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Abstract 

Dissolved Gas Analysis is a well-established tool for transformer health monitoring with published Standards to help with its 

interpretation. However, even though it is known that there is measurement uncertainty regarding the true value of sampled gas, 

there is less available guidance regarding the practical implications. This paper proposes a method for propagating the 

measurement uncertainties through the methodology presented in the IEEE Std C57.104-2019 to provide the degree of support 

for its potential outputs. This is done relying on the simplifying assumption that the measurement uncertainty can be expressed 

as a symmetric triangular distribution for a given gas sample, and that gas samples are independent. The joint probability 

function is derived in general terms analytically and then a stratified sampling approach is proposed to numerically solve the 

function. In addition, a modification is made to allow for a more constrained sampling space by deriving and using a simplifying 

marginal probability without impacting accuracy. These are presented via a use of a case study to demonstrate the efficacy of 

the proposed approaches. 

1 Introduction 

Dissolved Gas Analysis (DGA) is one of the most common 

approaches used for the health monitoring of medium and high 

voltage transformers given the wide range of potential issues 

it can detect [1, 2]. Captured within the liquid insulation, gases 

generated by various processes within the transformer can be 

quantified and analysed to infer its state. The specific gases 

and their quantities will depend on the mode of degradation 

principally affected by the ensuing temperature / energy 

involved [1, 2, 3, 4, 5]. The specific interpretations are subject 

to active research but there are two established standards from 

the IEC 60599-2015 and IEEE Std C57.104-2019 for this topic 

[4, 5]. [5] was published more recently and so can be thought 

to represent a more current understanding of the subject and 

thus is the focus of this research. 

The methodology presented in [5] outputs a Status Level equal 

to either 1, 2, or 3 with associated recommended actions. These 

Status Levels can simplistically be interpreted as things being 

probably okay, things being possibly not okay, and things 

being probably not okay, respectively. They are derived 

through the use of four tables, each comparing a metric to a 

given threshold. Although, it is emphasised in [5] that the 

thresholds should be tailored to a given asset fleet where 

possible. The values provided for the thresholds differ 

depending on the gas, and more generally, the age range and 

type of the transformer. [5] is intended for mineral oil 

immersed transformers of either sealed or free-breathing type. 

There are seven gases covered: hydrogen (H2), methane (CH4), 

ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon 

monoxide (CO), and carbon dioxide (CO2). Within [5], Table 

1 uses the absolute gas level (PPM) from the most recent 

sample and compares to the 90th percentile from their dataset. 

Table 2 uses the same metric but compares to the 95th 

percentile from their dataset. Table 3 considers the relative 

change in gas levels from the previous sample relative to the 

95th percentile from their dataset. Lastly, Table 4 considers the 

rate of gas change normalised to a year based on 4 – 6 samples, 

according to specific criteria, relative to the 95th percentile 

from their dataset. These may range from a 4 to 24-month 

period. The Status Level is then derived from the outputs of 

these checks against the tables for each gas, and then the worst-

case Status Level across the gases is selected to represent the 

current sample.  

[5] references [6] and highlights that there may be 

measurement uncertainty especially as samples are measured 

at near the lower detection limit. [4] suggests a 15% 

uncertainty on measurements ten times above the analytical 

detection limit, increasing to 30% below that, if no further 

information is known. Measurement uncertainty can be 

presented in different ways. For example, [2] suggests simply 

outputting the minimum, mean, and maximum. [7] suggested 

a triangle distribution, and it seems intuitive given it represents 

a distribution where the least is known of it except its range 

and its mean being assumed also its mode. Although this is the 

distribution assumed henceforth, other alternatives such as a 

normal distribution are equally valid. Using this assumption, 

and the assumptions that the gases and each sample are all 

independent, this paper explores the propagation of the 

uncertainty through the methodology presented in [5] such that 

the output would be the degree of support for each Status Level 

to better inform decision-makers. 
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The analytical derivation of the problem will be outlined for 

the Status Level stemming from the tables of each gas. Then, 

the marginal probability distributions for the tables will be 

derived. At this point, the focus is shifted to a numerical 

approach to solve the problem as the analytical form grows 

complicated. A stratified sampling approach is proposed and 

presented with a case study to demonstrate its efficacy. In 

addition, the approach is augmented using a simplifying 

marginal distribution for a subset of the samples to greatly 

reduce the search space without hindering accuracy.  

