
1

Stratifying macrophages based on their infectious burden 
identifies novel host targets for intervention during Crohn’s 
disease associated adherent-invasive Escherichia coli infection

Xiang Li1, John Cole1, Diane Vaughan1, Yinbo Xiao2, Daniel Walker3 and Daniel M. Wall1,*

RESEARCH ARTICLE
Li et al., Microbiology 2024;170:001470

DOI 10.1099/mic.0.001470

Received 23 January 2024; Accepted 24 May 2024; Published 25 June 2024
Author affiliations: 1School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of 
Glasgow, Glasgow, G12 8QQ, UK; 2Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research 
Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; 3Strathclyde 
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
*Correspondence: Daniel M. Wall, ​donal.​wall@​glasgow.​ac.​uk
Keywords: AIEC; cell sorting; Crohn's disease;  interventions; macrophages.
Abbreviations: AIEC, adherent-invasive Escherichia coli; CD, Crohn's disease; IFC, Imaging flow cytometry.
Three supplementary figures and ten supplementary tables are available with the online version of this article.
001470 © 2024 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between 
the Microbiology Society and the corresponding author’s institution.

Abstract

Bacterial infection is a dynamic process resulting in a heterogenous population of infected and uninfected cells. These cells 
respond differently based on their bacterial load and duration of infection. In the case of infection of macrophages with Crohn’s 
disease (CD) associated adherent-invasive Escherichia coli (AIEC), understanding the drivers of pathogen success may allow 
targeting of cells where AIEC replicate to high levels. Here we show that stratifying immune cells based on their bacterial load 
identifies novel pathways and therapeutic targets not previously associated with AIEC when using a traditional homogeneous 
infected population approach. Using flow cytometry-based cell sorting we stratified cells into those with low or high intracel-
lular pathogen loads, or those which were bystanders to infection. Immune cells transcriptomics revealed a diverse response 
to the varying levels of infection while pathway analysis identified novel intervention targets that were directly related to 
increasing intracellular AIEC numbers. Chemical inhibition of identified targets reduced AIEC intracellular replication or inhib-
ited secretion of tumour necrosis factor alpha (TNFα), a key cytokine associated with AIEC infection. Our results have identified 
new avenues of intervention in AIEC infection that may also be applicable to CD through the repurposing of already available 
inhibitors. Additionally, they highlight the applicability of immune cell stratification post-infection as an effective approach for 
the study of microbial pathogens.

INTRODUCTION
Infection is a dynamic process with a highly heterogenous population of host cells infected to varying degrees by infiltrating 
microorganisms. These differing microbial loads can lead to a variety of outcomes for the infected cells and a heterogeneity in 
host responses. Replicating the dynamics of infection using either in vivo or in vitro model systems of disease is challenging, but 
these models have proved highly useful tools in understanding specific aspects of infection. While heterogeneity fundamentally 
underlies in vivo models of disease, in vitro models by design are often based on the interaction between a single pathogen and 
host cell in a more controlled environment. This reduction in complexity has clarified aspects of the host or microbial response 
to infection, confirming or raising hypotheses for later testing in more complex models.

In vitro models of bacterial infection are however dependent on high multiplicities of infection (MOIs) to ensure a bacte-
rial intracellular burden high enough to enable host-pathogen dynamics to proceed in a measurable way over time. While 
MOIs into the hundreds are common, these rarely result in homogenous infection by, or phagocytosis of, all bacteria 
present within the system. What results is a mixture of sub-populations with varying degrees of infectious load, with either 
no bacterial infection having occurred, low levels of intracellular bacteria or a high intracellular bacterial load. Yet these 
diverse sub-populations have traditionally been studied as a single homogenous population, losing information critical to 
understanding the infection process. For example, there may be contrasting outcomes in immune cells where bacteria are 
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overcome in some cells, while actively replicating intracellularly in others, yet the basis of these outcomes are generally not 
investigated in in vitro models.

Adherent-invasive Escherichia coli (AIEC) is a pathobiont isolated in increased frequency from the intestine of CD patients relative 
to healthy controls [1–3]. CD is a multifactorial disease with genetic susceptibility, dietary factors and microorganisms all playing a 
role in disease pathogenesis. Rising incidence, the increasingly young age of onset, and incurability of the disease mean that as well 
as reducing quality of life, CD is a significant burden on health care systems across the world [4, 5]. While genetic susceptibilities 
linked to CD are well defined, specific defects in autophagy and protection against intracellular bacteria have not explained why 
bacteria such as AIEC are found with increasing prevalence. AIEC lacks many of the classic virulence factors associated with E. 
coli pathotypes and its persistence in the CD gut is likely mediated via metabolic success and adaption to the conditions in the 
inflamed CD gut [6–9]. A hallmark of AIEC infection is replication to high levels within infected macrophages, where it can stall 
cell death pathways, a likely contributory factor in granuloma formation [10, 11]. With a paucity of information regarding the 
key drivers for the success of infection in the host-pathogen relationship, the treatment of AIEC infection in the context of CD 
has proved challenging, although recent progress has been made [12–15]. However, while AIEC replicates and persists to high 
levels in some infected macrophages this does not occur in all infected cells. Here we show that the population of AIEC infected 
macrophages is highly heterogenous, and this is reflected in the vastly different responses of cells to infection. While many cells 
remain uninfected, or have overcome AIEC infection, these cells remain within the studied in vitro population contributing to 
outputs and thus disguising the response to infection in cells where AIEC are actively infecting. By stratifying macrophages based 
on their infectious load, we identified host pathways significantly differentially expressed in direct response to infectious burden, 
information lost when treating cells as a single homogenous population. By inhibiting the identified differentially expressed 
pathways, which had not previously been linked to AIEC infection, we could block bacterial intracellular replication and release 
of the cytokine TNFα, known to be a critical driver of inflammation in both AIEC infection and CD.

