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Phonon excitations of Floquet-driven superfluids in a tilted optical lattice
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Tilted lattice potentials with periodic driving play a crucial role in the study of artificial gauge fields and
topological phases with ultracold quantum gases. However, driving-induced heating and the growth of phonon
modes restrict their use for probing interacting many-body states. Here, we experimentally investigate phonon
modes and interaction-driven instabilities of superfluids in the lowest band of a shaken optical lattice. We
identify stable and unstable parameter regions and provide a general resonance condition. In contrast to the
high-frequency approximation of a Floquet description, we use the micromotion of the superfluids to analyze
the growth of phonon modes from slow- to fast-driving frequencies. The model describes phonon excitations in
both resonantly and nonresonantly driven systems, with or without a tilted potential. Our observations enable the
prediction of stable parameter regimes for quantum-simulation experiments aimed at studying driven systems
with strong interactions over extended time scales.
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I. INTRODUCTION

Periodic driving of quantum gases in optical lattices
provides a versatile mechanism to create tailored lattice po-
tentials in quantum simulation experiments [1,2]. Recently,
this technique has enabled the realization of artificial mag-
netic fields [3–5] and topological lattice models [6,7], such
as the Harper-Hofstadter and Haldane models [8–10]. More-
over, periodic driving has been used to study quantum phase
transitions [11,12] and quantum critical points [13], to cre-
ate “fireworks” and patterns in Bose-Einstein condensates
(BECs) [14,15] and to realize a fractional quantum Hall
state [16].

Especially, the combination of periodic driving with a con-
stant force that tilts the lattice potential has been instrumental
for the implementation of artificial gauge fields. The con-
stant force suppresses tunneling between lattice sites, while
other mechanisms, such as laser-assisted tunneling [17,18] or
near-resonant driving [19,20], reintroduce the coupling be-
tween lattice sites with the desired properties. These so-called
Floquet-engineered lattice potentials have been successfully
applied to investigate single-particle effects or weakly in-
teracting quantum gases. Simulating many-body states of
interacting particles, however, remains challenging as inter-
actions create instabilities and heating on short time scales
comparable with the modulation period and quickly de-
stroy the coherence of the system [21,22]. Developing an
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understanding of these instabilities and finding an optimal
window for the driving frequency [23] are crucial to include
interactions in quantum-simulation experiments with periodic
driving.

In this article, we experimentally and theoretically investi-
gate instabilities due to the spontaneous formation of phonon
modes in a tilted lattice potential. We examine the role of
interactions for the time evolution of a BEC of cesium atoms
confined in a one-dimensional (1D) lattice potential that is pe-
riodically shaken and subject to a constant force FB [Fig. 1(a)].
In such a system, phonon modes can grow exponentially in
time and eventually destroy the BEC. To understand the origin
of this phenomenon, often referred to as Floquet heating [23],
we experimentally probe the time evolution of the many-body
ground state of the driven system and measure its stability
with respect to driving strength and frequency. Our findings
are used to develop a model that predicts the stability of the
system based on resonant phonon excitations.

In addition to phonon instabilities, the system exhibits a
multitude of other driving resonances [Fig. 1(b)]. Resonant
excitations to higher lattice bands occur when the driving
frequency matches the energy gap between the bands or frac-
tions thereof [24,25]. In analogy to electrons in solids that
are driven by electric fields, these higher-order excitations
are often referred to as multiphotonlike [26]. Furthermore,
tunneling resonances between neighboring lattice sites occur
when the driving frequency matches the energy shift between
sites. Multiples of this driving frequency couple sites at further
distances, while fractions of it allow for multiphoton-assisted
tunneling [19,20,27]. For tilted potentials, phonon instabilities
coincide with these interband and tunneling resonances and
add another manifold of higher-order driving resonances to
the system. Finding a frequency window free of resonances
is experimentally challenging and requires a detailed under-
standing of the underlying mechanisms [23].
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FIG. 1. Experimental setup and characteristic energies. (a) Sketch of a superfluid with density modulations (blue wave packets) in a tilted
lattice potential (gray line), with tunneling energy J , interaction energy U , lattice spacing dL , constant force FB, and driving force F (t ).
(b) Resonant excitations can occur when the driving energy hνD matches multiples or fractions of the energy of the band gap for lattice depth
V , the tilt of lattice potential FBdL , phonon modes Eq, or trap frequencies h̄ωz. Dark arrows show resonances of the driving frequencies, and
light arrows indicate their fractions for higher-order resonances. (c) Experimental setup with optical lattice, trapping laser beams, magnetic
field coils, and levitating force.

Within the lowest lattice band, periodically driven quan-
tum gases show an exponential growth of phonon modes
due to modulational and parametric instabilities. Parametric
instabilities are caused by oscillating system parameters [28],
while modulational instabilities result from properties of the
medium that exist even without periodic driving, such as at-
tractive interactions or a negative effective mass for certain
momenta of the superfluid in the lattice [29,30]. They also
occur in driven systems when the driving force accelerates the
medium on a micromotion in momentum space. In a previous
study [31], we demonstrated the existence of parametric and
modulational instabilities in driven superfluids independently
and studied their properties. However, in the presence of a
tilted potential, the micromotion of the superfluid always cov-
ers the complete first Brillouin zone, and it is experimentally
challenging to separate both mechanisms. In this article, we
aim to explain the origin of Floquet heating due to resonant
phonon excitations that occur when driving frequencies are
comparable with phonon energies.