 

2. Methodology 

2.1 Combined Status Level 

One of the final outputs of the IEEE Standard is a Status Level, 

L, representing the state of the transformer at the current time. 

Each gas, 𝑔, outputs a Status Level and the worst-case is 

assumed to represent the cohort of 𝑘 gases. Therefore, the 

probability of an output of Status Level 1, 𝐿1, is that of all 

gases outputting a Status Level 1. Similarly, the probability of 

Status Level 3, 𝐿3, would be that of any gas outputting a Status 

Level 3. Status Level 2, 𝐿2, is easiest defined as simply the 

residual probability from these mutually exclusive outcomes. 

This is shown in equations (1), (2), and (3) for each Status 

Level, respectively.  

𝑃(𝐿1) =  ∏𝑃(𝐿1,𝑔)

𝑘

𝑔=1

 (1) 

𝑃(𝐿3) = 1 − ∏1 − 𝑃(𝐿3,𝑔)

𝑘

𝑔=1

 (2) 

𝑃(𝐿2) =  1 − 𝑃(𝐿1 ∩ 𝐿3) (3) 

The subsequent equations are for a given gas, but for simplicity 

the subscript 𝑔 for gases will be omitted henceforth. 

 
2.2 Individual Status Level 

For a given gas, the Status Level is determined by the outputs 

of four Tables, 𝑇𝑛 (𝑛 = 1,2,3,4). The relationships between 

the Tables and the Status Levels are shown in (4), (5), and (6), 

respectively. 

𝑃(𝐿1) = 𝑃(𝑇1 ∩ 𝑇2 ∩ 𝑇3 ∩ 𝑇4) (4) 

𝑃(𝐿2) = 𝑃(𝑇′1 ∩ 𝑇2 ∩ 𝑇3 ∩ 𝑇4)

∪ (𝑇′3 ∩ 𝑇2 ∩ 𝑇4) 
(5) 

𝑃(𝐿3,𝑚) = 𝑃((𝑇′2 ∩ 𝑇4) ∪ 𝑇′4) (6) 

Each probability definitions for the individual Tables are 

shown in (7), (8), (9), and (10), respectively. Table 1, 𝑇1, is the 

probability that the newest sample, 𝑌1, has an absolute value 

less than the threshold, 𝜏1. Similarly, Table 2, 𝑇2, is the 

probability that 𝑌1 has an absolute value less than the 

threshold, 𝜏2. Table 3, 𝑇3, compares the remainder of the 

newest sample, 𝑌1, subtracted from the previous sample, 𝑌2, to 

the threshold, 𝜏3. Lastly, Table 4, 𝑇4, uses the slope of a linear 

regression, 𝛽1, of a set of samples, 𝑌1, 𝑌2, … , 𝑌𝑛, to compare 

against a threshold, 𝜏4. This represents the change in gas levels 

normalised to a one-year interval. 

𝑃(𝑇1) = 𝑃(𝑌1 < 𝜏1) (7) 

𝑃(𝑇2) = 𝑃(𝑌1 < 𝜏2) (8) 

𝑃(𝑇3) = 𝑃((𝑌1 − 𝑌2) < 𝜏3) (9) 

𝑃(𝑇4) = 𝑃(𝛽1(𝑌1, 𝑌2, … , 𝑌𝑛) < 𝜏4) (10) 

Perhaps the key takeaway is that although 𝑌1 can be considered 

independent of the other samples, the combined probabilities 

of the tables needed to determine the Status Level are not 

simply the product of one another that would have been the 

case were they all independent events. In particular, the 

probabilities 𝑃(𝑇3) and 𝑃(𝑇4) require joint probability 

distributions of the other samples. 