Our approach here shows that stratifying immune cells based on their bacterial load identifies novel pathways and therapeutic 
targets not detected using a traditional homogenous population approach. By focusing on host responses directly linked to 
bacterial success in cells where they are overwhelming the immune response, a more relevant and useful understanding of the 
complexities of infection can be gained.

METHODS
Cell culture and infection
RAW 264.7 cells were seeded at a density of 2×105 cells ml−1 into a T75 flask with 15 ml of Roswell Park Memorial Institute 
(RPMI) media (supplemented with 3 % foetal bovine serum [FBS], penicillin/streptomycin and l-glutamate). Six hours post-cell 
seeding, RAW 264.7 cells were treated with 100 ng ml−1 of lipopolysaccharide (LPS) and incubated overnight. RAW 264.7 cells in 
RPMI-1640 with 3 % FBS without antibiotics, were then infected with LF82 carrying the prpsMGFP plasmid (LF82rpsMGFP) 
at a multiplicity of infection (MOI) of 100 for 1 h [16]. Post-infection, extracellular bacteria were removed by washing with 
fresh RPMI media (3 % FBS) containing 50 µg ml−1 of gentamicin. After washing, cells were provided with fresh RPMI media 
(3 % FBS, 50 µg ml−1 gentamicin) containing indicated concentrations of different chemical inhibitors (ST034307 [SML2109, 
Sigma-Aldrich], GSK2636771 [HY-15245, MedChemExpress], necrosulfonamide [HY-100573, MedChemExpress], trametinib 
[HY-10999, MedChemExpress], and clomipramine [17321-11-6, Sigma-Aldrich]). The infected cells with or without drug treat-
ment were then incubated for the time specified at 37 °C and 5 % CO2.

Intra-macrophage survival assay
To measure bacterial intra-macrophage survival, infected macrophages were washed with RPMI-1640 media, and lysed using 
200 µl of 2 % Triton X-100 (93 443, Sigma-Aldrich) in phosphate buffered saline (PBS, 14 190 094, Invitrogen) for 5 min at room 
temperature. Lysates were removed, serially diluted in PBS, and plated onto LB agar plates to determine the number of colony 
forming units (c.f.u.) per millilitre. Total protein concentration was determined using a BCA assay (23 227, Thermo Fisher 
Scientific Life Technologies) and bacterial numbers were normalised to total protein concentration and presented as c.f.u. per 
gram. Normalising c.f.u. to protein concentration, as opposed to expressing c.f.u. numbers per well, meant c.f.u.s could be related 
to cell number in each individual well, especially important if cell numbers differed between wells due to proliferation or cell 
death during infection or drug treatment.

Sorting of infected cells
After 24 h infection, cells were harvested using cell scrapers. Suspended cells were washed and maintained in fluorescence 
associated cell sorting (FACS) solution (2 % FBS in phosphate buffered saline [PBS]). The viability of cell cultures was assessed 
using 7-aminoactinomycin D (7-AAD) viability staining solution at a final concentration of 0.25 µg per million cells. For each 
experiment four independent biological replicates were carried out with four technical replicates within each. Flow cytometry 
was performed on a BD FACSAria with BD FACSDiva application software version 5.0.2 (BD Biosciences, Franklin Lakes, 
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NJ) paired with FlowJo Version 6.3.2 analysis software (Tree Star Inc., Ashland, OR). Each sample was first examined using 
forward scatter (FSC) versus side scatter (SSC). Green fluorescent protein (GFP) was detected with an excitation of 488 nm filter 
while 7-AAD was detected with excitation of 635 nm. Based on measurements obtained from the analysis of 10 000 events for 
each sample, gating strategies were established for the selection of cells of interest using FSC, SSC, and fluorescence emission 
properties (Fig. S1, available in the online version of this article). Actual cells were easily distinguished from debris by gating 
on FSC and SSC, and 7AAD was used to identify live/dead cells. In LF82 prpsMGFP infected RAW 264.7 cells, living cells were 
gated based on their lack of 7AAD staining. A gating strategy was then established for the three populations of infected cells 
by determining their GFP fluorescence intensity. The identification of different intracellular bacterial burdens as No, Low and 
High, were used to sort the cells into three separate populations, representing cells with no bacteria (No), cells with less than five 
bacteria (Low) and cells with more than five bacteria (High). The control group cells, where bacteria had not been added, were 
sorted in the same number as for the other three groups. Data was acquired for each population for 80 000 cells. To simplify the 
description of the four groups of cells in the following text, the terms ‘Control’, ‘No’, ‘Low’ and ‘High’ will be used to indicate 
their infection status. Sorted cells were collected into 1.5 ml microfuge tubes containing 800 µl of RNAlater solution (Invitrogen 
AM7020) stopping cellular transcriptional changes. RNA from four independent biological repeats was collected and kept at 
−80 °C until RNA was extracted.