Floquet theories provide a very successful approach to
analyze quantum gases in the fast-driving limit when driving
frequencies exceed all other frequencies of the system. In a
high-frequency approximation, the system is well-described
stroboscopically using a time-independent Floquet Hamilto-
nian [2]. Recently, this description was extended to lower
frequencies to analyze parametric resonances [28,32–35]. We
were not able to map our experimental data to those mod-
els. Instead, we took the opposite approach and extended
the description of phonons and modulational instabilities in
nondriven systems to the case of resonant driving frequencies.
Our approach offers an intuitive explanation of our mea-
surement results, and the description remains valid in the
limits of both slow and fast driving. For intermediate driving
frequencies, resonant excitations are caused by the periodic
growth of phonon modes whenever the micromotion passes
through a modulationally unstable region of the Brillouin
zone. Band excitations, which occur for very large driving
frequencies [25], and trap excitations, which require long
observation times [36], have little impact on our results, and
we omit them in our discussion.

We experimentally study phonon modes in three settings:
nondriven with a constant force FB (Sec. III), resonantly
driven with a frequency that matches the energy shift between

adjacent lattice sites hνD = FBdL, at distance dL (Sec. IV),
and off-resonantly driven with detuning h�ν = FBdL − hνD

(Sec. V). For all settings, the superfluid cycles through un-
stable regions of the first Brillouin zone which causes the
growth of excitation modes. As a result, resonant growth of
excitations does not depend directly on the driving frequency
νD but on the frequency νc of those crossings into critical
regions. Time-averaging, e.g., to calculate the time-averaged
Bogoliubov energy of a phonon mode within a Floquet de-
scription, results in the loss of information about the shape
of the micromotion. Instead, we use the number of crossings
and the time intervals between them to determine νc and the
resonance condition.

II. EXPERIMENTAL SETUP

Our starting point for the experiment is a BEC of ∼50 000
cesium (Cs) atoms in a vertical optical lattice potential
[Fig. 1(c)] that was created using two counterpropagating
laser beams with wavelength λ = 1064 nm, lattice constant
dL = λ/2, and lattice momentum kL = π/dL [37]. Typical
lattice depths V were between 2 and 14 Er , where Er is
the recoil energy of Cs atoms. The BEC was confined by
a cross-beam optical dipole trap with trapping frequencies
ωx,y,z = 2π × (11, 18, 14) Hz and levitated by a magnetic
field gradient [38,39]. We controlled the atomic interaction
strength by tuning the s-wave scattering length as with a mag-
netic Feshbach resonance before loading the wave packet into
the lattice potential in 150 ms. The values of as and V were
varied for different measurements to provide experimentally
convenient time scales for the growth of excitation modes.

We created the constant force FB and the driving force F (t )
with different experimental techniques. The constant force
was applied by reducing the magnetic levitation in 1.5 ms to
a fraction of the gravitational force, which results in Bloch
oscillations with period TB = h/(FBdL ) and frequency νB =
1/TB that are directly observable in the superfluid momentum
distribution in the laboratory frame. The driving force F (t ) =
F0 cos(2πνDt ) was applied by periodically shifting the sites of
the lattice using two acoustic-optical modulators that create a
frequency difference between the laser beams [40,41]. This
method provides precise control over driving frequency and
strength. However, F (t ) is an inertial force in the lattice frame,

023323-2



PHONON EXCITATIONS OF FLOQUET-DRIVEN … PHYSICAL REVIEW RESEARCH 6, 023323 (2024)

and the resulting micromotion is only indirectly detectable
in the laboratory frame by measuring the total momentum of
the superfluid or the weight of the reciprocal lattice peaks in
momentum profiles [42]. By combining the two techniques,
we were able to directly measure the Bloch period in the
laboratory frame while facilitating fast-driving frequencies in
the kilohertz regime.

After loading the superfluid into the lattice potential, we
applied FB and F (t ) for a time t that was adjusted to the closest
multiple of the driving period to reduce effects of the micro-
motion on the final momentum distribution. To minimize the
impact of the trapping potential, which determines the state of
the superfluid on long time scales [36], we kept t smaller than
the trap period and studied phonon excitations along the lattice
direction. The lattice potential was switched off instantly or
ramped off in 1.2 ms to determine the real momentum or the
quasimomentum distribution with absorption imaging after an
expansion time of typically 75 ms. For measurements with a
clearly identifiable carrier wave packet, we applied Gaussian
fits to determine the atom number in the carrier wave NC

and in excitation modes NE = Ntot − NC , where Ntot is the
total atom number. This approach was challenging for mea-
surements with a significant fraction of atoms in excitation
modes, and we instead counted the number of atoms in fixed
momentum intervals where we expected the phonon modes or
the carrier wave (see Appendix C).

III. EXCITATIONS WITHOUT PERIODIC DRIVING

To demonstrate the main concepts, we first studied excita-
tion modes for only a constant force FB. Without driving, the
superfluid Bloch oscillates in the first Brillouin zone with its
micromotion k(t ) following straight lines in quasimomentum
space [41]. Absorption images, showing the momentum dis-
tribution in quasimomentum space [Fig. 2(a)], were used to
determine the fraction of atoms in excitation modes NE/Ntot

[blue circles in Fig. 2(b)]. Whenever the superfluid crosses
into critical regions of the Brillouin zone with negative effec-
tive mass |k(t )| > kL/2, small perturbations of the stationary
state grow exponentially in time [30,43], while excitations are
steady or decay in stable regions [31] (see Appendix A).

We quantified the stability of the system for a varying
constant force and lattice depth by measuring NE/Ntot af-
ter approximately t = 20 ms. Yellow and blue colors in the
(V, TB)-stability diagram [Fig. 2(c)] indicate stable and unsta-
ble regions with weak and strong growth of phonon modes,
respectively. We expect the superfluid to become stable in
deep lattices and for large values of FB due to the suppression
of tunneling when the energy gap between neighboring sites
FBdL exceeds the width of the lattice band 4J , with tunneling
matrix element J . However, we find that the decoupling of
lattice sites is far less abrupt for a 1D superfluid with large
atom numbers per site than for single atoms [44], and the
superfluid remains phase coherent beyond FBdL = 4J [dashed
red line in Fig. 2(c)]. This allows us to observe the reduction
of modulational instabilities when the system becomes stable
in the fast-cycling regime. This onset of stability shifts for
increasing interaction strength toward smaller values of TB.

