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Abstract: In this paper, an active fault-tolerant control for a robot manipulator based on synchronous
sliding mode is proposed. As the synchronization errors approach zero, the joint errors tend to become
equal and also approach zero. Therefore, the synchronization technique is inherently effective for a
fault-tolerant controller. To demonstrate such a system, the following implementation is presented.
First, an estimator was designed with an extended state observer to estimate uncertainties/disturbances
along with faults/failures. The estimator signal was used for an online compensator in the controller.
A fault-tolerant controller with a combination of synchronous sliding mode technique and estimator
was proposed. The stability of the system was established using Lyapunov theory. Finally, fault
tolerant control was implemented in a three degree-of-freedom robot manipulator and compared
to the conventional sliding mode control. This comparison shows the effectiveness of the proposed
active fault-tolerant control with synchronous sliding mode technique.

Keywords: fault-tolerant control; active fault-tolerant control; sliding mode control; synchronous
sliding mode control; extended state observer; fault estimation; fault

1. Introduction

During the past two decades, fault detection and fault-tolerant control (FTC) have become attractive
research subjects that can be used to improve system reliability and guarantee system stability in all
situations. Implementation of fault-tolerant control in robot manipulators has encountered a number
of challenges due to high nonlinearities, dynamic uncertainties, and external disturbances. In addition,
the time delay inherent to mechanical systems also affects the performance of FTC. FTC strategies can
be divided into two categories: passive FTC (PFTC) [1,2] and active FTC (AFTC) [3,4]. In PFTC, the
control performances mainly depend on the robust capability dealing with uncertainties/disturbances
of the controller such as sliding mode control [5] or adaptive control [6,7]. In this strategy, the
controller does not have a faults estimation process. The advantage of PFTC is the fast response
when faults occur, because it does not need time to estimate faults. However, the ability to deal with
high magnitude faults is limited. Unlike PFTC, AFTC reconfigures the control system based on the
estimation process. The fault information from the estimation process is used to compensate the
conventional controller. The disadvantage of this strategy is slow response after faults occur, which
leads to the occurrence of a picking phenomenon, because the controller needs the time to estimate the
faults. Most studies in active fault-tolerant control [3,8,9] have focused on increasing the ability to deal
with uncertainties/disturbances of the controller. Therefore, the performance degradation of the system
with the AFTC strategy due to the slow response still remains an open problem. However, AFTC
has better ability when dealing with high magnitude faults than PFTC. As above-mentioned, using
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PFTC or AFTC depends on the characteristics of the system and type of faults. In robot manipulator
control, AFTC generally outperforms PFTC because AFTC includes a fault estimation (FE) step. The
estimated faults can be compensated for by online controller reconfiguration. In this way, the stability
and acceptable performance of the robot can be maintained.

In AFTC, the quality of the fault-tolerant control depends on the accuracy of both FE and the
system reconfiguration after faults occur. In fault estimation processing, several techniques [10–15]
have been used. The parameter estimation method [10] is used to early detect faults applied for
dynamic linear and nonlinear systems. The parity relations [11] used the parity equations to be
combined with the least-square method to estimate faults. The sliding mode observers [12] have been
given lot of attention by researchers. However, this method is limited in real applications due to the
disadvantages such as the chattering phenomenon, the requirement of the knowledge of the fault’s
bound to choose the observer parameters, and the stability issue. In addition, other techniques such
as the Kalman Filter [13], zonotope [14], and nonlinear observer [15] were developed to estimate the
faults as well as uncertainties/disturbances. After faults are estimated, they are compensated for by
using various control strategies [16–18]. In this study, an extended state observer [19] was adopted for
on-line observation of the dynamic uncertainties, disturbances, and faults. An extended state observer
(ESO) is a simple technique for estimating faults in which simply adjusting the observer parameters
leads to simple application in real systems, and the observer can detect and isolate faults without a
fault diagnosis process. In addition, the upper bound of faults does not have to be exactly known in
the design of ESO.

A synchronization technique based on cross-error was first introduced by Y. Koren [20] in the
1980s for a computerized numerical control (CNC) machine. In his idea, a CNC with independent
axes control is extended to enable the control of each access to consider the effects of the other axes
through cross-errors. L. Feng et al. [21] proposed cross-coupling control for mobile robots. He
suggested that minimization of the most significant error leads to coordination of the motion of
the two wheels. Lu Ren et al. [22] introduced synchronization errors, a new type of cross-coupling
error, in controlling a parallel robot manipulator. Synchronization control has also been applied in
multi-robot cooperation [23,24]. Synchronization techniques combined with the sliding mode method
have attracted the interest of many researchers. The position and velocity synchronization error have
been used instead of position and velocity error, respectively, in sliding mode control structures [25].
Zhang et al. [26] also proposed a robust synchronous control based on a sliding mode variable structure
for multi-motors. These studies [23–26] have applied synchronization control techniques to a parallel
robot, multi-robot cooperation, and multi-motors to improve trajectory tracking performance. This
work is interested in addressing a slow response issue by using the synchronization control technique,
which can make the position error at each joint equal. Therefore, the system can quickly respond to a
fault due to the constraint of synchronization control before the controller has the feedback information
from the fault estimation process. Considering the dynamic coupling effects between actuators and the
upper bound of the uncertainties, the effectiveness of synchronization techniques might be somewhat
limited to improvements of the trajectory tracking control. However, synchronization techniques
become more effective in critical conditions, which lead to applying synchronization techniques to the
fault-tolerant control. The contributions of this paper are summarized as follows:

(1) Synchronization techniques are applied to fault-tolerant control for robot manipulators for the
first time. Compared to active fault-tolerant control using conventional sliding mode control, the
proposed system has achieved higher accuracy, robustness, and faster system reconfiguration
when faults occur. These results confirm that synchronization techniques are very effective in
fault-tolerant control.