RNA isolation
RNA was extracted using a RNeasy PowerMicrobiome Kit (QIAGEN, 26000–50) using the manufacturer’s protocol. RNA extracts 
were kept at −80 °C. Both quantity and quality of RNA were assessed by using an Agilent 2100 Bioanalyzer (Agilent Technologies). 
RNA yields ranged from 3.47 to 18.6 ng µl−1. RNA integrity numbers (RIN) of a sample are generated by the 2100 Bioanalyzer to 
indicate the level of degradation and have been shown to predict gene expression suitability reliably. RIN scores ranged from 8.7 
to 10, indicating high-quality RNA suitable for gene expression analysis by RNA sequencing (RNA-seq) [17].

Library construction, RNA-seq, and bioinformatics
At least 10 ng of RNA was isolated per sample and provided to Glasgow Polyomics (University of Glasgow) for RNA-seq, the 
generation of cDNA, sequencing, and bioinformatics. The cDNA libraries were created using the Quantseq (FWD) kit from 
Lexogen. The kit creates a library from the polyA end of transcripts, creating fragments terminating in the polyA sequence and 
sequencing towards this. The libraries were sequenced at 75 bp, paired end, to a mean depth of ten million reads per sample, using 
an Illumina (NextSeq 2000). The data was QC'd and aligned using Galaxy (server: http://antioch.tcrc.gla.ac.uk/). Firstly, read 
quality was explored using FastQC, then trimmed using Trimmomatic [18], under default settings. Reads were mapped to the 
reference genome (GRCm39) and transcriptome (v110) using Hisat2 [19], under default settings. Read counts were produced 
using HTseq-count [20], which were then normalised, and pairwise differential expression calculated using DESeq2 (Team RC., 
2014). Searchlight [21] was used to explore and visualise the data. Each pertinent pairwise comparison was entered as a DE 
workflow, with (adjusted P<0.05 and absolute log2fold>1). A single MDE workflow was used combining each of No, Low and 
High vs Control comparisons. For the pathway analysis the KEGG and GO pathway databases were used with (adjusted P<0.05).

Preparation of cells for imaging flow cytometry
Harvested cells were fixed using 250 µl of fix buffer (554 655, BD biosciences) for 10 min at 37 °C, followed by nuclear staining with 
5 µl 7ADD solution (420 403, BioLegend) for 10 min for 4 °C. Cells were then washed twice in FACS buffer. Before acquisition, 
cells were resuspended in 50 µl of FACS buffer.

Data acquisition and analysis
Imaging flow cytometry (IFC) data acquisition was achieved using an ImageStream X MKII (ISX, Amnis) equipped with dual 
cameras and 405 nm, 488 nm, and 642 nm excitation lasers. All samples were acquired at 60 times magnification giving an optimal 
7 µM visual slice through the cell, and a minimum of 10 000 single cell events were collected for each sample. In focus cells were 
determined by a gradient root mean square (RMS) for image sharpness. Brightfield of greater than 50 and single cells were 
identified by area versus aspect ratio. Laser wavelength from relevant channels were Ch02 (488 nm, GFP fluorescence), Ch04 
(bright field), and Ch05 (642 nm, nuclei). Quantification of intracellular bacteria was as previously described [16].

Statistical analysis
Values are shown as means and standard deviation. All statistical tests were performed with GraphPad Prism software, version 
8.3.0. All replicates in this study were biological; that is, repeat experiments were performed with freshly grown bacterial cultures 
and cells, as appropriate. Technical replicates of individual biological replicates were also conducted. Significance was determined 
as indicated in the figure legends. Values were considered statistically significant when p-values were ∗ = p<0.05; ∗∗ = p<0.01; 
∗∗∗ = p<0.001; ∗∗∗∗ = p<0.0001.

http://antioch.tcrc.gla.ac.uk/
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DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available through NCBI in BioProject PRJNA1070585.

RESULTS
RAW 264.7 cells that had been incubated with LF82rpsmGFP, or control uninfected cells, were subjected to flow cytometry-based 
cell sorting to isolate cells based on the intensity of green fluorescence and the number of intracellular bacteria enumerated by 
colony formation unit (c.f.u.) counts. The experimental procedure is outlined in Fig. 1a. Based on fluorescence intensity, RAW264.7 
cells co-incubated with LF82rpsmGFP led to three distinct populations of cells (each population was at least 80 000 cells) (Fig. 1b); 
those that remained uninfected despite being in proximity to LF82rpsmGFP (No), those with a bacterial load with an average 
of 1–2 bacteria per cell (Low) and those with approximately seven bacteria per cell (High) (Fig. 1c). The control uninfected cells 
had no contact with LF82rpsmGFP (Control).

