
applied  
sciences

Article

Finite-Time Fault-Tolerant Control for a Robot
Manipulator Based on Synchronous Terminal Sliding
Mode Control

Quang Dan Le and Hee-Jun Kang *

School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea; ledantm@gmail.com
* Correspondence: hjkang@ulsan.ac.kr; Tel.: +82-52-259-2207

Received: 25 March 2020; Accepted: 21 April 2020; Published: 25 April 2020
����������
�������

Abstract: In this paper, two finite-time active fault-tolerant controllers for a robot manipulator,
which combine a synchronous terminal sliding mode control with an extended state observer,
are proposed. First, an extended state observer is adopted to estimate the lumped uncertainties,
disturbances, and faults. The estimation information is used to compensate the controller designed
in the following step. We present an active fault-tolerant control with finite-time synchronous
terminal sliding mode control, largely based on a novel finite-time synchronization error and
coupling position error. We also present an active fault-tolerant control that does not use a coupling
position error. By using synchronization control, the position error at each joint can simultaneously
approach toward zero and toward equality, which may reduce the picking phenomenon associated
with the active fault-tolerant controller strategy. Finally, simulation and experimental results for
a three degree-of-freedom robot manipulator verify the effectiveness of the two proposed active
fault-tolerant controllers.

Keywords: synchronous terminal sliding mode control; finite-time fault-tolerant control; finite-time
synchronization control; fault-tolerance for robot manipulator; robot manipulator

1. Introduction

In robot manipulator systems, the occurrence of faults or failures in the actuators or sensors may
lead to degraded robot system performance, system breakdown, and economic loss. In response to the
requirements of enhanced reliability and safety, fault-tolerant control (FTC) has attracted the attention
of researchers over the past few decades. FTC strategies can be divided into two main types [1]: passive
FTC (PFTC) [2,3], and active FTC (AFTC) [4–6].

In PFTC, the ability to tolerate abnormal operation in the presence of faults/failures in components
mainly depends on the robustness of the controller, which can use sliding mode control (SMC) [7,8]
or adaptive control [9,10]. For example, in SMC, faults are considered to be external disturbances.
To guarantee the stability of a system, knowledge of the bounded values of the faults is required in the
SMC design. However, when the bounded value of a fault has a high magnitude, oscillation can occur
during normal operation of a system due to the problem of high gain control. Therefore, the ability of
PFTC to deal with high magnitude faults is limited. Unlike PFTC, AFTC uses the fault information
from the fault estimation process to compensate the conventional controller. Fault estimation (FE) is a
powerful technique that includes fault detection, fault isolation, and fault identification within a step.
The accuracy of the FE highly affects the performance of AFTC, so many estimation techniques have
been developed to improve FE accuracy, such as sliding mode fault estimation [11,12], the extended
state observer technique [6,13], and the learning observer technique [4]. The combination of FE
and a conventional controller not only helps AFTC handle faults with a high magnitude, but also
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overcomes the high gain control issue associated with PFTC. Most work on developing AFTC focuses
on improving the FE accuracy [14,15] or increasing performance of the controller [5,16]. Those AFTC
approaches have led to acceptable performance, but the slow response issue still exists, causing the
picking phenomenon after a fault occurs. This strongly affects the performance of AFTC. Therefore,
in this paper, using the concept of synchronization control, reduction of the picking phenomenon is
addressed to increase the performance of AFTC.

Synchronization control is known as an effective controller for close-loop chain mechanism
systems, such as parallel robot manipulators [17], cable-driver parallel manipulators [18,19], dual-drive
gantry mechanisms [20], and cooperation robot manipulators [21]. Due to the constraints of the
close-loop chain and the existence of position errors at the actuators during motion of the system,
tensor internal forces may occur. This type of force is considered to be an internal uncertainty that can
degrade the performance of a conventional controller. Using a synchronization controller, the position
errors can simultaneously be equal and tend to zero, reducing the effect of the internal force. Therefore,
the synchronization control technique can improve performance of a close-loop chain system. In an
open-chain system, such as a serial robot manipulator, this kind of internal force may not exist, so the
synchronization technique is not effective. However, the position errors at each joint still simultaneously
approach zero when using synchronization control. In this paper, we use the synchronization technique
in a fault-tolerant controller to reduce the effect of the picking phenomenon associated with the AFTC
strategy (AFTCs). When a fault occurs at an actuator, a controller using the synchronization technique
can make the position error at each joint equal, so the controller can quickly respond to a fault before
the controller has the feedback information from the fault estimation process. Therefore, the picking
phenomenon can be reduced.