 
2.3 Marginal Probability Derivations 

The subsequent derivations will not be generalisable to cases 

where the samples’ probability distributions are other than a 

symmetric triangular distribution. This assumption is intrinsic 

throughout and will not be reiterated for each equation.  

2.3.1 Sample Distributions: For a given gas’s sample, 𝑌𝑖, its 

probability density function, 𝑓𝑖(𝑦𝑖), and corresponding 

cumulative distribution function, 𝐹𝑖(𝑦𝑖), can be expressed as 

shown in (11) and (12), respectively. 

𝑓𝑖(𝑦𝑖) =

{
  
 

  
 

0 for 𝑦𝑖  < �̌�𝑖 ,

4( 𝑦𝑖 − �̌�𝑖)(𝑊𝑖)
−1 for �̌�𝑖  ≤ 𝑦𝑖  < �̅�𝑖  ,

2(𝑊𝑖)
−1 for 𝑦𝑖  = �̅�𝑖 ,

1 − 4(�̂�𝑖 − 𝑦𝑖)(𝑊𝑖)
−1 for �̅�𝑖  < 𝑦𝑖  ≤ �̂�𝑖 ,

1 for �̂�𝑖  <  𝑦𝑖 .

 (11) 

𝐹𝑖(𝑦𝑖) =

{
 
 

 
 

0 for 𝑦𝑖  < �̌�𝑖 ,

2(𝑦𝑖 − �̌�𝑖)
2
(𝑊𝑖)

−1 for �̌�𝑖  < 𝑦𝑖  ≤ �̅�𝑖  ,

1 − 2(�̂�𝑖 − 𝑦𝑖)
2
(𝑊𝑖)

−1 for �̅�𝑖  < 𝑦𝑖  < �̂�𝑖 ,

1 for �̂�𝑖  ≤  𝑦𝑖 .

 (12) 

where �̌�𝑖, �̅�𝑖, and �̂�𝑖, represent the minimum, mean, and 

maximum potential value for the sample, 𝑦𝑖 , respectively. 𝑊𝑖 

is simply the range between the minimum and maximum 

potential values for the sample. 

2.3.2 Tables 1 and 2: Equation (12) allows for the simple 

evaluation of the probability of a value being less than a 

threshold as shown in (13) using Table 1, 𝑇1, as an example. 

𝑃(𝑇1) = 𝑃(𝑌1 < 𝜏1) = 1 − 𝐹1(𝜏1) (13) 
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2.3.3 Table 3: For Table 3, 𝑇3, the same form as (13) can be 

used once the values for �̌�1−2, �̅�1−2, and �̂�1−2 for use in (13) 

are first calculated using (14), (15), and (16), respectively. 

�̌�1−2 = �̌�1 − �̂�2 (14) 

�̅�1−2 = �̅�1 − �̅�2 (15) 

�̂�1−2 = �̂�1 − �̌�2 (16) 

2.3.4 Table 4: For Table 4, 𝑇4, the distribution of the potential 

values is not triangular and requires a different process. The 

metric being compared to the threshold, 𝜏4, is the slope of a 

linear regression line, 𝛽1, normalised to a one-year duration 

using a pre-defined set of samples, 𝑌1, 𝑌2, … , 𝑌𝑛, where 𝑛 can 

be between 3 and 6, inclusively. The generic equation for a 

linear regression line is shown in (17). 

𝑦 =  𝛽0 + 𝛽1𝑥 (17) 

where 𝛽0 is the intercept point, 𝛽1 is the slope coefficient, and 

𝑥 is the time the sample was taken relative to sample 𝑌𝑛. In this 

context, 𝑥 can be assumed fixed known values, with only the 

gas values, 𝑦, having uncertainty. Given they are unbiased 

estimates, the mean expected estimate of the slope, �̅�1, can be 

obtained using (18). 