RNA extraction was carried out from sorted cells and differential expression analysis was undertaken. Each population of Control, 
No, Low and High RAW 264.7 cells were compared to each other to identify differentially expressed genes (DEGs) between each 
group (Fig. 2). Principle component analysis (PCA) clearly showed the cells from the infected population clustering together and 
away from uninfected cells as expected (Fig. 2a). While it was clear from the resulting heatmap and a count of significant DEGs that 
the response in Control cells was significantly changed in comparison to cells in proximity to, or with intracellular LF82rpsmGFP, 
it was also noted that there was a significant change in response between each of the No, Low and High sub-populations of cells 
(Fig. 2b and c). Differential expression identified altered transcripts in each pairwise comparison (Tables S1–S6). Comparing 
DEGs between Control cells and those where LF82rpsmGFP were present (No, Low and High), 28.8 % of significant DEGs were 
common to all cells from this population (Fig. 3a). However, there were also significant changes in responses between the cells in 
the infected population with 32.2 % of DEGs between the infected and uninfected populations unique to the High group, 11.5 % 

Fig. 1. Macrophage sub-populations were sorted by FACS and confirmation of intracellular bacteria number by traditional visible colony count. 
(a) Schematic overview of the process of sorting RAW 264.7 cells for RNA-seq and viable count analysis. There were four independent biological 
repeats, each repeat includes two sorts: one was sorted into an RNAlater solution, enabling later RNA extraction; another sort was used for confirming 
the number of intracellular bacteria. (b) Three populations of cells were determined according to GFP intensity. (c) The number of intracellular bacteria 
from different populations was calculated after their recovery by plating it onto LB agar plate and c.f.u. counting.
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of DEGs unique to the Low group, and 8 % of DEGs unique to No group (Fig. 3a). This pointed towards a clearly heterogenous 
population with cells that were uninfected but bystanders to infection of other cells (No group) having their own unique response, 
acting in a more similar fashion to infected rather than uninfected cells. Pathway analysis was conducted on the 32.2 % of DEGs 
unique to the High and Control sub-populations. The outcome clearly identified a number of pathways associated with the immune 
response that were activated in the High group, including the nuclear factor NF-kappa B (NF- κB) pathway, while pathways related 
to the cell cycle were inhibited in the High group (Fig. 3b).

Analysis of cytokine gene expression again clearly indicated differences between sub-populations within the total infected popula-
tion. While expression of many cytokine-related genes was increased within the infected population, the bystander cells without 
bacteria (No group) were noted to have lower expression of several related genes (e.g. TNFα receptor: Tnfrsf1b), while other 
genes were expressed at similar levels to those cells with High bacterial load (e.g. Tnf; Fig. 4). Therefore, these bystander cells, 

Fig. 2. Sample clustering and differentially expressed genes (DEGs) between different macrophage populations with differing bacterial burdens. 
(a)  Principal component analysis (PCA) of expression data, the first two components. Dots represent replicates and are coloured by condition 
(red=Control, green=High, blue=Low, purple=No). The percent variance is given. (b) Expression heatmap of all DEGs (adjusted P<0.05 and absolute 
log2fold>1) in any of six comparisons (Control vs No, Control vs Low, Control vs High, No vs Low, No vs High, Low vs High). Axes are hierarchically 
clustered. Expression values are per gene Z-scores with low=blue and high=red. (c) The number of DEGs determined in each of the six comparisons (b).
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were clearly contributing to inflammation through cytokine production but were not being influenced to the same extent by 
circulating cytokines such as TNFα.

Having determined both intracellular LF82rpsmGFP numbers and gene expression in response to intracellular bacterial load, we 
used this data to determine signatures of host gene expression in response to LF82rpsmGFP and identify host pathways that were 
expressed or repressed in response to infectious burden (Fig. 5). As pathway analysis was not possible in the context of three pairwise 
comparisons (No vs Low, No vs High and Low vs High) due to their low number of significant DEGs, this approach of determining 
signatures of infection allowed us to extract valuable information related to infection status and drivers of increased infectious burden. 
We could therefore move past the simple comparison of DEGs in the context of infected versus uninfected cells and examine significant 
DEGs in the context of the heterogenous AIEC infected population. Two signatures of infection were tested, Signature one selected 
for significantly increased DEGs that increased stepwise in direct response to increasing LF82rpsmGFP burden. In total 516 DEGs 
fitted these criteria (Fig. 5a, Table S7). Signature two selected for significantly increased DEGs that had an inverse relationship with 
intracellular LF82rpsmGFP burden, their expression decreasing as bacterial burden increased, 222 DEGs fitted these criteria (Fig. 5b, 
Table S8). Signature one clearly showed that, as bacterial numbers increased, there was a corresponding increase in pathways related 
to inflammation, chemotaxis and response to bacterial stimuli (Fig. 5a, Table S9). Signature two showed that increasing intracellular 
LF82rpsmGFP load was inversely related to pathways for RNA metabolism, ribosome assembly and cell differentiation, all of which 
were significantly lower in cells with higher intracellular bacterial loads (Fig. 5b, Table S10).