In this paper, two finite-time active fault-tolerant controls for robot manipulators are proposed.
Both use a synchronization technique based on the synchronous terminal sliding mode control (S-TSMC)
and the extended state observer. First, to estimate lumped uncertainties, disturbances, and faults,
an extended state observer (ESO) [22] is adopted. An ESO is a simple technique for estimating faults in
which simply adjusting the observer parameters leads to simple application in real systems. Next,
an AFTC using the synchronization technique based on terminal sliding mode control (TSMC) [23] with
a novel synchronization error and coupling position error (AFTC S-TSMC1) is proposed. The novel
synchronization error can approach zero in a finite time compared to the conventional coupling position
error in [24]. In addition, the novel synchronization error has an advantage over the conventional
error [25], because it is more closely related to other joints. Compared with existing finite-time
synchronization controls, such as [26], the novel synchronization error does not lead to a singularity
when the desired trajectory crosses zero. This improves the range of the robot manipulator over that
in [26]. Some authors (such as in [27,28]) use graphic theory and prescribe performance control in
the synchronization control. However, the conventional prescribed performance term can become a
singularity during operation, and graphic theory may not be suitable for a single robot manipulator
controller. The second proposed AFTC based on the synchronization technique (AFTC S-TSMC2),
but without the coupling position error, is designed to improve the synchronization of the synchronous
terminal sliding mode control. With the combination of ESO and the synchronization technique, the two
proposed AFTC S-TSMCs can avoid the drawbacks of the PFTC strategy, and their fast response leads
to a robot system that can deal with high-magnitude faults while reducing the picking phenomenon.
Finally, both simulated and experimental results from the two proposed AFTCs verify the effectiveness
of the two novel synchronous terminal sliding mode controllers. The contributions of this paper are
summarized as follows:

(1)Two active fault-tolerant control algorithms for robot manipulators, based on novel finite-time
synchronous terminal sliding mode controllers and an extended state observer, are proposed. The novel
finite-time synchronization technique has the ability to make both the joint position error and the
synchronization error simultaneously approach to zero. Due to these internal constraints of the
synchronization control, the proposed controller can make the system quickly respond to the faults
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in a forward way before its feedback response after a fault estimation. Therefore, the proposed
controller can reduce the occurrence of the picking phenomenon due to the slow feedback response of
AFTC strategy.

(2) The novel synchronization error leads to better synchronization because it uses more information
from other joints than the conventional synchronization error in [25], which has the information from
only one neighbor joint.

(3) The novel coupling error can make the position error approach zero in a finite-time while the
conventional coupling error in [24] cannot guarantee the finite-time convergence.

(4) Two proposed AFTCs can avoid the singularity in both the desired trajectory and the control
action, while the control algorithms in [26–28] cannot guarantee avoiding the singularity. This ability
allows increase in the workspace of the robot.

(5) Experimental results show the effectiveness of the proposed AFTC in reducing both the picking
phenomenon and in handling faults of high magnitude.

The rest of this paper is organized as follows. In Section 2, the dynamic model of a robot
manipulator and associated faults are presented. Fault estimation based on the extended state observer
is discussed in Section 3. In Section 4, a novel synchronization error, coupling position error, and the
finite-time active fault-tolerant control using a synchronous fast terminal sliding mode control are
proposed. Simulation results and discussion about the effect of synchronization parameters are given
in Section 5. In Section 6, the experimental results are shown to verify the effectiveness of the proposed
AFTC. Finally, conclusions are given in Section 7.

2. Dynamic Model of a Robot Manipulator and Fault

The dynamics of an n-degree-of-freedom (DOF) robot manipulator are defined as:

M(q)
..
q + C(q,

.
q)

.
q + G(q) + F f (

.
q) = τ (1)

where
..
q,

.
q, q ∈ <n are the vectors for joint acceleration, velocity, and position, respectively. M(q) ∈ <n×n,

C(q,
.
q) ∈ <n×n, and G(q) ∈ <n represent the inertia matrix, the centripetal and Coriolis matrix, and the

vector of gravitation force, respectively. F f (
.
q) ∈ <n is the vector of friction term which includes a

viscous friction and a dynamic friction, and τ ∈ <n is the vector of torque at the joints.
In practice, the dynamic model of a robot is not known exactly, so Equation (1) can be written as:

(M(q) + ∆M(q))
..
q + (C(q,

.
q) + ∆C(q,

.
q))

.
q + (G(q) + ∆G(q)) + (F f (

.
q) + ∆F f (

.
q)) + δ = τ (2)

where ∆M, ∆C, ∆G, and ∆F are unknown dynamic uncertainties, and δ is an unknown external
disturbance. M(q), C(q,

.
q), G(q) and F(

.
q) are estimates of M(q), C(q,

.
q), G(q) and F(

.
q). Thus,

Equation (2) can be rewritten as:

M(q)
..
q + C(q,

.
q)

.
q + G(q) + F f (

.
q) +ψ(q,

.
q,

..
q, t) = τ (3)

where ψ(q,
.
q,

..
q, t) = ∆M

..
q + ∆C

.
q + ∆G + ∆F + δ.

