explored:

Average In this fusion strategy, we perform a simple average
fusion over the normalized human and algorithm scores,
specifically for each participant on each trial, the normalized
score (see Equation 1) is computed and fused with the algo-
rithm score on the same trial by taking the average score. A
threshold of 0.5 is used during the experiments.

SVM Another way to perform the fusion is to learn how to
combine the confidence scores of humans and algorithms
using machine learning. To accomplish this, a support vector
machine (SVM) approach is explored. The SVM is trained
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Figure 4: Normalized score distributions jointly on DFMD
1 and DFMD 2 for humans (a) and algorithms (b). Human
scores are averaged per trial.

using a leave-one-out protocol where the SVM is always
trained on the algorithm and participants scores of the oppo-
site test. Hence, when used during the DFMD 1 evaluation,
the SVM has been trained on the DFMD 2 data and vice
versa. The SVM utilizes a polynomial kernel with a degree
of 3 and has been trained on all participant and algorithm
scores obtained on either the DFMD 1 or DFMD 2 tests.

Conditional When automatic detection is used in collabora-
tion with human examiners for detecting manipulated face
images, it can make sense to consider human involvement
only in cases where the algorithm is unsure about its de-
cision, as this can reduce the load on the available human
resources. To this end, two thresholds, 𝑇1 and 𝑇2, 𝑇1 < 𝑇2,
can be defined, such that score fusion is only applied in case
the algorithm score on a specific trial falls within the range
of 𝑇1 and 𝑇2. Specifically, given the normalised human score
𝑠ℎ , the algorithm score 𝑠𝑎 , and a fusion function 𝑓 (𝑠ℎ, 𝑠𝑎),
the conditional fusion strategy is given in Equation 2 and
illustrated in Figure 1.

CF(𝑠ℎ, 𝑠𝑎) =
{
𝑓 (𝑠ℎ, 𝑠𝑎) if 𝑇1 < 𝑠𝑎 < 𝑇2
𝑠𝑎 otherwise

(2)

The accuracy on DFMD 1 and DFMD 2 for different options
of 𝑇1 and 𝑇2 is illustrated in Figure 5. Note, that to avoid
undefined ranges as 𝑇1 < 𝑇2, the plot only shows the ac-
curacy for the ranges where 𝑇1 ≤ 0.5 and 𝑇2 ≥ 0.5. Using
a step size of 0.05, the accuracy does not increase beyond
what is shown on the plot by changing the range of 𝑇1 or 𝑇2
to include the entire range of values from 0 to 1. Therefore,
as seen, the best performance is obtained when the upper
threshold, 𝑇2 is 0.5 which given a normalized range from
[0,1] would be a natural threshold to use. When choosing
the optimal 𝑇1, it is essential to consider not only its perfor-
mance but also the number of images that human examiners
need to assess. Therefore, during the experiments, we fix
𝑇2 to 0.5 and find 𝑇1 such that only 20% of the images are
considered by the humans when applied on the opposite
test. Hence, the thresholds are found on the opposite test
than what is being evaluated in order to mitigate overfitting
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Figure 5: 3D surface grids visualising the accuracy on DFMD
1 (left) and DFMD 2 (right) when only applying the average
fusion strategy in cases where the algorithm score lies in the
range [𝑇1, 𝑇2].

to the evaluation set. During the experiments, two versions
of conditional fusion are applied to correspond to the cases
where the fusion function in Equation 2 is replaced by the
average and SVM fusion strategies as explained above; we
refer to these as conditional (average) and conditional (SVM),
respectively, during the experiments.

4 EVALUATION
Table 3 shows different relevant performance measures achieved
for the humans, algorithms and the different fusion strategies. Evi-
dently, fusing the human performance with algorithm performance,
under our test conditions, leads to improved detection performance.
Specifically, on DFMD 1 an improvement in accuracy of more than
13.5 percent points can be observed using the conditional average
fusion scheme and more than 19 percent points on DFMD 2 using
a SVM fusion scheme. For both tests, it can be observed that the F1
score of both the human examiners and algorithm can be improved
by fusing the scores.