(2) The stability of the proposed AFTC with the synchronous sliding mode technique is demonstrated
using analysis via Lyapunov theory.
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(3) Based on the extended state observer, the proposed controller can easily monitor faults without
detection and isolation processes. This feature is helpful in maintenance systems as well as
maintenance planning systems.

(4) The experimental results show that the proposed control can be easily applied to a real system
with robust performance.

In this paper, we present a fault-tolerant control for robot manipulators based on synchronous
sliding mode control. Section 2 describes the robot dynamic models. Section 3 explains the process of
fault estimation with the extended state observer for robot manipulators. In Section 4, a fault-tolerant
control based on synchronous sliding mode control is presented and its stability is demonstrated. In
Section 5, a simulation study of the proposed fault-tolerant control for a 3-DOF manipulator was
conducted to show the method’s effectiveness. In Section 6, real implementation of the FTC for a 3-DOF
FARA AT2 robot was carried out in two cases: a single fault and multiple faults. Finally, conclusions
are discussed in Section 7.

2. Dynamics Model of Robot Manipulators

The dynamics of an n-degree of freedom robot manipulator was defined [27] as

M(q)
..
q + C(q,

.
q)

.
q + G(q) + F f (

.
q) = τ (1)

where
..
q,

.
q, q ∈ <n are the vectors of joint acceleration, velocity, and position, respectively. M(q) ∈ <n×n,

C(q,
.
q) ∈ <n, and G(q) ∈ <n represent the inertia matrix, the centripetal and Coriolis matrix, and the

gravitation force, respectively. F f ∈ <
n is the friction term and τ ∈ <n is the torque at the joints.

In practice, the dynamics model of a robot is not exactly known, so Equation (1) can be written as

(M(q) + ∆M(q))
..
q + (C(q,

.
q) + ∆C(q,

.
q))

.
q + (G(q) + ∆G(q)) + (F f (

.
q) + ∆F f (

.
q)) + δ = τ (2)

where ∆M, ∆C, ∆G and ∆F are unknown dynamic uncertainties and δ is the unknown external
disturbances. M(q), C(q,

.
q), G(q) and F(

.
q) are estimated of M(q), C(q,

.
q), G(q) and F(

.
q). Thus,

Equation (2) can be simply rewritten as

M(q)
..
q + C(q,

.
q)

.
q + G(q) + F f (

.
q) +ψ(q,

.
q,

..
q, t) = τ (3)

where ψ(q,
.
q,

..
q, t) = ∆M

..
q + ∆C

.
q + ∆G + ∆F + δ.

Properties:
µ1In ≤M(q) ≤ µ2In
1
µ1

In ≤M−1(q) ≤ 1
µ2

In

In general, actuator faults can be divided into two types: bias faults and gain faults. In a robot
manipulator, these are known as loss of effectiveness and lock-in-place faults. In practice, both kinds
of actuator faults commonly occur. Actuator bias faults can be generally described as

τb = τ+ f(t) (4)

where f(t) = [ f1, f2, . . . fn]
T
∈ <

n(i = 1, 2, . . . , n) denotes a bounded signal. τb is the torque at the joint
when faults occur. Due to loss of effectiveness, actuator gain fault can be described as

τg = (I − ρ(t))τ (5)
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where ρ(t) = diag(ρi(t)) ∈ <n×n, 0 ≤ ρi(t) < 1(i = 1, 2, . . . , n), which is unknown, denotes the
remaining control rate. I ∈ <n×n is the identity matrix. Therefore, the total torque including two kinds
of actuator faults can be comprehensively described as

τt = (I − ρ(t))τ+ f(t) (t > t f ) (6)

where t f is the time of occurrence of each fault.
Substituting Equation (6) into Equation (3), the dynamics model of an n-degree of freedom robot

manipulator with actuator faults can be written as

M(q)
..
q + C(q,

.
q)

.
q + G(q) + F f (

.
q) +ψ(q,

.
q,

..
q, t) = (I − ρ(t))τ+ f(t) (7)

Assumption 1. There exist known positive constants ρi,ρi, f, f such that
∣∣∣ρi(t)

∣∣∣ ≤ ρi,
∣∣∣ .
ρi(t)

∣∣∣ ≤ ρi, |f| ≤ f, and∣∣∣∣ .
f
∣∣∣∣ ≤ f.

3. Fault Estimation Using an Extended State Observer

In this section, an extended state observer of uncertainties/disturbances and faults/failures
is presented.

The dynamic model of the robot manipulator of Equation (7) can be rewritten in state space as

..
q = M−1(q)(τ−H(q,

.
q)) −M−1(q)ζ(q,

.
q,

..
q, τ, t) (8)

where H(q,
.
q) = C(q,

.
q)q + G(q) + F f (

.
q). ζ(q,

.
q,

..
q, τ, t) = ρ(t)τ +ψ(q,

.
q,

..
q, t) − f(t) represents the

uncertainties/disturbances and faults/failures.
In state space, the dynamic model of Equation (8) becomes{ .

x1 = x2
.
x2 = f (x1, x2, τ) + φ(x1, x2, τ, t)

(9)

where x1 = q ∈ <n, x2 =
.
q ∈ <n, f (x1, x2, τ) = M−1(q)(τ − H(q,

.
q)), and φ(x1, x2, τ, t) =

−M−1(q)ζ(q,
.
q,

..
q, τ, t).