For our analysis, we assume that phonon modes with mo-
mentum h̄q are resonantly excited when the frequency νc of

FIG. 2. Modulational instabilities without periodic driving.
(a) Absorption images of Bloch-oscillating atoms and excitation
modes in quasimomentum space for TB = 10 ms, V = 6 Er , U/J =
3. (b) Atoms in excited modes NE/Ntot (blue circles) and calculated
micromotion k(t ) (black line) for parameters in (a). Red patches indi-
cate time intervals when micromotion crosses into unstable regions
of the Brillouin zone. (c) Measured ratio NE/Ntot after a hold time
of t ≈ 20 ms. Lines indicate Bloch periods that match the single-
particle bandwidth 4J/h (dashed red line), the transition line between
unstable and stable parameters for a phonon energy 2Es

kL
(solid red

line), and the transition line predicted in Ref. [43] (black line). Gray
patches indicate strong atom loss for small V and large values of FB.

the carrier wave crossing into critical regions of the Brillouin
zone matches twice the time-averaged Bogoliubov energy of
the mode 〈Eq〉. This resonance condition for modulational
instabilities is similar to the condition for parametric insta-
bilities hνD = 2〈Eq〉 in Refs. [28,33,35,45], but it relies on the
frequency νc. For strong driving forces, several crossings of
critical regions can occur per Bloch period, and we introduce
the parameter α to relate the resulting frequencies νc to νB.
The parameter α provides the fraction of time between two
consecutive crossings per Bloch period with νc = νB/α. As a
result, our resonance condition predicts a series of values TB

or νB with strong growth of excitation modes for

hνB = h

TB
≈ α

mp
2〈Eq〉, (1)

where mp is an integer that indicates higher-order phonon
resonances (see Sec. IV).

The time-averaged energy of a phonon mode 〈Eq[k(t )]〉
with micromotion k(t ) can be approximated by two meth-
ods, both of which are based on the Bogoliubov–de Gennes
(BdG) equations [28,33,46,47]. Please see Eq. (A5) for more
information. Time-averaging the single-particle energy in the
BdG equations provides an approximation E f

q (K, k0) that de-
pends on the driving strength K and on the initial momentum
k0 = k(0) [33,43,46,48], see Appendix A. For fast-driving fre-
quencies, this analytic expression maps directly to the energy
of a phonon Eq(k) in a nondriven system when we identify
k with k0 and the tunneling matrix element J with Jeff(K )
(see Appendix A). This mapping indicates that modulational
instabilities also exist in periodically driven systems for |k0| >

0.5kL. However, the approximation assumes fast-driving
frequencies and neglects the short time intervals of phonon
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growth when the micromotion cycles through the Brillouin
zone.

For a low-frequency approximation, we numerically time-
average the energy Eq[k(t )] of an existing phonon over
k(t ) [31]:

Es
q = 1

TB

∫ TB

0
Eq[k(t )]dt . (2)

Due to modulational instabilities, the phonon energy Eq(k) is
a complex number with an imaginary component that indi-
cates the growth rate of the mode �q and a real component
that provides the frequency of the phase oscillations of the
mode [49,50]. The same complex description applies to Es

q

but not for the approximation E f
q . Only the real component of

Es
q is used in Eq. (1) to predict resonant cycling frequencies.

Without driving, the micromotion crosses once per Bloch
period into critical regions with α = 1 [Fig. 2(a)], resulting in
a periodic increase of the phonon mode occupation [Fig. 2(b)].
Resonances occur when the frequency νc of these crossings
matches the natural oscillation frequency of the phonon den-
sity 2〈Eq〉 (with mp = 1). For faster frequencies, the system
becomes stable when hνc exceeds the energy of all phonon
resonances, i.e., when the cycling due to Bloch oscillations
becomes faster than possible response times of the phonons.
We find that the transition to this fast-cycling regime (or
fast-driving regime in later sections) is well approximated by
Eq. (1) [solid red line in Fig. 2(c) with α = mp = 1 in Eq. (1)].
An even better prediction for the transition from an unstable
to a stable system is provided by TB = h/(2.96

√
2JU ) in

Ref. [43] [black line in Fig. 2(c)], which approximates a nu-
merical solution of the BdG equations. The equation describes
the transition line between stable and unstable parameter re-
gions with real and complex phonon energies.

We also observed a second stable region at shallow lattice
depths V < 2 Er [Fig. 2(c)]. For repulsive interactions, mod-
ulational instabilities are induced by the lattice potential, and
we expect the superfluid to become stable in the limit of van-
ishing lattice depths. We omit the discussion of instabilities in
shallow lattice potentials, as identifying unstable intervals of
the micromotion is more challenging beyond the tight-binding
regime [49].

Gray patches in Fig. 2(c) indicate strong atom loss due to
excitations to higher bands. Band excitations can be driven
by Landau-Zener tunneling at the edge of the Brillouin zone,
which typically occurs for small lattice depth and large
accelerations, or by resonant excitations when the driving
frequency matches the energy of the band gap. Except for
Fig. 2(c), we did not observe excitations to higher bands in
our experimental data, and we focus our discussion in the
following sections on the lowest band.