In general, actuator faults can be divided into two types: bias faults and gain faults. In a robot
manipulator, these are known as loss-of-effectiveness and lock-in-place faults. In practice, both kinds
of actuator faults commonly occur. Therefore, the total torque including both kinds of actuator faults
can be comprehensively described as:

τt = (I − ρ(t))τ+ f(t) (t > t f ) (4)

where f(t) = diag( fi) ∈ <n denotes a bounded signal. ρ(t) = diag(ρi(t)) ∈ <n×n, 0 ≤ ρi(t) < 1
(i = 1, 2, . . . , n), which is unknown, denotes the remaining control rate. I ∈ <n×n is the identity matrix,
and t f is the time of occurrence of each fault.
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Substituting Equation (4) into Equation (3), the dynamics model of an n-degree-of-freedom robot
manipulator with actuator faults can be written as:

M(q)
..
q + C(q,

.
q)

.
q + G(q) + F f (

.
q) +ψ(q,

.
q,

..
q, t) = (I − ρ(t))τ+ f(t) (5)

3. Fault Estimation Using an Extended State Observer

In this section, an extended state observer of uncertainties/disturbances and faults/failures
is presented.

The dynamic model of the robot manipulator of Equation (5) can be rewritten in state space as:

..
q = M−1(q)(τ−H(q,

.
q)) −M−1(q)ζ(q,

.
q,

..
q, τ, t) (6)

where H(q,
.
q) = C(q,

.
q)q + G(q) + F f (

.
q). ζ(q,

.
q,

..
q, τ, t) = ρ(t)τ + ψ(q,

.
q,

..
q, t) − f(t) represents

uncertainties/disturbances and faults/failures.
In the state space, the dynamic model of Equation (6) becomes:{ .

x1 = x2
.
x2 = f (x1, x2, τ) + φ(x2, x2, τ, t)

(7)

where x1 = q ∈ <n, x2 =
.
q ∈ <n, f (x1, x2, τ) = M−1(q)(τ − H(q,

.
q)), and φ(x1, x2, τ, t) =

−M−1(q)ζ(q,
.
q,

..
q, τ, t).

An extended state observer [22] is given as:
.
x̂1 = x̂2 +

α1
ε (x1 − x̂1).

x̂2 = f̂ (x1, x̂2, τ) + α2
ε2 (x1 − x̂1) + φ̂

.
φ̂ = α3

ε3 (x1 − x̂1)

(8)

where x̂1, x̂2, f̂ , and φ̂ are estimates of x1, x2, f , and φ, respectively,α1,α2, and α3 are positive constants,
polynomial s3 + α1s2 + α2s + α3 is Hurwitz, and 0 < ε < 1.

The stability of system Equation (7) with observer Equation (8) is shown in [6] with the conditions

0 < ε < 1 and
∣∣∣∣ .
φ
∣∣∣∣ ≤ L. The observer error convergence is given as:

‖̃e‖ ≤
2εL‖PB‖
λmin(Q)

(9)

where A =


−α1 1 0
−α2 0 1
−α3 0 0

 and B =


0
0
1

, and there is a symmetric positive definite matrix Q satisfying

the Lyapunov equation:
ATP + PA = −Q (10)

4. Finite-Time Fault-Tolerant Control Using Synchronous Terminal Sliding Mode Control

In this section, two finite-time fault-tolerant controls based on a synchronous terminal sliding
mode control are proposed.

Some definition will be useful in the rest of the paper.

Definition 1. We define dxcΛ =
[∣∣∣x1

∣∣∣λ1sign(x1),
∣∣∣x2

∣∣∣λ2sign(x2), . . .
∣∣∣xn

∣∣∣λn sign(xn)
]T
∈ <

n, where λi(i =

1, 2, . . . , n) > 0 and Λ = diag(λi). x = [x1, x2, . . . , xn]
T
∈ <

n and y = [y1, y2, . . . , yn]
T
∈ <

n.

Definition 2. We define x · y = [x1y1, x2y2, . . . , xnyn]
T
∈ <

n.
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Definition 3. The time derivative of dxcΛ is d
dt dxc

Λ = Λ|x|Λ−1
·

.
x =

[
λ
∣∣∣x1

∣∣∣λ−1
.
x1,λ

∣∣∣x2
∣∣∣λ−1

.
x2, . . . ,λ

∣∣∣xn
∣∣∣λ−1

.
xn

]T
,

and xΛ−I =
[
xλ1−1

1 , xλ2−1
2 , . . . , xλn−1

n

]
∈ <

n, where I = diag(1) ∈ <n×n.