An extended state observer [19] is given as

.
_
x 1 =

_
x 2 +

α1
ε (x1 −

_
x 1).

_
x 2 =

_
f (x1,

_
x 2, τ) + α2

ε2 (x1 −
_
x 1) +

_
φ

.
_
φ = α3

ε3 (x1 −
_
x 1)

(10)

where
_
x 1,

_
x 2,

_
f and

_
φ are estimates of x1, x2, f and φ, respectively; α1,α2, and α3 are positive constants;

polynomial s3 + α1s2 + α2s + α3 is Hurwitz; and 0 < ε < 1.

Theorem 1. Considering the system (9) with observer (10) and satisfying 0 < ε < 1 and
∣∣∣∣ .
φ
∣∣∣∣ ≤ L, then

_
x 1(t)→ x1(t) ,

_
x 2(t)→ x2(t) and

_
φ(q,

.
q, t)→ φ(q,

.
q, t) as t→∞ .

Proof. We define the observer error as ẽ = [ẽ1, ẽ2, ẽ3]
T where ẽ1 = (x1 −

_
x 1)/ε2, ẽ2 = (x2 −

_
x 2)/ε and

ẽ3 = φ−
_
φ. From assumption 1 and Equation (9), it can be seen that there will exist a value L satisfying∣∣∣∣ .

φ
∣∣∣∣ ≤ L. The value of L does not need to be exactly known. The function f is a known function of

(x1, x2, τ), and we can take
_
f = f as [19].
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We define the Lyapunov function as

V = εẽTPẽ (11)

where the matrix P is unique, symmetric, and positive.
The time derivative of V in Equation (11) is

.
V = ε

.
ẽ

T
Pẽ + εẽTP

.
ẽ (12)

where

ε
.
ẽ =


ε

.
ẽ1

ε
.
ẽ2

ε
.
ẽ3

 =


.
x1−

.
_
x 1
ε

ε
.
x2−

.
_
x 2
ε

ε(
.
φ−

.
_
φ)

 =

−
α1
ε2 (x1 −

_
x 1) +

1
ε (x2 −

_
x 2)

−
α2
ε2 (x1 −

_
x 1) + (φ−

_
φ)

ε
.
φ− α3

ε2 (x1 −
_
x 1)


=


−α1ẽ1 + ẽ2

−α2ẽ1 + ẽ3

−α3ẽ1 + ε
.
φ

 = Aẽ + εB
.
φ

(13)

where

A =


−α1 1 0
−α2 0 1
−α3 0 0

 and B =


0
0
1

.
It is easy to see that A is Hurwitz, so there is a symmetric positive definite matrix Q satisfying the

Lyapunov equation
ATP + PA = −Q (14)

Substituting Equations (13) and (14) into Equation (12), we have

.
V = ε

.
ẽ

T
Pẽ + εẽTP

.
ẽ

= (Aẽ + εB
.
φ)

T
Pẽ + ẽTP(Aẽ + εB

.
φ)

= ẽTATPẽ + ε(B
.
φ)

T
Pẽ + ẽTPAẽ + εẽTPB

.
φ

= ẽT(ATP + PA)ẽ + 2εẽTPB
.
φ

≤ −ẽTQẽ + 2ε‖PB‖ · ‖ẽ‖ ·
∣∣∣∣ .
φ
∣∣∣∣

(15)

where L is the positive constant that satisfies
∣∣∣∣ .
φ
∣∣∣∣ ≤ L. Therefore,

.
V ≤ −λmin(Q)‖ẽ‖2 + 2εL‖PB‖‖ẽ‖ (16)

To guaranty stability of the system, we impose
.

V ≤ 0, so the observer error convergence is given as

‖ẽ‖ ≤
2εL‖PB‖
λmin(Q)

(17)

�
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4. Fault Tolerant Control with Synchronous Sliding Mode Control

In this section, the fault-tolerant control based on synchronous sliding mode control is proposed.
Some definitions are necessary to propose the fault-tolerant control law. Synchronization error [28] is
given as

ε1 = ψ1e1 −ψ2e2

ε2 = ψ2e2 −ψ3e3
...
εn−1 = ψn−1en−1 −ψnen

εn = ψnen −ψ1e1

(18)

where ei(i = 1, 2, . . . , n) is the error at each joint and ψi(i = 1, 2, . . . , n) is the corresponding positive
gain. The synchronization control goal [28] is stated as e1 = e2 = e3 = . . . = en and ei → 0 at t→∞ .
In a traditional controller, only the position error converges to zero, but in the synchronization control,
the kinematic relationship among the errors as well as the position error converges to zero. For ease of
practical implementation, ψi = 1 is chosen. Then, Equation (18) can be written as

ε1 = e1 − e2

ε2 = e2 − e3
...
εn = εn − ε1

(19)

