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Abstract 

The static stiffness of suction caisson foundations is an important engineering factor for offshore 

wind foundation design. However, existing simplified design models are mainly developed for 

non-layered soil conditions, and their accuracy for layered soil conditions is uncertain. This 

creates a challenge for designing these foundations in offshore wind farm sites, where layered 

soil conditions are commonplace. To address this, this paper proposes a multi-fidelity data 

fusion approach that combines information from different physics-based models of varying 

accuracy, data sparsity and computational costs in order to improve the accuracy of stiffness 

estimations for layered soil conditions. The results indicate that the proposed approach is more 

accurate than both the simplified design model and a single-fidelity machine learning model, 

even with limited training data. The proposed method offers a promising data-efficient solution 

for fast and robust stiffness estimations, which could lead to more cost-effective offshore 

foundation designs. 
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Introduction 

Offshore wind energy is a crucial component in the global effort to decarbonize energy systems 

in Europe, Asia, and America (Diaz and Soares 2020). To meet the increasing demand for 

offshore wind energy, offshore wind farms are expected to expand into deeper waters, where 

wind resources are more abundant. Suction caisson foundations are an important foundation 

option for offshore wind turbines in deeper waters (Byrne and Houlsby 2003). They can be used 

as jacket-based foundations in transitional waters (30m-60m water depth) or as anchors for 

floating wind mooring systems in deep waters. 

The geotechnical design of suction caisson foundations for offshore wind applications requires 

several key design considerations (Sturm 2017), including estimations of foundation capacity 

(e.g., Samui et al. 2011; Liu et al. 2014; Bagheri et al. 2017; Barari et al. 2017; Wang and 

Cheng 2016; Ukritchon and Keawsawasvong 2016; Yang et al. 2018; Nielsen 2019; Gelagoti et 

al. 2019; He at el. 2021; Wang et al. 2022; Wu et al. 2022; Liu et al. 2023) for ultimate limit state 

assessments, installation analysis (e.g., Houlsby and Byrne 2005a, b; Anderson et al. 2008; 

Senders and Randolph 2009), estimations of displacements and tilt under monotonic loading 

(e.g., Suryasentana et al. 2018, 2019, 2023b), seismic loading (e.g., Kourkoulis et al. 2014; 

Esfeh and Kaynia 2020; Antoniou et al. 2022) and cyclic loading (e.g., Foglia et al. 2014; Skau 

et al. 2018, 2019; Zhu et al. 2018, 2019; Byrne et al. 2020; Yin et al. 2020) for serviceability limit 

state assessments, and estimation of the stiffness of the caisson response for natural frequency 

and fatigue limit state assessments. Previous studies (e.g., Latini and Zania 2017; Jalbi et al. 

2019) have shown that the dynamic stiffness of the caisson response affects the 

eigenfrequency of vibration of the offshore wind support structures and thus, their fatigue life. 

This paper focuses on the estimation of the static stiffness of the caisson response, which are 

key inputs for the estimation of the dynamic stiffness of the caisson response. Efficient design 

models are essential for large-scale foundation projects like offshore wind farms, where 

hundreds of foundations must be optimized. However, existing efficient, simplified design 

models or empirical formulae (e.g., Suryasentana et al. 2017, 2022, Doherty et al. 2005; 

Efthymiou and Gazetas 2018; Skau et al. 2019; Jalbi et al. 2018; Gelagoti et al. 2018) have 

mostly been developed to estimate the static stiffness of caisson response for specific, non-
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layered, homogeneous or non-homogeneous shear modulus profiles that conform to some 

parametric form (e.g., constant, linearly or non-linearly increasing with depth). They have not 

been validated for layered soil conditions typically encountered in offshore wind farm sites (Burd 

et al. 2020), and their accuracy in predicting the caisson response in layered soil conditions, 

particularly those with high stiffness contrasts between each soil layer, is uncertain. 

For complex soil conditions, such as interbedded layered soil conditions, three-dimensional (3D) 

finite element analysis (FEA) may be necessary to estimate the static stiffness accurately. 

Unfortunately, 3D FEA is computationally intensive and not practical for wind farm foundation 

design optimization, which requires a large number of low-cost calculations to optimize the 

sizing of hundreds of foundations in varying ground conditions and different potential wind farm 

layout configurations, especially during the preliminary design stage. 