The novel synchronization error is defined as:

ε1 = (1 +ψ1ψn)e1 −ψ1e2 −ψ1en

ε2 = (1 +ψ2ψ1)e2 −ψ2e3 −ψ2e1
...

εn = (1 +ψnψn−1)en −ψne2 −ψne1

(11)

where ei(i = 1, 2, . . . , n) is the error at each joint, and ψi(i = 1, 2, . . . , n) is the corresponding positive
gain. In matrix form,

ε = Te (12)

where ε = [ε1, ε2, . . . , εn]
T
∈ <

n, e = [e1, e2, . . . , en]
T
∈ <

n, T ∈ <n×n, and

T =



(1 +ψ1ψn) −ψ1 0 · · · −ψ1

−ψ2 (1 +ψ2ψ1) −ψ2 · · · 0
0 −ψ3 (1 +ψ3ψ2) · · · 0
...
−ψn −ψn 0 · · · (1 +ψnψn−1)


(13)

4.1. The Proposed Active Fault-Tolerant Control with Synchronous Terminal Sliding Mode Control 1 (AFTC
S-TSMC1)

The novel finite-time coupling position error is defined as:

E = αe + β

∫
dεcΛdt (14)

where E = [E1, E2, . . . , En]
T
∈ <

n, α = diag(αi) ∈ <
n×n, and β = diag(βi) ∈ <

n×n are coupling
parameters and positive Λ = diag(λi) 0 < λi < 1.

The synchronous terminal sliding surface is defined as:

S =
.
E + ΓdEcΛ (15)

where S = [S1, S2, . . . , Sn]
T
∈ <

n,
.
E =

[ .
E1,

.
E2, . . . ,

.
En

]T
∈ <

n, Γ = diag(γi) ∈ <
n×n, and γi > 0.

The proposed finite-time active fault-tolerant control is given as:

τ = τeq + τ0 + τob (16)

where τeq = M(q)
(..
qd + α−1βΛ|ε|Λ−I

·
.
ε+ α−1ΓΛ||Λ−I

· .
)
+H(q,

.
q), τ0 = M(q)K1sign(S), τob = −M(q)φ̂,

where K1 = diag(k1i) ∈ <
n×n.

Theorem 1. The system described in Equation (5), using the controller specified in Equation (16) guarantees
that e→ 0 as finite-time.

Proof of Theorem 1. The Lyapunov function can be selected as:

V =
1
2

STS (17)
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The time derivative of V in Equation (17) is:

.
V = ST

.
S

= ST
( ..
E + ΓΛ||Λ−1

· .
)

= ST
(
α
(..
qd −

..
q
)
+ βΛ|ε|Λ−I

·
.
ε+ ΓΛ||Λ−1

· .
)

= ST

 α
 ..

qd −M−1(q)
(
τ−H(q,

.
q)

)
+M−1(q)ζ(q,

.
q, τ, t)

+ βλ|ε|Λ−I
·

.
ε

+ΓΛ||Λ−I
· .


(18)

Substituting Equation (16) into Equation (18):

.
V = −ST(K1sign(S))
≤ −σ1V

1
2 < 0

(19)

where σ1 = λmin(K1). When S = 0 converges, then E = 0 and
.
E = 0, and we have:

.
ei = −

βi
αi
dεic

λ

=
βi
αi

∣∣∣(1 +ψiψi−1)ei −ψiei−1 −ψiei+1
∣∣∣λsign

(
(1 +ψiψi−1)ei
−ψiei−1 −ψiei+1

)
(20)

The system in Equation (20) has equilibrium points at ei = 0 (i = 1, 2, . . . , n; n+ 1 = 1). According
to the definition of terminal attractors [29], we have:∣∣∣∣∣∣∂

.
ei
∂e j

∣∣∣∣∣∣ = βi

αi
λ
∣∣∣(1 +ψiψi−1)ei −ψiei−1 −ψiei+1

∣∣∣λ−1
∣∣∣∣∣∣∂εi
∂e j

∣∣∣∣∣∣ = ∞ (21)

where j = (i− 1, i, i + 1) (i = 1, 2, . . . , n). �

From Equation (5), we have ei → 0(i = 1, 2, . . . , n; ) at a finite-time. Therefore, Theorem 1
is proven.