Cross-coupling error [28] is given as

ξ1 = γ1ε1 − γnεn

ξ2 = γ2ε2 − γ1ε1
...
ξn = γnεn − γn−1εn−1

(20)

where γi(i = 1, 2, . . . , n) is the positive gain. In this paper, γi = 1 was chosen. Then, Equation (20) can
be written as

ξ1 = ε1 − εn

ξ2 = ε2 − ε1
...
ξn = εn − εn−1

(21)

The coupling position error [28], which includes the position and synchronization errors, is
defined as

Ei = µiei + ηi

∫
ξidt (22)

where ηi and µi are positive gains. The synchronous sliding surface [26] is defined as

S =
.
E + cE (23)

where S = [S1, S2, . . . , Sn]
T
∈ <

n;c ∈ <n×n is the diagonal positive matrix; and E = [E1, E2, . . . , En]
T
∈

<
n with Ei defined in Equation (22). For ease of implementation, the synchronous sliding surface is

rewritten as

s =
.
e + ce + αξ+ κ

∫
ξdt (24)

where s = [S1/µ1, S2/µ2, . . . , Sn/µn]
T
∈ <

n, α = diag(ηi/µi) ∈ <
n×n and κ = diag(ciηi/µi) ∈

<
n×n (i = 1, 2, . . . , n) are positive gain matrices.
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Here, the fault-tolerant control law is proposed as

τ = τ0 + τSSMC + τob (25)

where
τ0 = M(q)

..
qd + H(q,

.
q), τssmc = M(q)(c

.
e + α

.
ξ) + k1sgn(s) + k2s + k3ξ, and τob = −M(q)

_
φ.

Theorem 2. The system described in (7), using controller specified in (25) guarantees that e→ 0 and ε→ 0 as
time t→∞ under the condition k3 > κ.

Proof. Following [22], the Lyapunov function can be selected as

V =
1
2

sTs +
1
2

n∑
i=1

Λεε
2
i +

1
2

n∑
i=1

κεΛε

(∫
εi − εi−1

)2

dt ≥ 0 (26)

The time derivative of V is therefore

.
V = sT .

s +
n∑

i=1

.
εiΛεε+

n∑
i=1

κεΛε(εi − εi−1)
∫
(εi − εi−1)dt

= A1 +
n∑

i=1

.
εiΛεε+

n∑
i=1

κεΛε(εi − εi−1)
∫
(εi − εi−1)dt

(27)

where A1 = sT .
s. Λε and κε are positive gain.

Differentiation of Equation (24) gives

.
s =

..
e + c

.
e + α

.
ξ+ κξ =

..
qd −

..
q + c

.
e + α

.
ξ+ κξ (28)

Substituting Equation (8) into Equation (28) yields

.
s =

..
qd + c

.
e + α

.
ξ+ κξ−M−1(q)(τ−H(q,

.
q)) −M−1(q)ζ(q,

.
q, τ, t) (29)

Substituting Equation (25) into Equation (29), we have

.
s =

..
qd + c

.
e + α

.
ξ+ κξ−M−1(q)

{
M(q)

..
qd + H(q,

.
q) + M(q)(c

.
e + α

.
ξ) + k1sgn(s) + k2s + k3ξ

−M(q)
_
φ −H(q,

.
q)

}
+ M−1(q)ζ(q,

.
q,

..
q, τ, t)

= −M−1(q)k1sgn(s) −M−1(q)k2s− (κ+ M−1(q)k3)ξ+
_
φ + M−1(q)ζ(q,

.
q,

..
q, τ, t)

(30)

It can be seen that when
_
φ → φ at t→∞

_
φ = −M−1(q)ζ(q,

.
q, τ, t) then Equation (30) becomes

.
s = M−1(q)(−k1sgn(s) − k2s− (k3 − κ)ξ) (31)

From Properties, we have

.
s ≤

1
µ2

I(−k1sgn(s) − k2s− (k3 − κ)ξ) (32)

and
A1 = sT .

s ≤ sT 1
µ2

I(−k1sgn(s) − k2s− (k3 − κ)ξ)

= − 1
µ2

Ik1|s| − 1
µ2

Ik2‖s‖2 − sT 1
µ2

I(k3 − κ)ξ

= − 1
µ2

Ik1|s| − 1
µ2

Ik2‖s‖2 −A2

(33)

In Equation (33), we have
A2 = sTΛξ,
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where Λ = 1
µ2

I(k3 − κ). Then,

A2 = sTΛξ =
n∑

i=1
siΛiξi =

n∑
i=1

siΛε(εi − εi−1)

= s1Λε(ε1 − εn) + s2Λε(ε2 − ε1) + s3Λε(ε3 − ε2) + . . .+ snΛε(εn − ε1)

= (s1 − s2)Λεε1 + (s2 − s3)Λεε2 + (s3 − s3)Λεε3 + . . .+ (sn − s1)Λεεn

=
n∑

i=1
(si − si+1)Λεεi

(34)

where Λε = Λi = Λi+1 (i = 1, 2, . . . , n; n + 1 = 1).
Using Equations (21) and (24), we have

si − si+1 =
.
ei + ciei + αi(εi − εi−1) + κi

∫
(εi − εi−1)dt−

.
ei+1 − ci+1ei+1 − αi+1(εi+1 − εi) − κi+1

∫
(εi+1 − εi)dt

= (
.
ei −

.
ei+1) + (ci + ci+1)(ei − ei+1) + (αi + αi+1)(2εi − εi−1 − εi+1) + (κi + κi+1)

∫
(2εi − εi−1 − εi+1)dt

=
.
εi + ci

i+1εi + αi
i+1(2εi − εi−1 − εi+1) + κi

i+1

∫
(2εi − εi−1 − εi+1)dt

(35)

where ci
i+1 = ci + ci+1, αi

i+1 = αi + αi+1 and κi
i+1 = κi + κi+1(i = 1, 2, . . . , n and n + 1 = 1).