Another aspect to be explored is if selecting only a subset of
participants based on their self-reported perceptual face process-
ing skills or detection performance on another test procedure, can
further enhance the overall detection accuracy. To this end, par-
ticipants were asked to indicate their face processing skill on a
level from 0 to 100 and ranked according to their self-reported
face processing skill. Additionally, by calculating the Pearson cor-
relation coefficient (PCC) it was found that there was a moderate
linear relationship (PCC≈0.33) between the accuracy of a partic-
ipant across DFMD 1 and DFMD 2. Therefore, when evaluating
DFMD 1, the participants can be ranked based on their performance
on DFMD 2 and vice versa. The human accuracy results for the
top 5% participants according to the different ranking criteria are
given in Table 4. As seen, ranking the individuals based on their
performance on a related test yields the best improvements where
the top 5% best ranked participants always achieve better perfor-
mance than when considering all the participants. For DFMD 2,
an improvement in accuracy of more than 8.5 percent points can
be observed. Figure 6 visualizes the accuracy in more detail when
using DFMD 1 and DFMD 2 as the ranking criteria for selecting the
best participants. Furthermore, the Figure shows the influence of
combining only the selected participants with the algorithm scores

Table 3: Performance measures obtained on DFMD 1 and
DFMD 2. Positive class is bona fide.

(a) DFMD 1

Scenario Accuracy Precision Recall F1 Score

Human 0.6550 0.6854 0.5729 0.6241

Algorithm 0.7500 0.8571 0.6000 0.7059

Average fusion 0.6807 0.7155 0.5998 0.6526

SVM fusion 0.7899 0.7208 0.9465 0.8184

Conditional (average) 0.7908 0.8137 0.7544 0.7829

Conditional (SVM) 0.7616 0.7310 0.8278 0.7764

(b) DFMD 2

Scenario Accuracy Precision Recall F1 Score

Human 0.6531 0.9233 0.5862 0.7171

Algorithm 0.7500 0.8947 0.7556 0.8193

Average fusion 0.6819 0.9296 0.6230 0.7460

SVM fusion 0.8478 0.8938 0.9045 0.8991

Conditional (average) 0.7977 0.8966 0.8254 0.8595

Conditional (SVM) 0.8087 0.8919 0.8478 0.8692

using the different fusion strategies. As can be observed, then in
general selecting only a subset of best participants can lead to an
improved detection accuracy although for some fusion strategies
this improvement is only minor. Based on the results, and factoring
in how often humans have to be involved in decision-making, the
findings indicate that it is viable to consider a conditional fusion
scheme where human involvement is considered for cases where
the algorithm is ambivalent about its decision. Despite the accuracy
being reduced with the conditional SVM fusion approach compared
to when it is applied without a threshold it arguably represents
an operational improvement in that human involvement is signif-
icantly reduced with only moderate differences in accuracy. This
reduction in accuracy is expected, as the SVM was trained to clas-
sify optimally based on human and algorithm decisions, however
requires input from both on every decision. The results in this study
do not explicitly aim at optimizing the selected thresholds for the
used algorithms and fusion schemes but rather suggest an intuitive
and pragmatic approach. Furthermore, it would be advantageous
to investigate whether automation bias affects the proficiency of
human examiners when employed in conjunction with automated
algorithms in a scenario involving differential face manipulation
detection.

5 CONCLUSION
This work explored the performance of humans and algorithms
for detecting three types of digitally manipulated face images in a
differential detection scenario. Different fusion schemes for com-
bining the algorithm and human examiner decisions were proposed.
To this end, and to minimize the required involvement by human
examiners, we proposed a conditional fusion scheme where hu-
man examiner decisions are only considered in case the algorithm
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Table 4: Human accuracy results when selecting the partic-
ipants based on different ranking criteria. When selecting
participants based on perceptual skills all participants from a
respective test are chosen. When selecting based on a specific
test, only participants who completed both tests are selected.

Ranking criteria Test Acc. top 5% Acc. all

DFMD 2 DFMD 1 0.6960 0.6550

DFMD 1 DFMD 2 0.7427 0.6565

Perceptual skills DFMD 1 0.6781 0.6550

Perceptual skills DFMD 2 0.6948 0.6531
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Figure 6: Performance on DFMD 1 and DFMD 2 when select-
ing a subset of participants according to their performance
on the other test.

lacks confidence about the decision. Lastly, it was explored if se-
lecting only a subset of the participants, ranked based on their
self-perceived face processing skills or performance on a similar
detection test, could lead to further improvements. The results of
this study show that under the given test conditions, combining
the decisions of algorithms and humans yields improved detection
accuracy. Furthermore, only considering the human decisions in
cases where the algorithm is unsure about its decision can further
improve the performance of the baseline systems where only the
human or algorithm decisions are considered. Such a scenario could

potentially minimize the number of images requiring assessment
by a human examiner.
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