Metamodelling, also known as surrogate modelling, has been proposed as a technique to 

reduce FEA computational costs for offshore pile design (Mentani et al. 2023) and suction 

caisson design (Yin et al. 2023). This approach allows fast approximation of the FEA results 

using machine learning techniques such as polynomial chaos expansion (Mentani et al. 2023), 

radial basis functions (Wang and Owens 2022), artificial neural networks (Shen et al. 2022) and 

kriging (Kang et al. 2015, Soubra et al. 2019). However, metamodels usually require large 

training datasets (Mentani et al. 2023), which limits their applicability when FEA data is scarce.  

To overcome this limitation, multi-fidelity data fusion (MFDF) has emerged as an effective 

solution, particularly in aerospace engineering for tasks like space vehicle design (Minisci et al. 

2011). MFDF combines information from multiple datasets of different accuracy and volume to 

improve predictive accuracy. It leverages both low-fidelity data from simplified models and high-

fidelity data from detailed, computationally intensive simulations like 3D FEA. The fusion of 

these datasets allows MFDF to achieve greater predictive accuracy while requiring significantly 

less high-fidelity data compared to traditional metamodeling (Meng and Karniadakis 2020). This 

method is especially useful for large-scale projects such as offshore wind farms and solar farms, 

where it is not practical to conduct detailed 3D FEA for hundreds or thousands of foundations 

during preliminary design stages. 
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Despite its potential, the adoption of MFDF in geotechnical engineering is still nascent, with 

emerging interest in areas such as predicting pipeline response to fault rupture (Dey et al. 2021) 

and erosion of dikes (Zhang et al. 2022). This paper investigates an MFDF design approach 

aimed at enhancing the accuracy of simplified design model calculations by integrating them 

with a small set of 3D FEA calculations, using the predictions of the static stiffness of suction 

caisson response in layered soils as an example. The approach involves using simplified design 

models to produce low-cost but potentially inaccurate calculations (referred to as ‘low-fidelity 

data’) of the caisson static stiffness. These calculations are then improved by fusing them with a 

small set of accurate but high-cost calculations (referred to as ‘high-fidelity data’) from 3D FEA 

models. This is achieved through the use of machine learning models that learn and exploit the 

cross-correlations between the low- and high-fidelity data. This paper assesses the efficacy of 

the MFDF approach in comparison to metamodelling, examining its dependence on training 

data and the limitations of the modeling approach. 

Methodology 

Several MFDF models have been developed over the years (Peherstorfer et al. 2018), including 

those based on Gaussian Process (GP) (e.g., Kennedy and O’Hagan 2000; Perdikaris et al. 

2017, Feldstein et al. 2020) and deep neural networks (e.g., Meng et al. 2020, 2021; Pawar et 

al. 2022). The current study uses two GP-based MFDF models, which are chosen primarily for 

their suitability for the small training dataset in this study. The first model, a linear auto-

regressive GP (LARGP), was proposed by Kennedy and O’Hagan (2000). LARGP is able to 

identify and model linear correlations between data of different fidelity levels. The second 

model, a non-linear auto-regressive GP (NARGP), was proposed by Perdikaris et al. (2017) and 

can model non-linear correlations between data of different fidelity levels. Thus, the difference 

between the LARGP and NARGP models lies in the complexity of the correlations. Both LARGP 

and NARGP have been successfully used for a range of scientific and engineering problems 

(e.g., Raissi et al. 2017; Liu et al. 2018; Liu et al. 2022; Han et al. 2022; Ferguson and Brown 

2022; van de Berg et al. 2022). The following provides a summary of the theory behind LARGP 

and NARGP. 
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Gaussian Processes 

A Gaussian Process (GP) is a stochastic process (i.e., a set of random variables) such that any 

finite number of the variables have a multivariate Gaussian distribution (Rasmussen and Williams 

2006). As there is potentially an infinite number of random variables in a stochastic process, a GP 

can be considered as an infinite-dimensional multivariate Gaussian distribution. Another way to 

understand a GP is as a probability distribution over random functions, since a function can be 

thought of as an infinite-dimensional vector. 