Substituting Equation (35) into Equation (34) gives

A2 =
n∑

i=1
(si − si+1)Λεεi

=
n∑

i=1

 .
εi + ci

i+1εi + αi
i+1(2εi − εi−1 − εi+1)

+κi
i+1

∫
(2εi − εi−1 − εi+1)dt

Λεεi

=
n∑

i=1

.
εiΛεεi+

n∑
i=1

εici
i+1Λεεi+

n∑
i=1

(2εi − εi−1 − εi+1)α
i
i+1Λεεi +

n∑
i=1

κi
i+1Λεεi

∫
(2εi − εi−1 − εi+1)dt

=
n∑

i=1

.
εiΛεεi+

n∑
i=1

εici
i+1Λεεi+

n∑
i=1

(2εi − εi−1 − εi+1)αεΛεεi +
n∑

i=1
κεΛεεi

∫
(2εi − εi−1 − εi+1)dt

(36)

where αε = αi/2 = αi+1/2 , κε = κi/2 = κi+1/2(i = 1, 2, . . . , n and n + 1 = 1).
In Equation (36), we can simplify the expression with

n∑
i=1

(2εi − εi−1 − εi+1)αεΛεεi = αεΛε(2ε1 − εn − ε2)ε1 + αεΛε(2ε2 − ε1 − ε3)ε2 + . . .+ αεΛε(2εn − εn−1 − ε1)εn

= αεΛε(ε2
1 + ε2

2 − 2ε1ε2) + αεΛε(ε2
2 + ε2

3 − 2ε2ε3) + . . .+ αεΛε(ε2
n + ε2

1 − 2εnε1)εn

=
n∑

i=1
αεΛε(εi − εi+1)

2

(37)

and

n∑
i=1

κεΛεεi
∫
(2εi − εi−1 − εi+1)dt = κεΛεε1

∫
(2ε1 − εn − ε2)dt + κεΛεε2

∫
(2ε2 − ε1 − ε3)dt

+ . . .+ κεΛεεn
∫
(2εn − εn−1 − ε1)dt

= κεΛε(ε1 − εn)
∫
(ε1 − εn)dt + κεΛε(ε2 − ε1)

∫
(ε2 − ε1)dt

+ . . .+ κεΛε(εn − ε1)
∫
(εn − ε1)dt

=
n∑

i=1
κεΛε(εi − εi−1)

∫
(εi − εi−1)dt

(38)

Substituting Equations (37) and (38) into Equation (36) yields

A2 =
n∑

i=1

.
εiΛεεi+

n∑
i=1

εici
i+1Λεεi+

n∑
i=1

(2εi − εi−1 − εi+1)αεΛεεi+
n∑

i=1
κεΛεεi

∫
(2εi − εi−1 − εi+1)dt

=
n∑

i=1

.
εiΛεεi+

n∑
i=1

ci
i+1Λεε2

i +
n∑

i=1
αεΛε(εi − εi+1)

2 +
n∑

i=1
κεΛε(εi − εi−1)

∫
(εi − εi−1)dt

(39)
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Substituting Equation (39) into Equation (33) and then substituting Equation (33) into
Equation (27) gives

.
V ≤ −

1
µ2

Ik1|s| −
1
µ2

Ik2‖s‖2 −
n∑

i=1

ci
i+1Λεε

2
i −

n∑
i=1

αεΛε(εi − εi+1)
2
≤ 0 (40)

Assume that si, εi,
.
si and

.
εi are bounded. Therefore, si and εi are uniformly continuous. Then,

from Barbalat’s lemma, it is concluded that si → 0 and εi → 0 as time t→∞ .
Now, we prove ei = 0 when si → 0 and εi → 0 . From Equations (23) and (24), si → 0 implies

Ei → 0 . Combining all equations in Equation (22) with indices 1 to n, one obtains

e1 + e2 + . . .+ en =
n∑

i=1

Ei = 0 (41)

We also have εi = 0 when t→∞ , which means e1 = e2 = e3 = . . . = en. Substituting this part
into Equation (41) we have

e1 = e2 = e3 = . . . = en = 0 (42)

Therefore, Theorem 2 is proven. �

5. Simulation Results

In this section, a simulation of the proposed fault-tolerant control algorithm for the 3-DOF
manipulator shown in Figure 1 is described.
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Figure 1. 3-DOF Robot Manipulator in MATLAB/Simulink.