IV. EXCITATIONS WITH RESONANT DRIVING

A. Experimental measurements

In a second series of experiments, we added a resonant
driving force F (t ) with a driving period that matches TB.
Despite a strongly tilted lattice potential, resonant driving
reintroduces coupling between the lattice sites with an ef-

FIG. 3. Stability of a superfluid in a tilted potential with a reso-
nant driving force. (a) Calculated micromotion for K = 0, 1 (black
and blue lines) and for K = 1, 3 with opposite initial direction of
F (0) and FB (red and orange lines). Thick lines with corresponding
colors indicate time intervals in critical regions (gray patches) of the
Brillouin zone (|k| > 0.5kL). (b) Numerical calculation of the growth
rate � for K = 2,V = 10 Er,U/J = 35 together with predicted
resonance (red line) with energy 2Re[Es

kL
] in Eq. (1). (c) Exper-

imental measurement of atoms in excitation modes after driving
for ∼30 ms with strength K and parameters V = 10 Er, Ntot ≈
60 000, as = 107 a0. Left and right panels use initial momentum
k0 = 0 and kL . Average over typically six repetitions. (d) Numerical
calculation of � with same parameters as in (c). Red and white
lines indicate the predicted position of the fundamental resonance
in Eq. (1) when approximating the phonon energy by Es

q and E f
q .

fective tunneling matrix element Jeff(K ) = JJ1(K ) [51]. Here,
J1(K ) is the first-order Bessel function, and K = FBdL/(hνD)
is the dimensionless driving strength. For increasing driving
strength, the straight lines of the micromotion [K = 0, dotted
black line in Fig. 3(a)] start bending upward or downward [red
and blue lines in Fig. 3(a)], depending on the initial directions
of FB and F (0). Thick lines in Fig. 3(a) indicate time intervals
during which the micromotion of the superfluid crosses into
critical regions of the Brillouin zone. We used opposite initial
directions of the forces to reduce these time intervals [red and
orange lines in Fig. 3(a)], as identical initial directions extend
them (blue dashed line).

To develop a better understanding of the stability of the
system, we calculated the growth rate �q(TB, K ) of phonons
with momentum q by integrating and diagonalizing the BdG
equations [33,46,48], see Appendix A. The resulting (q, TB)-
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stability diagram for K = 2 [Fig. 3(b)] shows a sequence
of unstable regions with strong growth (blue color) which
belong to fundamental and higher-order phonon resonances
mp = 1–7. The resonance condition in Eq. (1) provides a good
approximation of these resonances (red lines with α = 1).
Successive higher-order resonances are separated by a stable
region (yellow color). Position, width, and growth rate for
these stable and unstable regions can be related to the time
that the micromotion spends in critical regions of the Brillouin
zone (see Appendix B). However, this q dependence of � is
usually not directly visible in experiments due to the stochas-
tic nature of modulational instabilities. Phonon modes require
small initial modulations of the medium to start growing [43].
Those seeds are of random nature, caused by thermal, quan-
tum, or technical fluctuations, which result in the occurrence
of modes with varying values of q [52].

We experimentally determined the growth of phonon
modes by measuring NE/Ntot after a driving period of ∼30 ms.
Two different initial quasimomenta, h̄k0 = 0 and h̄kL, were
used to prepare the superfluid in the ground state of the time-
averaged lattice band [panels in Fig. 3(c)]. The micromotion
of the ground state starts with k0 = 0 for K < 3.83 when
Jeff(K ) is positive and with k0 = kL for 3.83 < K < 7.02 for
negative values of Jeff(K ). To push the superfluid to the edge
of the Brillouin zone k0 = kL, we applied a weak magnetic
field gradient before starting the drive (see Appendix C).

We compare the measured (TB, K)-stability diagram in
Fig. 3(c) to the calculated growth rate �(TB, K ) in Fig. 3(d).
The statistical fluctuations of q are included by averaging
�(TB, K ) over 11 modes with equally spaced values of q =
0–kL. Our measurements and numerical calculations show
good qualitative agreement for characteristic parameter re-
gions that are indicated by Roman numerals in the diagrams,
except for a residual structure of curved horizontal lines which
are caused by higher-order phonon resonances. Our measure-
ment data do not have the resolution along the TB axis and
sufficient repetitions to resolve this structure.

Particularly important for future experiments is the stable
region at high driving frequencies [region (i) in Fig. 3(d)]
which, for weak driving strengths, starts approximately at
the first resonance with mp = 1. Both Es

q and E f
kL

provide a
good approximation for 〈Eq〉 in Eq. (1), except for K values
close to the zeros of J1(K ) [red and white lines in Fig. 3(d)].
Stronger driving strengths, e.g., 1.5 < K < 3.0, shorten the
time that the superfluid spends in critical regions and re-
duce growth rates and widths of the resonances. As a result,
even large driving periods show an increased stability, both
in our data and in calculations [region (ii) in Figs. 3(c) and
3(d)]. Even stronger driving strengths, e.g., with K ≈ 3, cause
three crossings of the micromotion into critical regions of
the Brillouin zone [see also Fig. 4(b)]. This reduces the α

parameter and shifts the stable fast-driving regime toward
larger values of TB [region (ii) in Figs. 3(d)]. Even stronger
driving strengths, 3.9 < K < 5.9, for which the ground state
has an initial momentum k0 = kL, cause multiple crossings
into critical regions with varying values of α. Despite the
resulting complex structure of stable and unstable regions
in our calculation [region (iv)], we find good agreement
between calculations and experiment within our measurement
resolution.

FIG. 4. Growth rate and driving resonances. (a) Calculated
growth rate �kL for V = 10 Er and U = 30 J . Dashed black lines in-
dicate local maxima of �kL that were determined with a peak-finding
algorithm. Solid blue and red lines show the predicted resonance
positions in Eq. (1). Panels indicate different signs of Jeff(K ). (b)–
(d) Examples of the micromotion for the three panels in (a), top and
bottom panels refer to regions (L) and (R) with blue and red line col-
ors, respectively. (b) K = 0.5 (top), K = 3.5 (bottom); (c) K = 4.0
(top), 6.5 (bottom); and (d) K = 7.5 (top), 10.0 (bottom). Colored
patches indicate time intervals of the micromotion in regions of the
Brillouin zone with modulational instabilities. Arrows show α for the
longest time intervals between consecutive crossings.