In Figure 1, the block diagram of the proposed controller AFTC-S-TSMC1 is presented. The block
T in the diagram is synchronization matrix in Equation (13). The block of Fault Estimation uses the
extended state observer in Equation (8). The fault estimation results were used to compensate with a
novel finite-time synchronous terminal sliding mode controller 1.
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Figure 1. The block diagram of the proposed controller active fault-tolerant control with synchronous
terminal sliding mode control 1 (AFTC-S-TSMC1).
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Remark 1. Time convergence from initial state to zero:

t = tr + tsi + tei (22)

Time convergence S→ 0 :

tr ≤
2
σ1

(
ln

(
σ1V

1
2
0 + σ2

)
− ln σ2

)
(23)

Time convergence E→ 0 :

tsi(1) =
1

ci(1− λi)

(
ln

(
γi + σ2E1−λi

i (0)
)
− lnγ1

)
(24)

Time convergence ei → 0 :

tei =
αi

βi(1− λi)
(axi(0) + bxi−1(0) + cxi+1(0))

1−λi (25)

where a = 1 +ψiψi−1, b = −ψi and c = −ψi.

4.2. The Proposed Active Fault-Tolerant Control with Synchronous Terminal Sliding Mode Control 2 (AFTC
S-TSMC2)

The novel synchronous terminal sliding surface:

S =
.
e + πdεcΛ

=
.
e + πdTecΛ

(26)

where c = diag(ci) ∈ <
n×n is the positive matrix gain.

The proposed active fault-tolerant control with synchronous terminal sliding mode 2 (AFTC
S-FTSMC2) is given as:

τ = τeq + τ0 + τob (27)

where τeq = M(q)(
..
qd + πΛ|ε|Λ−I

·
.
ε) + H(q,

.
q), τo = M(q)K1sign(S), τob = −M(q)φ̂ and where

K1 = diag(k1i) ∈ <
n×n.

Theorem 2. The system described in Equation (5), using the controller specified in Equation (27) guarantees
that e→ 0 as finite-time.

Proof of Theorem 2. The Lyapunov function can be selected as:=

V =
1
2

STS (28)

The time derivative of V in Equation (28) is:

.
V = ST

.
S

= ST
(..
e + Λπ|ε|Λ−I

·
.
ε
)

= ST
(..
qd −

..
q + Λπ|ε|Λ−I

·
.
ε
)

= ST

 ..
qd −M−1(q)

(
τ−H(q,

.
q)

)
+M−1(q)ζ(q,

.
q, τ, t) + Λπ|ε|Λ−I

·
.
ε


(29)

Substituting Equation (27) into Equation (29) we have:

.
V = −STK1sign(S) ≤ −σ1V

1
2 ≤ 0 (30)
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where σ1 = λmin(K1). When the sliding mode achieves, the system become as Equation (20) and
shown as above. Therefore, Theorem 2 is proven. �

In Figure 2, the block diagram of the proposed controller AFTC-S-TSMC2 was shown. The block
T is the synchronization matrix in Equation (13). The block of Fault Estimation uses the same extended
state observer in Equation (8) to estimate the lumped uncertainties, disturbances and faults. Compared
with the first proposed controller, the second proposed controller has less computation, and the ability
to converge in a finite-time.
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Figure 2. The block diagram of the proposed controller active fault-tolerant control with synchronous
terminal sliding mode control 1 (AFTC-S-TSMC2).

Remark 2. A singularity may occur at |ε|Λ−Iand |E|Λ−I in Equation (17) and Equation (27) as S approaches
zero. By using saturation function sat(xΛ−I, us), x = |ε| and |E| where us > 0, the singularity can be avoided
and the system retains finite-time stability [23].

Remark 3. The time convergence can be shown as:

t = tr + tei (31)

where tris as shown in Equation (23), and tei is as shown in Equation (25).

5. Simulation Results

In this section, the simulation results for a conventional terminal sliding mode control combined
with an extended state observer([23]+ESO) and the two proposed AFTCs on a 3-DOF robot manipulator
are shown and discussed. The mechanical model of the 3-DOF robot manipulator was built on the
SolidWorks (Dassault Systems, Waltham, MA, USA) with the geometry parameters from the catalog of
the SAMSUNG FARA-AT2 (Samsung, Namdong-gu, Incheon, Korea). Then, a robot manipulator model
was exported to Matlab (MathWorks, Natick, MA, USA) simulation environment by Simmechanics
toolbox. It can be seen in Figure 3, and the parameters of the robot manipulator are shown in Table 1.

Table 1. Parameters of 3-DOF robot manipulator in Matlab simulation.