For this trajectory tracking simulation, the desired trajectories at each joint are given as
q1d = 0.5 sin(t/2)
q2d = 0.3 sin(t)
q3d = 0.2 sin(t)

(43)

The friction at each joint is assumed to be
F1 f = 0.2sgn(

.
q1) + 0.3

.
q1

F2 f = 0.2sgn(
.
q2) + 0.3

.
q2

F3 f = 0.2sgn(
.
q3) + 0.3

.
q3

(44)
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5.1. Simulation 1

In this part, the parameter selection of the extended state observer as seen in Equation (10) is
explained. The total torque function at each joint is assumed to be

τt
1 = τ1

τt
2 = (1− ρ2(t))τ2 + f2(t) t > 5
τt

3 = τ3

(45)

where for loss of effectiveness, ρ2(t) = 0.4 sin(πt), and a fault function f2(t) = 60 sin(πt/2).
For the extended state observer of Equation (10), the four parameters such as α1,α2,α3 and ε

should be suitably selected. The turning parameters in the set of α1,α2,α3 that should satisfy the
Hurwitz condition are quite related to the qualities of the observer such as the accuracy and peaking
values. From this consideration, the turning parameters were set as α1 = 8,α2 = 28,α3 = 7. For
ε, Equation (17) shows that the value of ε highly affects the behavior of the observer convergence.
Therefore, three different values of ε = 0.1, 0.01, and 0.001 were considered in this simulation. In
Figure 2b, it can be seen that the peaking value highly defends the selection of ε. The smaller value
of ε causes faster convergence, but the high magnitude peaking value in the fault estimation. As a
trade-off between the convergence and the peaking value, ε = 0.01 was selected.
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Figure 2. Fault estimation results with a single fault at Joint 2 with the different values of ε. (a) Joint 1;
(b) Joint 2; (c) Joint 3.

5.2. Simulation 2

For comparison, a passive fault tolerant control with conventional sliding mode control
(PFTC-SMC) and active fault-tolerant control with conventional sliding mode control (AFTC-SMC)
were considered, in addition to the proposed active fault-tolerant control with synchronous sliding
mode control (AFTC-SSMC).

The parameters of the observer were chosen as in Section 5.1. The AFTC-SMC is given as

τAFTC-SMC = τ0 + τsmc + τob (46)

where τ0 = M(q)(
..
qd + c

.
e) + H(q,

.
q), τsmc = k1sgn(s) + k2s and τob = −M(q)

_
φ, in which the sliding

mode surface is selected as
s =

.
e + ce (47)

The parameters in AFTC-SMC were suitably chosen as c = diag(7; 7; 7), k1 = diag(220; 220; 220),
and k2 = diag(250; 250; 250). The PFTC-SMC is given as

τPFTC-SMC = M(q)(
..
qd + c

.
e) + H(q,

.
q) + k1sgn(s) + k2s (48)

The parameters in PFTC-SMC were suitably chosen as c = diag(7; 7; 7), k1 = diag(220; 220; 220)
and k2 = diag(250; 250; 250). The parameters of AFTC-SSMC were suitably chosen as c = diag(7; 7; 7),
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α = diag(20; 20; 20), κ = diag(0.5; 0.5; 0.5),k1 = diag(220; 220; 220), k2 = diag(250; 250; 250), and
k3 = diag(30, 30, 30).

To avoid chattering, the signum function in Equations (25), (46), and (48) are replaced with the
saturation function,

sat(s) =
{

sgn(s) i f |s| ≥ λ
s
λ i f |s| < λ

(49)

where λ = 1.7.
In this case, a failure occurs only at a single joint. The total torque function at each joint is assumed

to be 
τt

1 = τ1

τt
2 = (1− ρ2(t))τ2 + f2(t) t > 5
τt

3 = τ3

(50)

where ρ2(t) = 0.4 sin(πt) and f2(t) = 60 sin(πt/2).
In Figure 3b, the single fault occurs at Joint 2 after five seconds. Figure 3 shows the fault estimation

algorithm given in Equation (10) seems to be working well even though its estimation error still exists
on the order of 1/100 of the fault magnitude. In Figure 4, without fault estimation, PFTC-SMC cannot
guarantee the performance after the fault occurs. Unlike PFTC, the joint position errors of AFTC-SMC
and proposed AFTC-SSMC look very different, but they were all on the order of 10−3, so that the
overall trajectory tracking performance of the two control algorithms can be said to be acceptable in
this simulation. However, it can be seen that the proposed AFTC-SSMC has very high accuracy after a
fault occurs. This fault-tolerant capability can be said to come from the synchronous SMC. Each joint
error is coupled and constrained due to the synchronization errors and the newly defined synchronous
sliding surface.
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Figure 3. Fault estimation results with a single fault at Joint 2. (a) Joint 1; (b) Joint 2; (c) Joint 3.
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Figure 4. Tracking error at each joint in the simulation with a single fault at Joint 2. (a) Joint 1; (b) Joint
2; (c) Joint 3.
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5.3. Simulation 3

In this part, the effect of the actuator loss effectiveness factor to the proposed fault tolerant control
is discussed. The assumed fault is given as

τt
1 = τ1

τt
2 = (1− ρ2(t))τ2 + f2(t) t > 5
τt

3 = τ3

(51)

where the fault function of f2(t) = 60 sin(πt/2) and ρ2(t) with the different values such as C1:
ρ2(t) = 0.1, C2: ρ2(t) = 0.5, C3: ρ2(t) = 0.9. The selected parameters of the observer are in Section 5.2.