To further investigate the importance of these pathways to LF82 infection a number of significant DEGs were selected from the 
highlighted Signature one pathways with each DEG showing the Signature one stepwise increase in expression correlating with increased 
intracellular LF82rpsmGFP burden (Fig. 6, Table 1). Genes where known chemical inhibitors were available were chosen as targets 
in the first instance and a chemical inhibitor was identified for a number of these Signature one gene products that could be used to 
test their role in LF82rpsmGFP infection; ST034307 for Adcy1, clomipramine for Itch, trametinib for Map2k1, necrosulfonamide for 
Mlkl, and GSK2636771 for Pik3cb (Table 2). Importantly none of the selected inhibitors had previously been tested in the context of 
either AIEC infection or CD.

RAW 264.7 cells were again exposed to LF82rpsmGFP and phagocytosis was allowed to occur prior to treatment to prevent any inhibi-
tion of pathogen uptake influencing the results. Firstly, a cytotoxicity assay was performed to determine the appropriate concentrations 
of chemical inhibitors to use (Fig. S2). The toxic effect of chemical inhibitors ST034307, necrosulfonamide and clomipramine were 
assessed at concentrations of up to 100 µM. However, following LF82 infection, it was clear that cytotoxicity was increased in cells 
treated with ST034307 and clomipramine at a concentration of 10 µM. Consequently, we used two distinct concentrations for each 
inhibitor in each experiment; ST034307 (1 µM and 10 µM), GSK2636771 (100 nM and 1 µM), necrosulfonamide (1 µM and 10 µM), 
trametinib (100 nM and 1 µM), and clomipramine (1 µM and 10 µM). No significant changes were seen in the c.f.u. analysis when 
infected cells were treated with the inhibitors necrosulfonamide (Fig. 7c) and trametinib (Fig. 7d). Each of ST034307, clomipramine 

Fig. 3. Characteristics of unique DEGs in the comparison of Control vs High. (a) Venn diagram showing the number of overlapped or unique DEGs 
(adjusted P<0.05 and absolute log2fold>1) in the three comparisons: Control vs No, Control vs Low and Control vs High. There are 310 unique DEGs in the 
comparison of Control vs High. (b) Heatmap of enriched KEGG pathways (adjusted P<0.05) for the 310 unique genes in (a). The heatmap shows mean 
expression across all genes in the enriched pathways, with the rows being pathways and columns individual samples. Red indicates relative pathway 
activation and green represents relative pathway suppression.
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and GSK2636771 were seen to influence intracellular bacterial burden at 24 hpi (Fig. 7a, b and e). While the inhibitors were not toxic 
to bacteria during growth (Fig. S2a), it was clear that at high concentrations certain inhibitors were cytotoxic to cells (Fig. S2). So, while 
ST034307 inhibition of Adcy1 function significantly decreased intracellular LF82rpsmGFP at 24 hpi, it was seen to induce increases 
in cytotoxicity when used at the effective 10 µM concentration, with this increase in cytotoxicity becoming significant upon infection. 
Clomipramine was determined to exhibit the most significant effects, reducing intracellular bacterial burden three log-fold (Fig. 7b). 
While clomipramine exhibited some cytotoxicity this was at a higher concentration than those that reduced intracellular bacterial 
load (Fig. S2). However, to rule out any cytotoxic effects on bacterial load, a reduced 1 µM concentration of clomipramine was tested 
over a longer time course (48 and 72 hpi) and the intracellular bacterial burden of live cells determined (Fig. 8). IFC also assessed 
cellular apoptosis based on nuclear morphology. A bivariate plot was generated with nuclear area threshold 50 % on the y-axis and 
bright field contrast of cells on the x-axis. The population with apoptotic morphology was identified and gated as shown in Fig. 9a. 
The distinction between non-apoptotic cells and apoptotic cells was confirmed by selecting individual images for further analysis. 
Fig. S3b and c depict representative non-apoptotic and apoptotic cells, respectively. At lower concentrations of inhibitors, no increase 
in apoptosis was detected at 24, 48, and 72 h, except for trametinib at a dosage of 100 nM, which increased apoptosis at 72 hpi (Fig. 
S3d). Clomipramine was observed to significantly reduce both the number of infected cells and the intracellular bacterial burden in 
the remaining infected cells (Fig. 8). This effect of clomipramine was observed at 24 hpi (Fig. 8a) and continued over 48 (Fig. 8b) and 
72 hpi (Fig. 8c) with the number of infected cells reducing by half and the number of cells with a High bacterial burden reducing by 
over two-thirds. No changes in bacterial burden were observed with the other inhibitors.