In GP regression, a GP prior is placed on a latent function 𝑓(𝒙). This prior is specified by a mean 

function 𝑚(𝒙) and covariance function (also called a kernel) 𝑘(𝒙, 𝒙′): 

𝑓(𝒙) ~ 𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) (1) 

where 𝑚(𝒙) represents the average of all possible functions in the distribution evaluated at input 

𝒙, while 𝑘(𝒙, 𝒙′) represents the correlations between the function values at different inputs 𝒙 and 

𝒙′. The mean function is usually assumed to be a constant mean function i.e., 𝑚(𝒙) = 𝑐 for some 

constant scalar 𝑐. The most commonly used covariance functions are the Squared Exponential 

(also called the Radial Basis) and Matérn covariance functions. For this study, the Squared 

Exponential covariance function is adopted and it has the following form: 

𝑘SE(𝒙, 𝒙′) = 𝜎𝑓
2 exp (−

1

2
(

𝒙−𝒙′

𝑙
)

2

) (2) 

𝜎𝑓
2 is a scaling factor that determines the variation of the function values from the mean value,

while 𝑙 is the lengthscale of the process (i.e., distance between inputs within which the 

corresponding outputs are significantly correlated). In the case of multi-dimensional inputs, the 

lengthscale 𝑙 can be assumed to be either the same or different for each input dimension. If the 

lengthscale is assumed to be the same for all input dimensions, the covariance function is called 

‘isotropic’. Otherwise, it is called ‘anisotropic’. The values of the hyperparameters, such as 𝜎𝑓
2

and 𝑙 in Eq. 2, are optimized using the empirical Bayes method during the training phase. This 

involves the maximization of the marginal log likelihood of the training data given the 

hyperparameters (Rasmussen and Williams 2006). 
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Linear Auto-Regressive Gaussian Process (LARGP) 

LARGP is based on a linear autoregressive data fusion scheme that was introduced by Kennedy 

and O'Hagan (2000), but later improved by Le Gratiet and Garnier (2014) for enhanced 

computational efficiency. In this paper, it is assumed that there are 𝑠 data sources 𝑔𝑖(𝑥) where 

𝑖 ∈  {1, 2, . . . , 𝑠}, that can be used to estimate the output at some input 𝒙. Each index 𝑖 represents 

the fidelity of the corresponding data source, with 𝑔𝑠(𝒙) being the highest fidelity data source, and 

𝑔1(𝒙) being the lowest fidelity data source.  

In LARGP, the prior distributions of the latent functions modeling each data source are based on 

Gaussian Processes. The GP prior for the fidelity model 𝑓𝑡 for each data source is specified by a 

mean function 𝑚𝑡(𝒙) and covariance function 𝑘𝑡(𝒙, 𝒙′), and is related to the GP prior for a lower-

fidelity model 𝑓𝑡−1 in an autoregressive manner: 

𝑓𝑡(𝒙) = 𝜌𝑡−1 𝑓𝑡−1(𝒙) + 𝛿𝑡(𝒙) (3) 

where 𝜌𝑡−1 is a constant scale factor and 𝛿𝑡(𝒙) is an offset factor modeled as a GP with a mean 

function 𝑚𝛿𝑡
(𝒙) and covariance function 𝑘𝛿𝑡

(𝒙, 𝒙′). 𝜌𝑡−1 and 𝛿𝑡(𝒙) represent the multiplicative and

additive bias between the two fidelity levels, respectively. For the current study, a constant mean 

function and an anisotropic Squared Exponential covariance function is used for all the mean and 

covariance functions in LARGP, respectively. 

One advantage of this recursive inference approach is that it results in a sequence of standard 

GP regression, which simplifies the learning of the GP model hyperparameters and makes the 

training process much more computationally efficient, as it involves inversion of matrices with 

smaller dimensions. After the hyperparameters of LARGP have been optimized during the training 

phase, the posterior distributions of the predictive mean 𝜇𝑡
∗ and variance 𝜎∗

𝑡
2
 for each fidelity model

for some input 𝒙∗ can be obtained as: 

𝜇𝑡
∗(𝒙∗) = 𝜌𝑡−1 𝜇𝑡−1

∗ (𝒙∗) + 𝜇𝛿𝑡
∗ (𝒙∗) + 𝒌∗𝑡𝑲𝑡

−1(𝒚𝑡 − 𝜌𝑡−1 𝜇𝑡−1
∗ (𝒙𝑡) − 𝜇𝛿𝑡

∗ (𝒙𝑡)) (4) 