Links Length (m) Weight (kg) Center of Mass (m) Inertia (kg.m2)

Link 1 0.15 56.5 [−98.3 × 10−3
−2.9 × 10−8

−85.4 × 10−3] [Ixx=0.39 Iyy=0.59 Izz=0.56]
Link 2 0.255 35.6 [−5.5 × 10−30.001 × 10−3

−156.9 × 10−3] [Ixx=0.76 Iyy=0.44 Izz=0.39
Link 3 0.41 58.9 [54.6 × 10−3

−0.01 × 10−3 80.5 × 10−3] [Ixx=0.22 Iyy=1.2 Izz=1.2]
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1

2

3

0.5cos( / 2) 0.5
0.3cos( ) 0.3   
0.2cos( ) 0.2   

d

d

d

q t
q t
q t

= −
 = −
 = −

 (32) 

where dq and dq are the first order and second order derivatives of the desired position, respectively. 
The friction at each joint was assumed to be: 

1 1 1

2 2 2

3 3 3

0.2 ( ) 0.3
0.2 ( ) 0.3
0.2 ( ) 0.3

f

f

f

F sgn q q
F sgn q q
F sgn q q

 = +
 = +
 = +

 
 
 

 (33) 

The total torque function at each joint was assumed to be: 

1 1

2 2 2 2

3 3

                                            
(1 ( )) ( ) 5        

                                            

t

t

t

t f t t
τ τ

τ ρ τ
τ τ

 =
 = − + >
 =

 (34) 

where 2 ( ) 0.4sin( )t tρ π= and 2 ( ) 80sin( / 2)f t tπ= − . 
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For this trajectory tracking simulation, the desired trajectories at each joint are given as:
q1d = 0.5 cos(t/2) − 0.5
q2d = 0.3 cos(t) − 0.3
q3d = 0.2 cos(t) − 0.2

(32)

where
.
qd and

..
qd are the first order and second order derivatives of the desired position, respectively.

The friction at each joint was assumed to be:
F1 f = 0.2sgn(

.
q1) + 0.3

.
q1

F2 f = 0.2sgn(
.
q2) + 0.3

.
q2

F3 f = 0.2sgn(
.
q3) + 0.3

.
q3

(33)

The total torque function at each joint was assumed to be:
τt

1 = τ1

τt
2 = (1− ρ2(t))τ2 + f2(t) t > 5
τt

3 = τ3

(34)

where ρ2(t) = 0.4 sin(πt) and f2(t) = −80 sin(πt/2).
The related parameters for the ESO were chosen to be α1 = 8,α2 = 28,α3 = 7, and ε = 0.01.

The controller ([23]+ESO) is given as:

τ[23]+ESO = τ0 + τsmc + τob (35)

where τeq = M(q)(
..
qd + cΛ|e|Λ−I

·
.
e) + H(q,

.
q), τo = M(q)K1sign(S) and τob = −M(q)φ̂, where K1 =

diag(k1i) ∈ <
n×n. The sliding mode surface was selected as:

S =
.
e + cdecΛ (36)

The parameters for the [23]+ESO were chosen as c = diag(7; 7; 7), K1 = diag(80; 80; 110), us = 20,
and Λ = diag(0.58; 0.58; 0.58). The parameters for the AFTC S-TSMC1were chosen as ψ1 = ψ2 =

ψ3 = 2, α = diag(1; 1; 1), β = diag(0.5; 0.5; 0.5), Λ = diag(0.6; 0.6; 0.6), us = 20, Γ = diag(7; 7; 7) and
K1 = diag(80; 80; 110). The parameters for theAFTCS-TSMC2were chosen as ψ1 = ψ2 = ψ3 = 2,
Λ = diag(0.6; 0.6; 0.6), c = diag(7; 7; 7), us = 20 and K1 = diag(80; 80; 110).

To avoid a singularity, the terms containing power Λ− I in Equations (16),(27) and (35) are replaced
with the saturation function.

sat(u f , us) =

{
us i f u f ≥ us

u f i f u f < us
(37)

where us = 20 is a positive constant, and u f = Λ|x|Λ−I
·

.
x with x = e, ε and E.
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To avoid chattering, the signum function in Equations (16), (27) and (35) are replaced with the
saturation function.