Fig. 4. Heatmap of changes in gene expression levels of cytokine and chemokine genes in three groups infected with LF82 (No, Low and High) alongside 
the Control uninfected group. Heatmap of differentially expressed cytokines (adjusted P<0.05 and absolute log2fold>1) between each of No, Low and 
High vs Control. Rows represent cytokines and columns samples. The y-axis is hierarchically clustered. Expression values are per gene Z-scores with 
low=blue and high=red.
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Given pathway analysis using Signature one had highlighted a significant role for inflammation and migration of immune cells in 
response to increasing bacterial burden we next determined any effects of the identified inhibitors on TNFα release by the infected 
cells. TNFα levels were determined post-infection and treatment with the inhibitors (Fig. 9). Necrosulfonamide significantly increased 
TNFα release in uninfected cells. Trametinib significantly inhibited TNFα release by both infected and uninfected cells at both 100 nM 
and 1 µM with the reduction apparent at early (6 hpi) and later points of infection (24 hpi) (Fig. 9a, c). While ST034307 inhibited 
TNFα, the reduction was only apparent at a higher cytotoxic concentration of the inhibitor (10 µM) in infected cells (Fig. 9b, d). Most 
interestingly however it is noticeable that trametinib, while it significantly reduced TNFα release by infected cells, did not reduce 

Fig. 5. Signature gene expression among four populations and their relevant enriched GO-BP pathways. (a) Signature analysis for genes that are 
elevated (adjusted P<0.05 and log2fold>1) in all groups (No, Low, High) vs Control. Showing: (upper left) metagene violin plot, with the mean expression 
z-score on the y-axis and group on the y-axis; (right) expression heatmap for all genes in the signature, showing genes by row and samples by 
column. The y-axis is hierarchically clustered. Expression values are per gene Z-scores with low=blue and high=red; (bottom left) ten most enriched 
GO biological processes (p.adj <0.05) for the signature genes. Showing the -log10p adjust value on the x axis and the number of DEGs in each enriched 
pathway as the data label. (b) as (a) however for the genes that are downregulated (adjusted P<0.05 log2fold < −1) in all groups (No, Low, High) vs 
Control.
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intracellular LF82 burden. Contrastingly clomipramine, which reduced intracellular LF82 burden, had no impact on TNFα release. 
This disconnect between AIEC infection and cytokine release by immune cells has not previously been described and may offer future 
opportunities for intervention to prevent inflammation in spite of bacterial burdens.

DISCUSSION
Bacterial infection, both in vitro and in vivo, results in a heterogenous population of cells, comprising those infected to differing levels 
by the pathogen, and those that remain uninfected, termed bystander cells. The diversity of outcomes at the cellular level presents a 
conundrum as regards studying infection, as the mixed population can have an array of bacterial burdens resulting in diverse host and 
microbial gene expression. This heterogeneity makes interpretation of the host response particularly difficult as it can mask crucial 
host mediators of infection.

Here we demonstrate this heterogeneity within an LF82-treated well of RAW 264.7 cells in vitro. Close to 60 % of cells carry intracellular 
LF82 at 24 hpi, but this results in any subsequent analysis of host gene expression in response to infection including the remaining 40 % 
of cells that are uninfected. Even within the LF82-bearing cells our data demonstrates that two thirds of these cells contain less than five 
bacteria, within only 20 % of the total population of cells bearing more than five bacteria. Given that intracellular replication in immune 
cells has been described as a critical phenotypic marker of this pathobiont, the fact that only one fifth of the infected population of 
cells meet this criterium makes it challenging to study [22]. Any host transcriptional changes in response to intracellular replication 
of AIEC will be difficult to pick up in downstream analysis due to being overwhelmed by the signals from the remaining 80 % of cells.

Fig. 6. Gene expression levels of five candidate host DEGs selected for further testing. Genes Adcy1, Pik3cb, Mlkl, Map2k1 and Itch were selected from 
the Signature one gene list involved in pathways; cell-cell adhesion, TNF signalling, necrotic cell death, MAPK pathways and NF-κB. Boxplots show 
expression of genes of interest in four groups: Control in red, No in green, Low in blue and High in purple. The significantly altered transcripts are 
depicted with adjusted p value<0.05. Black dots denote individual samples. Error bars represent SEM.
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To overcome the challenges of a heterogeneously infected population, here we took an approach of cell sorting based on intracellular 
bacterial load followed by RNA sequencing. This enabled us to stratify the heterogenous population into distinct population subsets, 
each with its own characteristics of being uninfected or infected and, if infected, stratified into further sub-populations based on their 
intracellular LF82 burden. Clearly there were significant differences between cells exposed to LF82 and unexposed and uninfected 
cells. Surprisingly bystander cells from wells where LF82 was present, but with no intracellular LF82, displayed a phenotypic shift that 
mirrored that of infected cells, and which was distinct from cells from uninfected wells. Over 400 genes were significantly differentially 
regulated between both these uninfected populations, with 77 of the DEGs from these bystander cells unique to them and not identified 
in infected cells from the same well. This indicated that while also responding to LF82 in a manner similar to infected cells, these 
bystander cells were a unique population in themselves. However, it cannot be concluded from the data here whether these were cells 
that were always uninfected, or whether they had cleared LF82 prior to them being analysed.

Interestingly our analyses also indicated that uninfected bystander cells were directly contributing to inflammation despite not being 
actively infected with AIEC. It is likely that immune activation of these bystander cells is driven by either contact with bacteria, bacteria-
derived molecules and vesicles being shed into the media, or immune cell derived TNFα [22–24]. However, the relative contribution 
of each to bystander cell activation cannot be ascertained from the data generated here, but understanding this could be informative 
in the context of CD given the importance of TNFα in driving inflammation in CD. If bystander cell activation, and their subsequent 
contribution to inflammation, was dependent on TNFα, anti-TNFα therapy as used in CD would block activation of these cells. 