𝜎∗
𝑡
2(𝒙∗) = 𝜌𝑡−1

2  𝜎∗
𝑡−1
2 (𝒙∗) + 𝑘∗∗ − 𝒌∗𝑡𝑲𝑡

−1𝒌∗𝑡
𝑇 (5)
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where 𝒙𝑡 and 𝒚𝑡 refer to all the training inputs and outputs at fidelity level 𝑡, 𝜇𝛿𝑡
∗  is the posterior

mean for 𝛿𝑡, 𝑘∗∗ = 𝑘𝑡(𝒙∗, 𝒙∗), 𝒌∗𝑡 = [𝑘𝑡(𝒙∗, 𝒙𝑡
(1)

), … , 𝑘𝑡(𝒙∗, 𝒙𝑡
(𝑁)

)] with 𝒙𝑡
(𝑖)

 representing the 𝑖th input

at fidelity level 𝑡, and 𝐾𝑡 is the covariance matrix for fidelity level 𝑡 with 𝐾𝑡,𝑖𝑗 = 𝑘𝑡(𝒙𝑡
(𝑖)

, 𝒙𝑡
(𝑗)

).

To clarify how LARGP works conceptually, Fig. 1 shows the fusion of a high- and low-fidelity data 

source that are produced synthetically for the purpose of illustration. At first glance, the low-fidelity 

data may appear to be a poor match for the high-fidelity data, which could lead one to dismiss it 

as uninformative. However, despite having limited high-fidelity training data, LARGP can 

accurately predict the unknown true function that generates the high-fidelity data, as shown in 

Fig. 1. Using this limited training data, LARGP learned that the scale factor is 𝜌 = 4.89 and the 

average offset factor (noting that the offset factor may differ for each input) is -3.7. These values 

are very close to the actual values of 4.9 and -3.7, respectively (i.e., High-fidelity = 4.9*Low-fidelity 

– 3.7). To illustrate what would happen if the low-fidelity data were not considered, a metamodel

based on a single-fidelity GP regression model (referred to in this paper as ‘GP-HF’) is trained on 

the high-fidelity data alone. Fig.1 demonstrates that GP-HF has good interpolation performance 

but poor extrapolation performance, which is caused by its poor generalization ability. 

LARGP assumes a linear correlation between each fidelity model. As will be shown later, this 

assumption is reasonable for the stiffness estimation problem analyzed in the current study. For 

comparison, the current paper also implements NARGP, an extension of LARGP that allows for 

non-linear correlations between each fidelity model. It is of interest to see whether the NARGP 

model can provide more accurate predictions than LARGP, given its ability to model both linear 

and non-linear correlations.  

Non-linear Auto-Regressive Gaussian Process (NARGP) 

NARGP (Perdikaris et al. 2017) can be considered as a generalized extension of LARGP, where 

the GP prior for a fidelity model 𝑓𝑡 is related to the GP posterior for the lower-fidelity model 𝑓𝑡−1
∗  in

the following autoregressive manner: 

𝑓𝑡(𝒙) = ℎ𝑡−1(𝑓𝑡−1
∗ (𝒙))  + 𝛿𝑡(𝒙) (6)
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where ℎ𝑡−1(𝒙) and 𝛿𝑡(𝒙) are independent GP models, and ℎ𝑡−1(𝑓𝑡−1
∗ (𝒙)) is the composition of two

GPs. To capture non-linear cross-correlations between the different fidelity models, a custom 

covariance function 𝑘𝑡(𝒙, 𝒙′) is proposed by Perdikaris et al. (2017):

𝑘𝑡(𝒙, 𝒙′) = 𝑘ℎ𝑡−1
(𝒙, 𝒙′) × 𝑘𝑓𝑡−1

(𝑓𝑡−1
∗ (𝒙), 𝑓𝑡−1

∗ (𝒙′)) + 𝑘𝛿𝑡
(𝒙, 𝒙′) (7) 

where 𝑘ℎ𝑡−1
, 𝑘𝑓𝑡−1

 and 𝑘𝛿𝑡
 are the base covariance functions. For the current study, a constant

mean function and an anisotropic Squared Exponential covariance function is used for all the 

mean and base covariance functions in NARGP, respectively. 