Even though the total fault function has a large magnitude with ρ2(t) of 0.9 as seen in Figure 5b,
each joint error was still less than the value of 10−3 in Figure 6. Therefore, it can be said that the
proposed fault tolerant control can have the capability to show acceptable performances, even in the
case of a high value of ρ2(t).
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5.4. Simulation 4

To test the robustness of the fault-tolerant characteristics of the proposed algorithm, simulations
with multiple faults were performed with the three control algorithms Equations (25), (46) and (48), for
which the parameters were selected in Section 5.2. Multiple faults/failure functions were assumed to be

τt
1 = τ1 + f1(t) t > 5
τt

2 = (1− ρ2(t))τ2 + f2(t) t > 5
τt

3 = (1− ρ3(t))τ3 t > 5
(52)

where f1(t) = 60, ρ2(t) = 0.4 sin(πt), f2(t) = 60 sin(πt/2), and ρ3(t) = 0.7 sin(πt).
In Figure 7, the estimation results with multiple joint faults have been shown. Multiple faults

simultaneously occurring at each joint seemed to burden the control system more than a single fault
did. However, the proposed algorithm still resulted in smaller position-tracking errors than the
conventional algorithm, demonstrating fault-tolerant characteristics, as seen in Figure 8.
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Remark 1. As mentioned in Section 1, the accuracy of fault estimation highly affects the performance of AFTCs,
so Simulation 1 discussed the design of ESO. As a trade-off between the convergence and the peaking value of
estimation results, the parameters of the observer were selected by using a trial–error technique, as shown in the
Simulation 1 results. In Simulations 2, 3, and 4, the outperformance of the proposed controller was presented by
the tracking trajectory error results. In Simulation 3, the robustness of the proposed controller was described
with a high magnitude of fault. In this case, PFTC-SMC and AFTC-SMC could not guarantee stability of the
system. However, the proposed AFTC-SSMC could keep the system stable and showed acceptable performance
results with the tracking trajectory error inside 10−3 rad. In Simulations 2 and 4, single and multiple faults were
presented. Compared with the two fault-tolerant controllers without the consideration of the synchronization
error, the proposed controller can reduce the picking phenomenon due to the simultaneous approach to zero at
each joint of the synchronization technique. This characteristic of synchronization control can act to prevent the
slow response of AFTCs.

6. Experimental Results

In this section, the real implementation of fault-tolerant control with AFTC-SMC and the proposed
AFTC-SSMC is described, and the experimental results were compared and discussed in the case of
both single and the multiple joint faults.

6.1. Experimental Setup

The experimental setup is shown in Figure 9 with a 3-DOF FARA-AT2 robot manipulator. This
robot manipulator has 6-DOF, but for these experiments joints 4, 5, and 6 were blocked. The 3-DOF
FARA-AT2 robot had a CSMP series motor at each joint, and aCSMP-02BB driver was used for Joints 1
and 2 while the CSMP-01BB driver was used for Joint 3. The gear box at each joint is 120:1, 120:1, 100:1
at Joints 1, 2, and 3, respectively. The encoder at each joint was a 2048 line count incremental encoder.
The controller ran on Labview-FPGA NI-PXI-8110 and NI-PXI-7842R PXI cards with the frequency
control set at 500 Hz. NI-PXI-8110 was run on a Windows operating system.
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The desired trajectory at each joint is given as

qi(t) =
π
6

sin(
πt

1600
) (i = 1, 2, 3) (53)

6.2. Experimental Design

To reduce the high-frequency chattering of fault estimation of
_
φ in Equation (10) before it is used

in the AFTC scheme, a simple low-pass filter was designed as

_
φ

f ilted

k = (1− υ)
_
φ

f ilted

k−1 + υ
_
φk (54)

where
_
φ

f ilted

k and
_
φk are the output and input, respectively, of the low-pass filter at the kth step. The

low-pass filter as seen in the next subsection allows the signal from the fault estimation (FE) to become
smoother and is suitably applied to the AFTC schemes. However, the FE also increases the time delay
of the feedback to the controller. To ensure that the smoothness and time delay are acceptable, υ = 0.05
was selected.

The related parameters of the FE in Equation (10) can be suitably selected asα1 = 2,α2 = 3,α3 = 0.3,
and ε = 0.01.

The parameters of AFTC-SMC (Equation (46)) were suitably selected as c = diag(3; 3; 3), k1 =

diag(50; 110; 90), and k2 = diag(50; 100; 90).
The parameters of the proposed AFTC-SSMC (Equation (25)) were suitably chosen as c =

diag(3; 3; 3),α = diag(3; 3; 3), κ = diag(1.5; 1.5; 1.5),k1 = diag(50; 110; 90), k2 = diag(50; 100; 90),k3 =

diag(30, 30, 30), and the sign function in the control law in Equation (46) and the AFTC-SSMC was
replaced by the saturation function

sat =
{

sgn(s) i f s > λ
s/λ i f s ≤ λ

where λ = 1.6.

6.3. Experimental Results

6.3.1. Single Fault

In this experiment, the fault occurred only at a single joint after 10 s. The desired fault function
includes bias, and the fault is assumed to be