B. Interpretation of the stability diagram

The structure of stable and unstable regions in our cal-
culation of � can be explained using Eq. (1). For a direct
comparison with Eq. (1), we omitted the averaging and cal-
culated �q(K, TB) for a single mode q = kL and increasing
values of K [Fig. 4(a)]. The local maxima of �kL were de-
termined using a peak finding algorithm (dashed black lines),
and we compared them with the predicted resonances with
parameters (mp, α) (solid red and blue lines in Fig. 4).

We find that unstable regions on the left side of each panel
[regions (L) in Fig. 4(a)] show a mostly regular pattern of
higher-order resonances. The vertical distance between two
resonances increases for each panel with 1/α (blue lines) as
predicted by Eq. (1). Here, α was determined using the mi-
cromotion for each value of K [Figs. 4(b)–4(d) for each panel
in Fig. 4(a)]. The largest values of α [arrows in Figs. 4(b)–
4(d)] provide a good prediction for the resonance positions
in regions (L). However, we find a more complex pattern
of intersecting resonances on the right side of each panel
in regions (R), and our prediction of the resonance position
works less well [red lines in Fig. 4(a)]. The difference between
regions (L) and (R) is caused by the different number of
crossings of the micromotion (colored patches), which have
similar but slightly different time intervals between them in
regions (R). We speculate that the structure of resonances is
caused by this multitude of slightly different α values and their
corresponding cycling frequencies νc.
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Equation (1) provides a general condition for resonances
in lattice systems with modulational instabilities and a cycling
micromotion, irrespective of whether the cycling is caused by
driving, a tilted lattice potential, or both. For systems without
tilt, νB must be replaced by the driving frequency νD, and
α increases from 0 for weak driving strength, when the mi-
cromotion never crosses into critical regions of the Brillouin
zone, to 1

2 for moderate driving strength. The resonance con-
dition for this special case with α = 1

2 and mp = 1 is hνD =
〈Eq〉, which matches the condition suggested in Ref. [28].

V. EXCITATIONS WITH NONRESONANT DRIVING

Finally, we examine the stability for off-resonant driv-
ing frequencies with detuning �ν = νB − νD. Off-resonant
driving in tilted lattice potentials can induce super-Bloch os-
cillations with large amplitudes in position space [20,53,54]
that make the study of phonon modes challenging. To reduce
the amplitude of those oscillations, we chose large detun-
ings with �ν > 20 Hz and a strong force with νB = 1 kHz.
This Bloch frequency also ensures that the system is well
in the fast-driving regime, and any growth of phonon modes
can be attributed to �ν. In momentum space, super-Bloch
oscillations show the characteristic straight lines of Bloch
oscillations in the Brillouin zone (as in Fig. 2) when evalu-
ating k(t ) stroboscopically at integer multiples of the driving
frequency. The period of those oscillations is �T = 1/�ν.

To understand the growth of phonon modes for nonreso-
nant driving, it is helpful to study the complete micromotion
k(t ). The shape of the micromotion gradually shifts, resulting
in predominantly stable and predominantly unstable time in-
tervals [red patches in Figs. 5(a) and 5(b)], and it repeats itself
after a period Ttot = s/νB = r/νD for integer values s, r and
rational ratios νD/νB. The period Ttot depends on the choice of
s, r and is less relevant for the phonon growth than the period
between predominantly stable and unstable intervals �T . We
found that the growth of phonon modes shows a similar time
dependence for super-Bloch oscillations as for Bloch oscil-
lations in Sec. III. For instance, we observe for �T = 10 ms
that excitation modes grow in the predominately unstable time
intervals at 5 and 15 ms [blue circles in Fig. 5(a)], and the
system once again attains stability for larger detunings, e.g.,
for �ν = 800 Hz [blue circles in Fig. 5(b)].

As in Sec. IV, we quantified the growth of phonon modes
by measuring NE/Ntot after ∼30 ms of driving. The result-
ing (K,�ν)-stability diagram shows a stable region for zero
detuning [yellow color in Fig. 5(c)], as expected in the fast-
driving regime. Small values of �ν cause instabilities as
the superfluid spends longer time intervals in predominantly
unstable regions (blue colors), while we find the system to
be again stable for large detunings with |�ν| > 360 Hz. The
overall shape of the unstable region resembles an ellipse with
a stable region in the form of a horizontal line at the center.

We compared our measurement results to a numerical
calculation of the phonon growth rate �q that was again
based on the BdG equations. Instead of integrating the BdG
equations over TB, as in Sec. IV, we used the complete driv-
ing cycle Ttot. To match our experimental parameters and
to provide rational values of νB/νD, we chose νB = 1 kHz,
Ttot = sTB, and TD = (s/r)TB, with s = 500 and integer val-

FIG. 5. Stability of the superfluid in a tilted potential with off-
resonant driving. (a) Micromotion (gray line) and measured number
of atoms in phonon modes NE (blue circles) for small detuning �ν =
100 Hz with parameters K = 1.5,V = 8 Er, k0 = 0, TB = 0.998 ms,
U/J = 15, and (b) for large detuning �ν = 800 Hz. Colored patches
indicate time intervals in the critical region of the Brillouin zone.
(c) Measured stability diagram showing NE/Ntot after ∼30 ms of
driving and parameters V = 8 Er, Ntot ≈ 60 000, as = 107 a0.

ues of r. We again used the phonon momentum q = kL that
provides the strongest growth [Fig. 6(a)]. The shape of the
unstable region and the stable line at resonance match our
experimental results well. As for normal Bloch oscillations
in Fig. 2(c), the transition lines between stable and unstable
parameters regions are again well predicted by the approxi-
mation h|�ν| = 2.96

√
2Jeff(K )U [43], where we replaced J

by the renormalized Jeff(K ) [black line in Fig. 6(a)].
To explain the shape of the unstable regions in Fig. 6(a), we

use a resonance condition like the one in Eq. (1). We replace
the Bloch frequency with the super-Bloch frequency �ν and
use α = 1 for Bloch oscillations:

h�ν ≈ 1

mp
2〈Eq〉. (3)