�̅�1 = 
∑ [(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)]
𝑛
𝑖=1

∑ (𝑥𝑖 − �̅�)
2𝑛

𝑖=1

 (18) 

(18) shows that for 𝑃(𝑇4) specifically, 𝛽0 is not relevant given 

it is not needed to evaluate �̅�1, nor is it used when comparing 

to the threshold, 𝜏4. This allows for an alternative form shown 

in (19). 

�̅�1 = ∑
∆𝛽1
∆𝑦𝑖

 �̅�𝑖

𝑛

𝑖=1

 (19) 

For brevity, ∆𝛽1 ∆𝑦𝑖⁄  is henceforth termed ci and represents 

the change in 𝛽1 as 𝑦𝑖  is changed. To calculate the value for a 

given 𝑐𝑖, gas values at points except 𝑦𝑖  can be taken as zero as 

in (20). 

∆𝛽1
∆𝑦𝑖

=
�̅�1 (𝛿𝑖𝑗(�̅�1), 𝛿𝑖𝑗(�̅�2), . . .  , 𝛿𝑖𝑗(�̅�𝑛))

�̅�𝑖
 (20) 

where 𝛿𝑖𝑗 is the Kronecker delta function explained in (21) that 

simply equates all gas values except the point in question to 

zero. Please note, the times, 𝑥𝑖, and thus, �̅�𝑖, remain unaffected. 

This process can then be repeated for each 𝑐𝑖 in turn. 

𝛿𝑖𝑗 = {
0 if 𝑖 ≠ 𝑗,
1 if 𝑖 = 𝑗.

 (21) 

The maximum value for 𝛽1, �̂�1, can be determined using (22) 

where the function, ℎ̂(𝑦𝑖), picks the worst-case value for 𝑦𝑖to 

maximise 𝛽1, as shown in (23). The minimum value, �̌�1, can 

similarly be determined using the reversed logic denoted by 

ℎ̌(𝑦𝑖). 

�̂�1 = ∑𝑐𝑖 × ℎ̂(𝑦𝑖)

𝑛

𝑖=1

 (22) 

ℎ̂(𝑦𝑖) = {
�̌�𝑖 for 𝑥𝑖  < �̅�𝑖 ,
�̂�𝑖  for 𝑥𝑖  ≥ �̅�𝑖 .

 (23) 

Although this defines the extents and mean of the expected 

value for the slope 𝛽1, the distribution is non-trivial to 

calculate. It is the convolution of each component distribution 

of 𝑐1 × 𝑓1(𝑦1). Given this must be repeated 𝑛 − 1 times where 

𝑛 can be up to six samples, this creates a non-trivial problem 

to analytically solve. 

However, given that samples, 𝑦3, … , 𝑦𝑛, are used only once for 

the calculation of 𝑃(𝑇4) and are assumed independent of one 

another, they can be combined into a single marginal 

distribution, demarcated with the subscript, 𝑁. This results in 

a joint distribution shown in (24). 

𝛽1 = ∫ 𝑐1 × 𝑓1(𝑦1)
�̂�1

�̌�1

×∫ 𝑐2 × 𝑓2(𝑦2)
�̂�2

�̌�2

×∫ 𝑐𝑁 × 𝑓𝑁(𝑦𝑁)
�̂�𝑁

�̌�𝑁

𝑑𝑌𝑁  𝑑𝑦2 𝑑𝑦1 

(24) 

To obtain the values for 𝑁, samples, 𝑦3, … , 𝑦𝑛, must be 

combined. (25) and (26) rename terms for brevity. In this case, 
𝑔𝑁(𝑦𝑁) and so 𝐺𝑁(𝑦𝑁), are no longer triangular distribution 

functions described by 𝑓𝑖(𝑦𝑖) and 𝐹𝑖(𝑦𝑖). The combined form 

can be determined by convolving each of the distributions. The 

convolving for each iteration is shown in (27). 