sat(s) =
{

sgn(s) i f |s| ≥ λ
s
λ i f |s| < λ

(38)

where λ = 1.7.
Fault estimation using the extended state observer is presented in Figure 4. The estimation error

with a high fault value at joint 2 is acceptable. The error trajectory tracking results are shown in
Figure 5. In general, all three controllers have an accuracy of within 10−3 rad, indicating that the
AFTC strategy can tolerate faults, and shows acceptable performance. Now, the three controllers are
discussed in more detail. It can be seen from Figure 5 that before five seconds, the errors associated
with the three controllers are similar. As mentioned in Section 1, in the normal operation mode of the
serial robot manipulator, there is no internal force during motion, so the synchronization technique has
no effect in this case. After five seconds, it can be seen that the AFTC S-TSMC2 shows a smaller picking
value than the other controller. In addition, the error characteristics seen with the AFTC S-TSMC2 are
different from those seen with the other controller. This is because this controller has the ability to
make the error at each joint simultaneously approach the zero of the synchronization control. However,
in Figure 6, the synchronizations of AFTC S-TSMC1 and AFTC S-TSMC2 are significantly different,
causing the picking value of AFTC S-TSMC2 to be smaller than the other two controllers. In controller
(17), AFTC S-TSMC1 uses the coupling position error for sliding mode control. It can be seen that
synchronization only occurs after the coupling position error approaches zero. Therefore, this method
does not show the synchronization effect during fault compensation in fault-tolerant control. Unlike
AFTC S-TSMC1, AFTC S-TSMC2 can achieve synchronization after reaching the sliding mode phase.
Hence, the synchronization of the error position in AFTC S-TSMC2 is effective in fault-tolerant control.
From these results and the above analysis, it can be said that the ability to reduce the picking value of
AFTC S-TSMC2 is greater than AFTC S-TSMC1, due to the effective synchronization in AFTC S-TSMC2.Appl. Sci. 2020, 10, x 11 of 15 
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Figure 4. Fault estimation with a single fault at joint 2.

Appl. Sci. 2020, 10, x 11 of 15 

(a)Joint 1 (b)Joint 2 (c)Joint 3 

Figure 4. Fault estimation with a single fault at joint 2. 

(a)Joint 1 (b)Joint 2 (c)Joint 3 
Figure 5. Tracking error at each joint with a single fault at joint 2. 

  
(a)AFTC S-TSMC1 (b)AFTC S-TSMC2 

Figure 6. Tracking error at each joint for AFTC S-TSMC1 and AFTC S-TSMC2. 

6. Experimental Results 

In this section, implementations of the two proposed active fault-tolerant controls with a 
synchronous terminal sliding mode control and AFTC with a conventional terminal sliding mode 
control([23]+ESO) are described. 

6.1. Experimental Setup 

The experimental setup is shown in Figure 7 and uses a 3-DOF FARA-AT2 robot manipulator. 
This robot manipulator has 6-DOF, but for these experiments, joints 4, 5, and 6 were blocked. The 3-
DOF FARA-AT2 robot had a CSMP series motor at each joint. The CSMP-02BB driver (Samsung, 
Namdong-gu, Incheon, Korea) was used for joints 1 and 2, while the CSMP-01BB driver was used for 
joint 3. The gear box at each joint was 120:1,120:1, and 100:1 at joints 1, 2, and 3, respectively. The 
encoder at each joint was a 2048 line count incremental encoder. The controller was run on Labview-
FPGA, NI-PXI-8110 and NI-PXI-7842R PXI cards (National Instruments, Austin, TX, USA) with the 
frequency control set at 500Hz. The NI-PXI-8110 was run on a Windows operating system. 
  

0 5 10 15
Time [s]

-200

-100

0

100

Assumed Fault
Estimated Fault

0 5 10 15
Time [s]

-2

-1

0

1

2 10-3

[23]+ESO
AFTC S-FTSMC1
AFTC S-TSMC2

Er
ro

r [
ra

d]

Er
ro

r [
ra

d]

Er
ro

r [
ra

d]

Figure 5. Tracking error at each joint with a single fault at joint 2.
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6. Experimental Results

In this section, implementations of the two proposed active fault-tolerant controls with a
synchronous terminal sliding mode control and AFTC with a conventional terminal sliding mode
control([23]+ESO) are described.

6.1. Experimental Setup

The experimental setup is shown in Figure 7 and uses a 3-DOF FARA-AT2 robot manipulator.
This robot manipulator has 6-DOF, but for these experiments, joints 4, 5, and 6 were blocked.
The 3-DOF FARA-AT2 robot had a CSMP series motor at each joint. The CSMP-02BB driver (Samsung,
Namdong-gu, Incheon, Korea) was used for joints 1 and 2, while the CSMP-01BB driver was used
for joint 3. The gear box at each joint was 120:1,120:1, and 100:1 at joints 1, 2, and 3, respectively.
The encoder at each joint was a 2048 line count incremental encoder. The controller was run on
Labview-FPGA, NI-PXI-8110 and NI-PXI-7842R PXI cards (National Instruments, Austin, TX, USA)
with the frequency control set at 500Hz. The NI-PXI-8110 was run on a Windows operating system.Appl. Sci. 2020, 10, x 12 of 15 
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The desired trajectory at each joint is given as:

qid(t) =
π
6

sin(
πt

1600
)(i = 1, 2, 3) (39)