Due to the detuning, the averaged phonon energy continues
to oscillate when we time-average over the Bloch period,
and we instead approximate 〈Eq〉 with a long time average
E tot

q calculated over Ttot. For a direct comparison, we use the
momentum q = kL instead of averaging over different values
of q. Equation (3) provides a good approximation for the
resonances [blue regions and dashed red lines in Fig. 6(a)];
however, E tot

q is independent of K , and our approach only
predicts resonance positions close to the maximum of Jeff(K ),
i.e., at K ≈ 1.85. There, we recovered the full K dependence
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FIG. 6. Phonon growth rate for off-resonant driving. (a) Cal-
culated growth rate �kL for V = 10 Er , U = 4J , k0 = 0, s = 500,
νB = 1 kHz. Dashed red lines show the resonances mp = 1, 2, 3 for
K = 1.85 calculated using Eq. (3). Other lines are based on the ap-
proximation E tot

kL
(K ) in Eq. (4) predicting the resonances mp = 1, 2, 3

(gray lines), the stable region between mp = 1 and 2 (white line),
and the transition between unstable and stable (black line). (b) Inter-
action dependence of �kL for K = 1.85. Other parameters and line
colors match (a). (c) Measurement of NE/Ntot for the parameters
in Fig. 5(c) and K = 1.90 [dashed gray line in (d)]. Data colors
indicate the tunneling resonances 1

1 (red color) and 1
2 (blue color).

(d) Calculated growth rate for a large range of K and νD values.
Phonon resonances occur at tunneling resonances with frequency
νD = (nt/mt )νB and parameters s = 42, V = 10 Er , U = 4J , q = kL .

of the resonance position by scaling the black transition line
to E tot

kL
, with

E tot
kL

(K ) = 1.64
√

2Jeff(K )U . (4)

Gray lines in Fig. 6(a) indicate the predicted positions of
the phonon resonances with mp = 1, 2, 3. As in Fig. 3(d),
we observe stable regions that form thin stable lines between
neighboring resonances. For completeness, we also compared
the interaction dependence of the growth rate for K = 1.85
with Eq. (3) [Fig. 6(b)] and found excellent agreement. The
lines in Fig. 6(b) refer to the same resonances as in Fig. 6(a).

We extended our calculation of �kL to larger driving
strengths and detuning to demonstrate the connection between
phonon resonances and tunneling resonances [Fig. 6(d)]. As
in Figs. 3(c) and 3(d), we used the momentum of the ground
state of the superfluid in the fast-driving limit as the initial
momentum k0. The driving frequency νD is provided on the
vertical axis instead of �ν to allow for easy recognition of
tunneling resonances. For reference, the unstable region mp =
1 in Fig. 6(a) matches the first region at νD = 1 kHz in the top
left corner of Fig. 6(d). The unstable region is repeated for
increasing K values with a shape that is given by the Bessel

function in E tot
q (K ). Solid black lines indicate the transition

lines between stable and unstable regions.
We found that phonon resonances also occur at other

driving frequencies due to additional tunneling resonances
[Fig. 6(d)]. In strongly tilted lattice potentials, phonon res-
onances can only exist on top of a tunneling resonance, as
phonons typically spread over several lattice sites which re-
quires tunneling and coherence between the sites. Periodic
driving restores the tunneling in tilted potentials when the
driving frequency is resonant to the energy shift hνB. For driv-
ing frequencies νD = (nt/mt )νB, the tunneling resonances are
of order mt and couple lattice sites at a distance nt dL [19,20].
Combining all contributions, the complete resonance condi-
tion for phonon resonances of order mp and for tunneling
resonance (nt/mt ) is

hνD = nt

mt

(
hνB + 2〈Eq〉

mp

)
. (5)

Higher-order tunneling resonances require the regularization
of J with the mt -order Bessel function Jmt (K ) [54] which must
be included when approximating the average phonon energy
with E tot

q (K ). We indicate the predicted driving frequencies
for transition lines in Fig. 6(d) with black lines and find good
agreement with the unstable regions in our calculation. For the
tunneling resonances with nt = 2, we used products of Bessel
functions to provide a guide to the eye.

To experimentally demonstrate the existence of phonon
resonances at the next tunneling resonance, we measured
NE/Ntot after 30 ms of driving with a constant value K = 1.9
[dashed gray line in Fig. 6(d)]. We observe two regions with
strong growth of phonon modes and stable center points at
νD = 1.0 and 0.5 kHz [data points with red and blue colors in
Fig. 6(d)]. The first region matches our previous measurement
in Fig. 5(c) for the tunneling resonance mt = nt = 1, while the
second region occurs at tunneling resonance mt = 2, nt = 1.
For our measurement parameters in Figs. 5(c) and 6(c), the
unstable regions of phonon resonances start merging, and we
used a smaller interaction strength of U = 4J and a larger
lattice depth V = 10 Er for the calculations to clearly show
disjunct regions with phonon growth.

VI. CONCLUSIONS

In conclusion, we have studied the growth of phonons
in a superfluid with a tilted 1D lattice in three scenarios:
nondriven, resonantly driven, and nonresonantly driven. To
determine the phonon growth, we measured the momentum
distribution of the system after a fixed hold time and obtained
the fraction of atoms that were not in the ground state. For
all settings, we found stable and unstable parameter regimes
which can be explained by analyzing the micromotion of the
superfluid through the first Brillouin zone. Due to the tilted
potential, the micromotion always crosses into critical regions
of the Brillouin zone, and modulational instabilities make the
superfluid unstable for short time intervals. We found that
the duration and multitude of those crossings per cycle deter-
mine the growth rate of phonon modes. Time-averaging over
the micromotion, e.g., within a Floquet description, loses this
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information and makes it challenging to predict the stability
of the system.