𝑔𝑖(𝑦𝑖) = 𝑐𝑖 × 𝑓𝑖(𝑦𝑖) (25) 

𝐺𝑖(𝑦𝑖) = ∫ 𝑐𝑖 × 𝑓𝑖(𝑦𝑖)
�̂�𝑖

�̌�𝑖

𝑑𝑦 (26) 

(𝑔𝑖 ∗ 𝑔𝑗)(𝑦) =  ∫ 𝑔𝑖(𝑧) × 𝑔𝑗(𝑦 − 𝑧)
∞

−∞

𝑑𝑧 (27) 

 

Fig. 1 Plot of convolving a symmetric triangle using 

Riemann Sum with varying number of samples. 
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2.4 Joint Probability 

Once samples, 𝑦3, … , 𝑦𝑛, have been convolved as per (27), this 

then provides (28) which when integrated spans the entire 

probability space. This can then be modified using appropriate 

limits to find the probabilities of certain events. For example, 

the lower bound for the first sample could be set to the higher 

of �̌�1 and the threshold for Table 1, 𝜏1, and the upper bound set 

to the lower of �̂�1 and the threshold for Table 2, 𝜏2, to represent 

𝑃(𝑇′1 ∩ 𝑇2). 

𝛽1 = ∫ 𝑔1(𝑦1)
�̂�1

�̌�1

×∫ 𝑔2(𝑦2)
�̂�2

�̌�2

×∫ 𝑔𝑁(𝑦𝑁)
�̂�𝑁

�̌�𝑁

𝑑𝑌𝑁  𝑑𝑦2 𝑑𝑦1 

(28) 

However, (28) represents a piecewise integration with many 

parts depending on the scenario and requires careful 

consideration of the limits for each of the integrations that 

results in a non-trivial analytical solution. Furthermore, the 

convolved distribution, 𝑔𝑁(𝑦𝑁), can also be complicated to 

analytically solve. Therefore, an alternative approach is 

proposed. 

2.4.1 Alternative Numerical Estimation: Rather than 

analytically convolving the relevant distributions to obtain 

𝑔𝑁(𝑦𝑁) as shown in (27), the distribution can be estimated for 

each point along its relevant range such that 𝑦𝑘 ∈ [�̌�𝑖 + �̌�𝑗 , �̂�𝑖 +

�̂�𝑗]. To calculate this, an approximation via a Riemann Sum 

was used as shown in (29). 

(𝑔𝑖 ∗ 𝑔𝑗)(𝑦𝑘) ≈∑ 𝑔𝑖(𝑧𝑙) × 𝑔𝑗(𝑦𝑘 − 𝑧𝑙) ∆𝑧
𝑚

𝑙=1
 (29) 

where the range being summed across, 𝑚, covers the entirety 

of both distributions, 𝑔𝑖 and 𝑔𝑗, such that 𝑧𝑙 ∈

[𝑚𝑖𝑛(�̌�𝑖|�̌�𝑗),𝑚𝑎𝑥(�̂�𝑖|�̂�𝑗)]. These points are at a suitably small 

interval, ∆𝑧, to provide a reasonable estimate of the true value. 

An illustrative example is shown in Fig 1, where a simple 

symmetric triangle ranging from -1 to 1 is convolved with 

itself using various values for the number of intervals. It 

demonstrates as the number of intervals increase, ∆𝑧 

decreases, and the expected function is better represented. 

The output of one convolving is then used for the next 

iteratively to combine all distributions across 𝑦3, … , 𝑦𝑛. Prior 

to each iteration, the output can be rescaled by dividing each 

point, 𝑦𝑘 , by the total trapezoidal area to make a well-defined 

probability density function. For the case study, this is done 

using the “trapz” function from the “pracma” library in R [8]. 

The “cumtrapz” function from the same library is then used to 

find the approximate 𝐺𝑖∗𝑗(𝑦𝑖∗𝑗), acting as the cumulative 

distribution function. Care should be taken regarding the 

numerical stability of these imprecise operations to avoid 

excessive accumulated errors if the intervals are too small or if 

𝑐𝑖 approaches zero. 