The related parameters were chosen to be α1 = 8,α2 = 28,α3 = 7 and ε = 0.01. The [23]+ESO is
given as:

τ[23]+ESO = τ0 + τsmc + τob (40)



Appl. Sci. 2020, 10, 2998 12 of 15

where τeq = M(q)(
..
qd + cΛ|e|Λ−I

·
.
e) + H(q,

.
q), τo = M(q)K1sign(S) and τob = −M(q)φ̂, where K1 =

diag(k1i) ∈ <
n×n. The sliding mode surface was selected as:

S =
.
e + cdecΛ (41)

The parameters for the [23]+ESO were chosen as c = diag(7; 7; 7), K1 = diag(80; 80; 110), us = 10
and Λ = diag(0.5; 0.5; 0.5). The parameters for AFTC S-TSMC1 were chosen as ψ1 = ψ2 = ψ3 =

2, α = diag(1; 1; 1), β = diag(0.5; 0.5; 0.5), Λ = diag(0.5; 0.5; 0.5), us = 3, Γ = diag(7; 7; 7) and
K1 = diag(80; 80; 110). The parameters for AFTC S-TSMC2 were chosen as ψ1 = ψ2 = ψ3 = 2,
Λ = diag(0.5; 0.5; 0.5), c = diag(7; 7; 7), us = 3 and K1 = diag(80; 80; 110).

To avoid a singularity, the terms containing power Λ − I in Equations (16), (27) and (35) are
replaced with the saturation function.

sat(u f , us) =

{
us i f u f ≥ us

u f i f u f < us
(42)

where us is a positive constant, and u f = Λ|x|Λ−I
·

.
x with x = e, ε and E.

To avoid chattering, the signum functions in Equations (16), (27) and (35) are replaced with the
saturation function.

sat(s) =
{

sgn(s) i f |s| ≥ λ
s
λ i f |s| < λ

(43)

where λ = 1.7.

6.2. Experimental Results

The fault estimation results are shown in Figure 8.To reduce the high-frequency chattering and
noises of fault estimation of φ̂ in Equation (8) before it is used in the AFTC scheme, a simple low-pass
filter was adopted as:

φ̂
f ilted
k = (1− υ)φ̂ f ilted

k−1 + υφ̂k (44)

where φ̂ f ilted
k and φ̂k are the output and input, respectively, of the low-pass filter at the kth step.
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lines are the upper and lower thresholds, respectively.

The low-pass filter allowed the signal from the fault estimation (FE) to become smoother and
was suitably applied to the AFTC schemes. However, the fault estimation also increased the time
delay of the feedback to the controller. To ensure that the smoothness and time delay were acceptable,
υ = 0.05 was selected. Unlike in the simulation, the real system included large uncertainties, so upper
and lower thresholds were used to detect faults. In Figure 9, the error tracking trajectory is presented.
These results show that before five seconds, the error values at each joint were similar. However,
after five seconds, due to the effects of synchronization control, the errors at each joint were different.
Unlike in the simulation results, these experimental results show that AFTC S-TSMC1 is more effective
than AFTC S-TSMC2. In a real system with large uncertainties and noise, the coupling position
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error in AFTC S-TSMC1 with the integral term may affect how uncertainties are handled. In general,
both proposed AFTCs can reduce the picking phenomenon, but the effect of each controller is different,
and depends on its knowledge of the system.
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7. Conclusions

In this paper, two finite-time active fault-tolerant controllers for a robot manipulator which
combine a novel synchronous terminal sliding mode control with an extended state observer were
proposed. The proposed controller can make the system quickly respond to the faults in a forward way
before its feedback response after a fault estimation. This characteristic of two proposed controllers can
reduce the occurrence of a picking phenomenon, due to the slow response of an active fault-tolerant
control strategy. In addition, a novel synchronization error, coupling position error, and synchronous
terminal sliding surface show better features such as better synchronization, avoiding the singularities
when the trajectories cross zero, increasing the workspace of a robot, and finite-time convergence of the
position errors. However, it should be noted that the effectiveness of the synchronization techniques
depends on their knowledge of the system. The proposed active fault-tolerant control with synchronous
terminal sliding mode control 2 performs better in a well-known system, while the proposed active
fault-tolerant control with synchronous terminal sliding mode control 1is more effective when the
system has large uncertainties and noises. In the future work, the optimal tuning synchronization
parameters will be studied with methods such as the genetic algorithm and neural network technique,
to improve the effectiveness of synchronization technique in a fault-tolerant control.
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