To determine the resonance condition, we matched the
phonon energy with the frequency at which the micromotion
crosses critical regions of the Brillouin zone. This cycling
frequency allowed us to predict the fundamental and higher-
order phonon modes of modulational instabilities in all three
scenarios. For off-resonant driving, we replaced the driving
frequency with the detuning �ν between Bloch frequency
and driving frequency. In all cases, a stable, fast-driving limit
is reached when the cycling frequency exceeds the energy
of the fundamental phonon mode. In addition to phonon
resonances, band excitations, and tunneling excitations, a
complete stability analysis must include the role of the trap-
ping potential [36]. Understanding the joint effects of these
excitation mechanisms will be instrumental for quantum sim-
ulation experiments that study interacting many-body states
with periodic driving over long time scales [21].

The data used in this publication are openly available at the
University of Strathclyde Knowledge Base [55].
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APPENDIX A: DESCRIPTION OF EXCITATION MODES

In this Appendix, we summarize the description of phonon
modes in superfluids for lattice potentials with a constant force
FB and a driving force F (t ) = F0 cos(2πνDt ). These forces
accelerate the superfluid on a periodic motion within the first
Brillouin zone in momentum space. This micromotion k(t )
provides the basis for the subsequent analysis.

Without forces FB = F (t ) = 0, a superfluid with phonon
excitations can be described by a carrier wave with quasimo-
mentum h̄k and a weak perturbation δφk (z, t ) [50,56]:

ψ (z, t ) = exp

(
− iμkt

h̄

)
exp(ikz)[φk (z) + δφk (z, t )],

(A1)

δφk (z, t ) =
∑

q

ukq(z) exp{i[qz − ωq(k)t]}

+ v∗
kq(z) exp{−i[qz − ωq(k)t]}, (A2)

where μk is the chemical potential, and φk is the solution of
the stationary Gross-Pitaevskii equation. The perturbation is
expressed as a superposition of Bogoliubov modes, each with
quasimomentum h̄q, amplitudes ukq, vkq, and energy Eq =
h̄ωq(k). Due to momentum conservation, those excitation
modes occur in pairs of opposite quasimomenta (+h̄q,−h̄q).

The energy of a single phonon mode with momentum h̄q
and carrier momentum h̄k is given by [49,56]

Eq(k) = 2J sin(kdL ) sin(qdL ) ± 2

√
4J2 cos2(kdL ) sin4

(
qdL

2

)
+ 2JU cos(kdL ) sin2

(
qdL

2

)
, (A3)

where J and U are the tunneling matrix element and the
interaction energy. The real part of Eq(k) describes the energy
and the phase oscillations of the mode in Eq. (A2), while the
imaginary part provides its growth rate � = Im[Eq]/h. The
largest value of Re[Eq(k)] for any combination of q and k in
the Brillouin zone is W = 2

√
4J2 + 2JU .

Adding a constant force FB suppresses tunneling when
the energy shift FBdL between adjacent lattice sites is much
larger than the single-particle band width 4J . However, reso-
nant driving with frequency hνD = FbdL restores the coupling
between lattice sites, and the wave packet shows a periodic
micromotion through the first Brillouin zone:

k(t ) = k0 + ωDt − K

dL
sin(ωDt + ϕ). (A4)

Here, K = F0dL/(h̄ωD) is the dimensionless driving
strength [57]. The phase ϕ is set by the switch-on procedure
of the forces and their initial directions. We used opposite
directions for FB and F (0) in calculations and experiments to
minimize the growth of excitations for k0 = 0.

An effective dispersion for the driven lattice system
−2Jeff(K ) cos(dLk0) can be derived by time-averaging the

single-particle energy over one period of the micromotion
k(t ) [51]. Here, Jeff(K ) = JJ1(K ) is an effective tunneling
element with the first-order Bessel function J1(K ). The sign
of Jeff(K ) is negative in the interval 3.8 < K < 7.0, resulting
in an initial momentum k0 = kL for the ground state. We
indicate this change of ground states with separate panels in
Figs. 3(c), 3(d) and 4(a).

The BdG equations provide the time evolution of a phonon
mode [43,48]. The components u and v of the mode in
Eq. (A2) evolve according to

i∂t

(
uq

vq

)
=

[
ε+(q, t ) + U U

−U −ε−(q, t ) − U

](
uq

vq

)
, (A5)

where

ε±(q, t ) = 4J sin

(
qdL

2

)

× sin

[
qdL

2
± k0dL ± ωDt ∓ K sin(ωDt )

]
. (A6)

In the limit of fast-driving frequencies hνD 	 W , the BdG
equations can be simplified by time-averaging ε±(q, t ) over
one driving period and diagonalizing Eq. (A5) [48]. The
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resulting eigenvalues provide the energies of phonon and anti-phonon modes:

E f
q (k0, K ) = 2Jeff sin(k0dL ) sin(qdL ) ± 2

√
4J2

eff cos2(k0dL ) sin4

(
qdL

2

)
+ 2JeffU cos(k0dL ) sin2

(
qdL

2

)
. (A7)

We included k0 in the description to extend the time-averaged
Bogoliubov equation in Ref. [33]. As a result, Eq. (A7)
directly matches the Bogoliubov dispersion relation for non-
driven systems in Eq. (A3) when replacing J with Jeff

and k with the initial momentum k0. This condition is al-
most identical for a nontilted system [31], except that the
first-order Bessel function in Jeff is replaced by the zeroth
order.

For slow-driving frequencies hνD �W , we time-average
Eq[k(t )] over one driving period [Eq. (2)]. Here, Es

q provides
the averaged energy of an existing phonon with momentum
q that follows a particular micromotion, while E f

q describes
the energy of a phonon in a system with time-averaged pa-
rameters. Note that E f

q does not include the periodic growth
of phonon modes during a driving cycle due to modulational
instabilities, which is the main subject of this article. The
values of both energies Re[Es

q] and E f
q diverge close to the

zeros of J1(K ), but they agree well in between [red and white
lines in Fig. 3(d)].