A stratified sampling approach is used to then find the final 

joint probabilities. Depending on the desired number of 

samples, 𝑠, for a given gas, the probability space is segmented 

into equidistant intervals, 𝑝𝑖 , using (30). This is then used in 

(31) to obtain the gas value, 𝑦𝑖 , to represent the probability 

interval, 𝑝𝑖 . 

𝑝𝑖 = (
2𝑖 − 1

2𝑠
) (30) 

𝑆(𝑦𝑖) =

{
 
 

 
 

�̌�𝑖 +√
𝑊𝑖 . 𝑝𝑖
2

 for 0 ≤ 𝑝𝑖 < 0.5,

�̂�𝑖 − √
𝑊𝑖(1 − 𝑝𝑖)

2
for 0.5 < 𝑝𝑖  ≤ 1.

 (31) 

where 𝑖 is the index of the interval such that 𝑖 ∈ [1, 𝑠]. An 

illustrative example is shown in Fig 2, where the first DGA 

output for the gas, CH4, is sampled ten times. This low value 

is to avoid visual clutter. In the case studies, 50 or 1,000 

samples were used. 

The probability can then be approximated by taking the sum 

of the probability for every given combination of samples, 𝑦𝑖 , 
from the set 𝑆𝑖 generated using (31). (32) shows 𝑃(𝐿1) as an 

example. 

𝑃(𝐿1) =  ∑ 𝑃(𝑇1) ∪ 𝑃(𝑇2) ∪ 𝑃(𝑇3) ∪ 𝑃(𝑇4)

𝑦𝑖∈𝑆𝑖

 
(32) 

3. Case Study 

3.1 Data 

To demonstrate the proposed approach, five sets of DGA 

outputs for three gases are used as detailed in Table 1. Three 

sets of results are presented representing different approaches. 

The first is labelled “A” and uses the sampling approach 

shown in (30) for every DGA output using 50 samples. In this 

approach, 𝑔𝑁(𝑦𝑁), and so (29) is irrelevant as every point is 

being represented.  

Fig. 2 Plot of sampling protocol using 10 samples. 
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The second and third approaches, use the sampling approach 

for only the first and second DGA output, (𝑌1, 𝑌2), using 50 

and 1,000 samples and are labelled “B” and “B+”, 

respectively. When estimating 𝑔𝑁(𝑦𝑁), 1,000 samples were 

used. Approach B is most directly comparable to Approach A, 

and Approach B+ demonstrates the added scope for increasing 

the number of samples given the improved scalability. This is 

because although Approaches B and B+ add some complexity 

prior to starting the sweep by requiring the distribution, 

𝑔𝑁(𝑦𝑁), to be estimated, it caps the number of dimensions to 

sweep across to two, reducing the time to compute relative to 

Approach A. The approaches represent 505, 3 × 1,000 + 502, 

and 3 × 1,000 + 1,0002 samples, respectively. Indicatively, 

Approach A took an order of magnitude longer than approach 

B, although this is highly dependent on the coded 

implementation and hardware used. The difference would 

have been even starker were there to have been the full 

potential 6 DGA outputs to consider. 

As mentioned, Approaches B and B+ use (29) to represent the 

remaining DGA outputs as a marginal distribution. Then, 

going through each sample for (𝑌1, 𝑌2) iteratively, the 

probability for Table 4 is calculated by summing (33). 

𝑃(𝑇4|𝑌1, 𝑌2) = 1 − 𝐺𝑁(𝜏4 − 𝑐1 × 𝑌1 − 𝑐2 × 𝑌2) (33) 

It is reemphasised that the location of 𝑥𝑖 relative to �̅� must be 

accounted for to determine the sign of 𝑐𝑖 as discussed earlier. 