Table 1. Genes of interests from Signature one

Gene 
symbol

Protein name Prosed function Involved both GObp and KEGG pathways

Adcy1 Adenylate Cyclase 1 Catalyses the formation of the signalling molecule 
cAMP in response to G-protein signalling

Calcium signalling pathway

Bcl3 B-Cell Lymphoma 3-Encoded Protein The regulation of transcriptional activation of NFκB 
target genes

TNF signalling pathways

Ccl2 C-C Motif Chemokine Ligand 2 Mobilization of intracellular calcium ions Phagocytosis; calcium signalling pathway

Cd44 CD44 Molecule Cell-surface receptor that plays a role in cell-cell 
interactions, cell adhesion and migration

Cell adhesion

Hif1A Hypoxia Inducible Factor 1 Subunit Alpha Transcriptional regulator of the adaptive response to 
hypoxia

Autophagy

Itch Itchy E3 Ubiquitin Protein Ligase Targeting specific proteins for lysosomal degradation TNF signalling pathways, apoptosis

Lyn Src Family Tyrosine Kinase The regulation of innate and adaptive immune 
responses

Calcium signalling pathway

Map2k1 Mitogen-Activated Protein Kinase Kinase 1 Involvement in the ERK pathway by activation of 
ERK1 and ERK2

Cell adhesion; TNF signalling pathways

Mlkl Mixed lineage kinase domain-like Key role in TNF-induced necroptosis, a programmed 
cell death process

Apoptosis; TNF signalling pathways

Myl2 Myosin Light Chain 2 Plays a role in heart development and function Cell adhesion

Pik3cb Phosphatidylinositol-4,5-Bisphosphate 3-Kinase 
Catalytic Subunit Beta

Activation pathway in neutrophils Cell adhesion; TNF signalling pathways; autophagy

Ptpn2 Protein Tyrosine Phosphatase Non-Receptor Type 2 Regulate cell growth, differentiation, mitotic cycle, 
and oncogenic transformation

Cell adhesion

Vegfa Vascular Endothelial Growth Factor A Proliferation and migration of vascular endothelial 
cells

Cell adhesion; calcium signalling pathway

Table 2. Selected Signature one genes and relevant chemical inhibitors

Targeting gene Chemical inhibitor Reference

Adcy1 ST034307 Watts, V.J., 2018

Mlkl Necrosulfonamide Rübbelke, M., 2020

Map2k1 Trametinib (GSK1120212) Khan, Z.M., 2020

Pik3cb GSK2636771 Vanhaesebroeck, B., 2021

Itch Clomipramine Rossi, M., 2014
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Also, as immune cells with a high intracellular bacterial burden are likely to be the primary source of TNFα sparking a subsequent 
inflammatory cascade, targeting this small population of highly infected cells to remove AIEC would offer most therapeutic benefit.

Differences in cells either exposed to, or infected with, LF82 were further underlined through direct comparison of gene expression 
amongst these groups. Again, unique DEGs were found for each group with some DEGs common to more than one sub-population 
within an infected well. A major advantage of our approach was the ability to directly match host gene expression to bacterial load 
across the stratified sub-populations. Given the depth of data available, and the significant number of DEGs identified, an approach of 
enrichment analysis whereby signatures of gene expression were correlated to bacterial load was undertaken. This approach identified 
DEGs and pathways directly responding to increasing or decreasing intracellular bacterial load. While gene expression may fluctuate 
due to bacterial load, using signatures of infection across populations allowed us to concentrate on DEGs whose expression was 
directly related to infectious burden. This approach of identifying signatures of gene expression in response to intracellular infectious 
load revealed several pathways related to increasing or decreasing bacterial load. Given their likely importance to success of infection 
we targeted these pathways using chemical inhibitors, selecting target proteins from the significant DEGs within these pathways of 
interest. This enabled testing their role in mediating both intracellular replication of AIEC and its induction of inflammation.

The targets chosen; Adcy1, Pik3cb, Mlkl, Map2k1 and Itch, each represented a unique pathway in which they displayed the 
Signature one phenotype of increasing in direct response to bacterial burden within the cell. None of these genes had to date 
been associated with AIEC infection or used as a target to inhibit bacterial infection, although PIK3cb and MLKL had previously 
been suggested as targets for therapeutic intervention in IBD, while MAP2K1 has a currently approved kinase inhibitor targeted 
towards it for IBD treatment [25–27]. Itch has been directly implicated in pathogenesis of nucleotide-binding oligomerization 
domain-containing protein 2 (NOD2) mediated inflammatory disease and it is directly involved in ubiquitination and tagging 