APPENDIX B: CALCULATION OF THE GROWTH RATE
OF THE PHONON

We calculated the growth rate �q of phonon modes with
momentum q using Eq. (A5) and the diagonalization proce-
dure in Refs. [46,48]. Figures 7(a)–7(c) show �q for a driving

FIG. 7. Calculated growth rate for phonon modes with momen-
tum q. (a)–(c) Growth �q for resonant driving hνD = FBdL = h ×
1 kHz, V = 10 Er , U = 35J , and driving strength with (a) K = 0,
(b) K = 2, and (c) K = 3.5. Red lines indicate Bloch periods for
phonon resonances with energy (2Es

q )/mp and integer values of mp.
(d)–(f) Micromotion k(t ) (black lines), phonon energy Re[Es

kL
] (red

lines), and growth rate Im[Es
kL

]/h (blue lines) for (d) K = 0, (e)
K = 2, and (f) K = 3.5.

strength K = 0, 2, 3.5, with yellow and blue colors indicating
stable and unstable parameter regions, respectively. Without
driving (K = 0) but with a constant force FB, the micro-
motion passes only once per cycle through a critical region
with nonzero growth [α = 1, Fig. 7(d)]. The corresponding
time-averaged growth rate shows unstable regions that are
boomerang shaped and align with the predicted resonances in
Eq. (1) [Fig. 7(a)].

Adding a driving force K > 0 distorts the micromotion of
the superfluid [black line in Fig. 7(e)] and reduces the time
it spends in critical regions of the Brillouin zone (red patch).
This distortion of the micromotion changes the real and imag-
inary components of the time-averaged energy Es

q . Spending
less time in the critical region increases Re[Es

q], as the real
component of Eq[k(t )] is zero in the critical regions, and it
decreases Im[Es

q], as the imaginary component is zero in the
noncritical regions of the Brillouin zone. As a result, unstable
regions shown in Fig. 7(b) move toward smaller values of TB

and shrink in size compared with Fig. 7(a). This is the origin
of the stable region (ii) in the (K, TB)-stability diagram in
Fig. 3(d).

For larger driving strength, e.g., K = 3.5 in Figs. 7(c)
and 7(f), the micromotion passes three times per cycle through
a critical region. Due to these crossings, the relative time
interval between two crossings α decreases to 0.4, and the
cycling frequency νc increases. As a result, the fast-driving
limit shifts toward larger values of TB, which is the cause for
the stable region (iii) in Fig. 3(d).

APPENDIX C: DATA ACQUISITION AND DATA ANALYSIS

We determined the distribution of the superfluid in real mo-
mentum and in quasimomentum space by taking absorption

FIG. 8. Measurement of excitation modes. (a) and (b) Integrated
absorption profiles in real momentum space for (a) K = 0.8, TB =
4 ms and (b) K = 2.3, TB = 3 ms. Red lines indicate the regions used
to determine the number of atoms in the carrier wave for Fig. 3(c).
(c) Absorption images for TB = 2 ms in Fig. 2(c).
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FIG. 9. (a) Absorption images used to generate the (K, TB)-
stability diagram with resonant driving in Fig. 3. Only the area close
to the peak of the carrier wave is shown. Each image is the average
of typically six absorption images with identical parameters. The
top panel shows the sum of the two wave packets at k0 = kL for an
easier comparison with the bottom panel with k0 = 0. (b) Absorption
images for (K,�ν)-stability diagram with off-resonant driving for
Fig. 5. The images show the area close to the central peak of the
carrier wave. The panels are rotated by 90◦ compared to Figs. 3 and 5.

images either after a rapid switch off or after a linear ramp
of the lattice potential over 1.2 ms. For the data analysis in
Fig. 2, we determined the atom number in the carrier wave
NC by fitting the integrated 1D profiles close to the carrier
momentum with a Gaussian fit of the form A exp[(k −
B)2/C2], where A, B,C are fit parameters with NC = AC

√
π .

However, this approach was challenging for measurements
with a significant fraction of atoms in excitation modes. In-
stead, we determined NC for the data in Figs. 3 and 5 directly
by counting the number of atoms in a momentum interval
that enclosed the expected momentum of the carrier wave [red
lines in Fig. 8(a)]. The fraction of atoms in excitation modes
was calculated as NE/Ntot = 1 − NC/Ntot. Both methods do
not account for phonon modes with small q values [e.g., in
Fig. 8(b)] because the phonons and the carrier wave overlap
in momentum space. However, excitation modes with large
q values dominate for strong interactions U > 4J , as used
for the measurements in this article, and we expect that the
omission of modes with small q values does not change the
overall shape of our stability diagrams.

Changing the lattice depth V during a measurement did
sometimes introduce small additional forces that shifted the
final momentum of the wave packet [e.g., Fig. 8(c)]. Instead of
balancing those small forces for every value of V , we included
the final momentum shift of the wave packet in our data
analysis when setting the momentum interval to determine NC .
For example, the scan of V in Fig. 8(c) created a total variation
of ∼1% of FB, which we expect to have little influence on the
stability measurement.

Figure 9 shows the averaged absorption images for the
measurement of the (K, TB)-stability diagram [Fig. 3(c)].
The system was always prepared in its ground state for
the fast-driving limit, i.e., with k0 = 0 for K = 0–3.8 [bot-
tom panel in Fig. 9(a)] and with k0 = kL for K = 3.9–5.9
[top panel in Fig. 9(a)]. For an easy comparison of both
parameter regimes, we show only the peak of the carrier
wave in the bottom panel and the sum of the two wave
packets at the edge of the Brillouin zone in the top panel
[Fig. 9(a)]. Figure 9(b) provides averaged absorption images
for nonresonant driving, [Fig. 5(c)]. Again, we show only the
momentum interval for the main peak of the carrier wave for
reference.
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