τt
1 = τ1

τt
2 = (1− ρ2(t))τ2 + f2(t) t > 5000
τt

3 = τ3

(55)

where ρ2(t) = 0.4 sin(πt/2400) and f2(t) = −60 sin(πt/2400).
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The results are shown in Figures 10–12. First, in Figure 10, the fault estimation is presented where
the dashed aqua and pink lines are the upper and lower thresholds, respectively. The estimation
results of the uncertainties and disturbance were within the thresholds for Joints 1 and 3, and for Joint
2 before the fault occurred. In contrast to the simulation results, the fault estimation results were not
close to 0 before the fault occurred because in practice, relatively high value for the uncertainties and
disturbances always exist. Therefore, using such thresholds is a good method for monitoring when
faults occur in real applications. As shown in Figure 10, the extended state observer estimated the fault
well. In Figure 11, the tracking error performance at each joint is shown. Before the fault occurred, the
tracking trajectory of the proposed AFTC had no advantage over the AFTC with conventional sliding
mode control. However, after the fault occurred, the advantages of the proposed AFTC were observed;
the error at Joint 2 with AFTC-SSMC was smaller than that of AFTC-SMC, and the joint error was
approximately 0.005 rad when the fault occurred. This means that the proposed controller has the
ability to prevent tracking errors from getting larger due to a fault, and thus averting a critical condition
(Figure 11b); the Joint 2 error of the AFTC-SSMC was reduced when compared to that of the AFTC-SMC
after faults. However, the Joints 1 and 3 errors of AFTC-SSMC were slightly increased compared
with those of AFTC-SMC after faults (Figure 11a,c). This is probably due to the synchronization
techniques, which tend to drive all joint errors to be comparable. The proposed synchronous control
seems well-suited for fault tolerant control. In addition, the synchronization joint errors theoretically
approached zero, and as shown in Figure 12, they remained less than ~0.0025 rad in this experiment.
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Figure 10. Fault estimation results with a single joint fault occurring at Joint 2. The aqua and pink
dashed lines are the upper and lower thresholds, respectively. (a) Joint 1; (b) Joint 2; (c) Joint 3.
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Figure 11. Tracking error at each joint with a single joint fault occurring at Joint 2. (a) Joint 1; (b) Joint 2;
(c) Joint 3.
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Figure 12. The synchronization error with a single joint fault occurring at Joint 2. (a) Joint 1; (b) Joint 2;
(c) Joint 3.

6.3.2. Multiple Faults

The effectiveness of the proposed fault-tolerant control in the case of multiple faults was also
investigated. The desired faults occurred after 10 sand are assumed to be

τt
1 = τ1 + f1(t) t > 5000
τt

2 = (1− ρ2(t))τ2 + f2(t) t > 5000
τt

3= (1−ρ3(t))τ3 t > 5000
(56)

where f1(t) = 30, ρ2(t) = 0.4 sin(πt/2400), f2(t) = −60 sin(πt/2400), and ρ3(t) = −0.7.
The overall results of this experiment are similar to the previous results from the simulations and

the single fault experiments. The fault estimation capability is still at the same level as that of the single
fault case, as seen in Figure 13. The trajectory tracking performances of the two algorithms can be said to
have behaviors similar to those seen in Figure 14. AFTC-SSMC showed the smaller trajectory tracking
errors, especially after the faults occurred at 10 s, demonstrating the fault-tolerant characteristics, even
in this multiple faults case. In Figure 14a,b, it can be seen that the picking phenomenon due to the
slow response of the AFTC strategy was reduced by using the synchronization technique. And the
synchronization joint errors were shown in Figure 15.
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Figure 13. Fault estimation results with multiple faults. The aqua and pink dashed lines are upper and
lower thresholds, respectively. (a) Joint 1; (b) Joint 2; (c) Joint 3.
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Remark 2. In this section, the experimental results were discussed. The resulting tracking trajectory errors
were shown with single and multiple faults. In a real system, the uncertainties and disturbances have a higher
magnitude than that of the simulation environment. Due to the limitation of selection parameters in a real system,
the robot system with PFTC-SMC failed when multiple faults occurred. Therefore, in these experimental results,
only the results of AFTC-SMC and the proposed AFTC-SSMC were presented. As mentioned in Section 1, the
synchronization technique does not show effectiveness in an open-chain system such as a serial robot manipulator.
Therefore, before a fault occurs, both controllers have a similar accuracy level. After a fault occurs, due to the slow
response of AFTCs, the controller without the consideration of the synchronization error showed a high picking
value at the joint fault. The proposed controller with a constraint within the synchronization technique quickly
responded to the occurrence of faults before the system had the feed-back information from fault estimation. Hence,
AFTC-SSMC showed better performance than AFTC-SMC. However, in a real system, due to the limitation
of adjustment controller parameters, the error at joints without faults were slightly increased when compared
with those of AFTC-SMC by the synchronization technique. This characteristic may be a disadvantage of this
proposed controller. However, the AFTC-SSMC still showed an acceptable performance at these actuators.

7. Conclusions

In this paper, an active fault-tolerant control for a robot manipulator based on synchronous sliding
mode was proposed. To verify its effectiveness, experimental implementation of the proposed control
algorithm for a three degree-of-freedom FARA-AT2 robot were carried out and compared with the
active fault-tolerant control with conventional sliding mode control in the both single and multiple
fault cases. The results indicate that the active fault-tolerant control with synchronous sliding mode
control has better fault-tolerant capability and results in better trajectory tracking performance when
compared to the active fault-tolerant control with conventional sliding mode control algorithms. This
fault-tolerant capability comes from synchronous sliding mode control, because each joint error is
coupled and constrained due to the synchronization errors and newly defined synchronous sliding
surface. Future work includes the optimal tuning of synchronization parameters by following some
methods (e.g., the genetic algorithm, neural network technique, etc.) In addition, the synchronization
technique will be applied to finite-time control such as terminal sliding mode control, non-singular
terminal sliding mode control, and so on, in fault-tolerant control for a serial robot manipulator.
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