Fig. 7. Evaluation of the effects of different chemical inhibitors on intracellular bacterial load in RAW 264.7 cells. RAW 264.7 cells were infected with 
LF82 for 1 h followed by treatment with different chemical inhibitors for a further 6 or 24 hpi; ST034307 (a), Clomipramine (b), Necrosulfonamide 
(c), Trametinib (d), GSK2636771 (e). Bacterial recovery is displayed as c.f.u. per gram of protein. Data points represent the mean of three technical 
repeats plus the standard deviation at a timepoint of 6 or 24 hpi. Each treatment was compared to the DMSO group. Statistical significance was 
determined by multiple comparisons with Brown-Forsythe and Welch ANOVA tests.
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of host proteins for proteasomal degradation, a system we have previously shown to be exploited during AIEC infection [11]. 
Concentrations of each inhibitor used were those previously published in the literature although it was noted that some caused 
increased cytotoxicity during testing on RAW 264.7 cells, and this was exacerbated by infection in the case of the Adcy1 inhibitor 
ST034307 [28]. Inhibition of Adcy1, Mlkl or Pik3cb function had no significant effect on LF82 infection over the time tested, 

Fig. 8. Quantification of intracellular LF82 burden post-inhibitor treatment using imaging flow cytometry. RAW 264.7 cells infected with LF82::rpsMGFP 
were treated with 1 µM ST034307, 1 µM GSK2636771, 1 µM necrosulfonamide, 100 nM trametinib or 1 µM clomipramine for 24 hpi (a), 48 hpi (b) and 72 
hpi (c). Infected cells treated with DMSO were used as a control. Intracellular LF82::rpsMGFP was counted via IFC. The spot count profile separated cells 
into those with no bacteria, cells containing 1–5 bacteria, or cells containing over five bacteria. The sub-populations of a graph represent the mean 
of three biological repeats. Error bars represent SEM. The number of portions of sub-populations represents the mean of three biological repeats.
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with no reduction in either intracellular bacterial burden or release of inflammatory cytokines. However, the inhibitor of Itch, 
trametinib, alongside the inhibitor of Map2K1, clomipramine, generated intriguing results. While clomipramine significantly 
reduced both intracellular burden of LF82 and the number of cells infected with LF82, trametinib significantly inhibited TNFα 
release. Intriguingly in the case of both inhibitors, they decoupled intracellular proliferation and cytokine release which have 
been shown to be interdependent during AIEC infection [13, 22]. Kinase inhibitors such as trametinib can block cell prolif-
eration, arrest the cell cycle and induce cell death as well as blocking extracellular signal-regulated kinase (ERK) signalling, 
which plays a role in cytokine secretion during AIEC infection [29, 30]. Given proliferation of infected cells is unlikely as cell 
cycle arrest is already occurring during LF82 infection based on the Signature two pathways identified, the reduction in TNFα 
secretion observed is likely due to trametinib interruption of signalling pathways, such as that controlled by ERK, upstream 
of TNFα release.

Fig. 9. TNFα secretion by RAW 264.7 cells measurement post-inhibitor treatment. RAW 264.7 cells were stimulated overnight by 100 ng ml−1 LPS. 
Activated RAW 264,7 cells were then infected with LF82 at MOI of 100 or treated with bacteria-free medium (as uninfected RAW 264.7 cells) for 1 h. One 
hour post-infection, infected or uninfected RAW 264.7 cells were washed and treated with different chemical inhibitors at two different concentrations 
for further indicated times. Infected or uninfected cells in absence of chemical treatment was regarded as a control. Graph (a) represents uninfected 
RAW 264.7 cells that were treated with or without chemical treatments for 6 hpi. (b) As described for (a) but for infected RAW 264.7 cells. (c) Uninfected 
RAW 264.7 cells were treated with chemical inhibitors for 24 hpi. (d) As for (c) but for infected RAW 264.7 cells. Statistical significance was determined 
by one-way ANOVA. *, P<0 00.05. **, P<0.01. ***, P<0.0001.
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The mechanism of action of clomipramine in the context of LF82 infection was more challenging to interpret. Used to treat obsessive 
compulsive disorder, clomipramine effects are likely mediated through reducing re-uptake of norepinephrine and serotonin. However, 
it has recently been used to treat both viral and parasitic infections with a suggested mechanism of action related to its effects on 
lysosomal pH undermining viral protease efficacy [31–34]. With lysosomal defence integral to combatting AIEC infection this may 
explain the phenotype observed here [35]. Clomipramine effect on intracellular LF82 replication was clear cut, significantly reducing 
both the intracellular bacterial load within cells and also the number of cells carrying bacteria. Most strikingly, given previous work 
describing how LF82 intramacrophage replication and TNFα release were intertwined, this reduction in LF82 numbers showed no 
effect on TNFα release. This disconnect between TNFα mediated inflammation and AIEC intracellular replication, which to now 
have described as mutually dependent, may help in unravelling the complex host-AIEC relationship.

The data presented here therefore clearly demonstrates that stratifying infected populations of immune cells into distinct sub-populations 
based on their bacterial load can reveal new therapeutic targets in infection. Here this approach has shed light on tackling a crucial 
population of inflammatory immune cells in CD, those heavily infected with AIEC. This targeted approach is relatively simplistic 
but clearly showed promise, with chemical inhibition of target genes either blocking intracellular replication or reducing secretion 
of TNFα. This is the first time an approach has specifically targeted and been effective against heavily AIEC infected immune cells.
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