3.2 Results 

From the results of case study, Fig 3 shows the probabilities of 

each 𝑃(𝑇𝑖|𝑌1) or the gases and demonstrates the non-linear 

nature of the distributions. For all Approaches, the 

probabilities for the Tables must then be combined into Status 

Levels as discussed earlier using (1) – (6). The outputs are 

shown in Table 2 and Table 3. In this case, despite the 𝑃(𝑇𝑖|𝑌1) 

varying along 𝑌1, the resulting 𝑃(𝐿𝑖|𝑌1) did not show similarly 

gradual changes, as shown in Fig 4. Given the selection criteria 

for the final Status Level being picking the worst case, it is 

then unsurprising that in this case, the combined 𝑃(𝐿𝑖|𝑌1) for 

all gases is near 1 as shown in Table 3.  

Table 1 Case study data. 

Gas: C2H2 CH4 C2H6 

𝑖 𝑥𝑖 �̅�𝑖  𝑊𝑖 �̅�𝑖 𝑊𝑖 �̅�𝑖 𝑊𝑖 

 
1 180 6.5 1.95 20.0 6.0 30.0 9.0 

2 150 6.0 1.80 8.0 2.4 25.0 7.5 

3 120 6.0 1.80 11.0 3.3 40.0 12.0 

4 90 6.5 1.95 12.0 3.6 38.0 11.4 

5 60 6.5 1.95 10.0 3.0 50.0 15.0 

 

4 Conclusion 

Propagating uncertainty through the IEEE Std C57.104-2019 

methodology is surprisingly complicated largely due to the 

metric used for Table 4. This can create a joint probability with 

numerous samples. The problem was greatly simplified by 

assuming symmetric triangular distributions and that the gases 

are independent. It is argued that for the application of 

measurement uncertainty alone, these assumptions are 

reasonable. This allows for all but the two most recent samples 

can be combined into single distribution. This can reduce the 

computation time for numerically solving the probability 

spaces via sampling methods.  

The results demonstrated near identical outputs but at a greatly 

reduced computation time. However, there is potentially a 

simple analytical solution for the convolving of the samples 

Fig. 3 Plot of the probability of passing each Table 

for a given sample value. 

Fig. 4 Plot of the probability of the Status Level for 

a given sample value. 
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when creating the combined distribution that further work 

could derive. This would remove the need for estimating the 

distribution numerically and would simplify the process 

further. Furthermore, the results also highlight the onerous 

Status Level combination approach potentially losing 

information. This suggests there may be a more granular 

combination approach available utilising the derived 

probabilities that could be explored in further work. Lastly, 

other distributions such as the Normal Distribution could be 

investigated given its simpler additive properties. 

Table 2 Probability for each Table for each Method. 

Gas Method: 𝑃(𝑇1,𝑚) 𝑃(𝑇2,𝑚) 𝑃(𝑇3,𝑚) 𝑃(𝑇4,𝑚) 

 
C2H2  A 0.000 0.689 0.184 0.734 

  B 0.000 0.687 0.184 0.733 

  B+ 0.000 0.688 0.185 0.733 

CH4  A 0.500 0.001 0.068 0.002 

  B 0.500 0.001 0.068 0.002 

  B+ 0.500 0.001 0.069 0.002 

C2H6  A 0.000 1.000 0.791 1.000 

  B 0.000 1.000 0.792 1.000 

  B+ 0.000 1.000 0.791 1.000 

 

Table 3 Probability for each Status Level for each Method, 

including combined Status Level. 

Gas Method 𝑃(𝐿1,𝑚) 𝑃(𝐿2,𝑚) 𝑃(𝐿3,𝑚) 

 

C2H2  A 0.000 0.689 0.311 

  B 0.000 0.688 0.313 

  B+ 0.000 0.687 0.312 

CH4  A 0.001 0.001 0.998 

  B 0.001 0.001 0.998 

  B+ 0.001 0.001 0.998 

C2H6  A 0.000 1.000 0.000 

  B 0.000 1.000 0.000 

  B+ 0.000 1.000 0.000 

Total  A 0.000 0.001 0.999 

  B 0.000 0.001 0.999 

  B+ 0.000 0.001 0.999 
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