The posterior distribution for 𝑓𝑡(𝒙) is no longer Gaussian and the non-linear mapping is no longer

analytically tractable. After the hyperparameters of NARGP have been optimized during the 

training phase, the predictive mean 𝜇𝑡
∗ and variance 𝜎∗

𝑡
2
 for each fidelity model are estimated

using Monte Carlo integration. 

Training data 

This study focuses on the estimation of the vertical, horizontal, moment, and torsional static 

stiffnesses of a suction caisson foundation in layered soil conditions. The soil profiles examined 

in the current study are three-layered, similar to those studied by Poulos (1979) for axially 

loaded piles in layered soil conditions, but with the additional complexity of continuously varying 

shear modulus within each layer (see Fig. 2). The shear modulus profile 𝐺𝑖 in the 𝑖th layer vary 

with depth 𝑧 according to the following equation: 

𝐺𝑖 = 𝐺𝑖
ref (

2𝑧

𝐷
)

𝛼

(8) 

where 𝑖 =  1, 2 or 3 and 0 ≤ 𝛼 ≤ 1. Table 1 provides information on the properties of these soil 

profiles e.g., the reference shear modulus for each layer (i.e., 𝐺1
ref, 𝐺2

ref, 𝐺3
ref). The soil Poisson’s

ratio 𝜈 and the shear modulus depth variation parameter 𝛼 are assumed to be same for all 

layers. Six values of 𝜈 = 0,0.1,0.2,0.3,0.4,0.49 and 3 values of 𝛼 = 0,0.5,1 were analyzed in the 

study. The results of this study apply to any caisson diameter because the employed shear 

modulus profiles and caisson skirt lengths are normalized by the caisson diameter. Fig. 2b 

shows an example shear modulus profile for Case P2 in Table 1 for 𝛼 = 0.5 and 𝐿/𝐷 = 1. 
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Several caisson length-to-diameter ratios (𝐿/𝐷 = 0.25, 0.5, 1, 2) that are typical of those used for 

offshore wind applications are analyzed for each soil profile. A total of 432 unique combinations 

of caisson dimensions and soil profiles were analyzed. 

While fusion of many fidelities is possible, this study considers fusion of only two fidelity levels: 

high-fidelity and low-fidelity. Fidelity here refers to the accuracy of the calculations given the 

problem assumptions, instead of how realistic the calculations are (which is dependent on the 

problem assumptions). The high-fidelity data corresponds to the static stiffness calculations 

obtained through detailed 3D FEA using Abaqus v6.13 (Dassault Systèmes 2014). The 3D FEA 

model used is the same as that described in Suryasentana et al. (2022) and is briefly explained 

below. The soil volume has three layers in accordance to Table 1. The soil is modeled as 

isotropic linear elastic using first-order brick elements C3D8 (or C3D8H for 𝜈 =  0.49). Both the 

soil volume and caisson structure are assumed to be weightless, as per Suryasentana et al. 

(2022). The mesh domain is set to 100𝐷 for both width and depth (where 𝐷 represents the 

caisson diameter), and a close-up view of half of the 3D FEA mesh near the caisson is shown in 

Fig. 3a. The loading reference point (LRP) is positioned at the center of the lid base (see Fig. 2). 

The soil-caisson interface is modeled using tie constraints to prevent contact breaking. Rigid 

constraints are used to model a fully rigid caisson. Displacements are prescribed at the LRP to 

calculate the static stiffness of the caisson response.  

The low-fidelity data used in this study correspond to caisson static stiffness calculations by a 

simplified Winkler-based design model called OxCaisson (Suryasentana et al. 2022), as shown 

in Fig. 3b. The OxCaisson model was chosen for this study over other existing simplified design 

models (e.g., Doherty et al. 2005; Efthymiou and Gazetas 2018; Jalbi et al. 2018) as the latter 

are macro-element models that require the shear modulus profile to fit some idealized 

parametric form, which is not straightforward for the layered soil profiles examined in this study. 

OxCaisson, on the other hand, is a Winkler model for suction caissons that can accept arbitrary 

shear modulus profiles as inputs directly. OxCaisson is similar to the ‘𝑝-𝑦’ Winkler model that is 

commonly used to design laterally-loaded monopile foundations (e.g., API 2010; DNV 2014; 

Suryasentana and Lehane 2014a, 2014b, 2016), except that there are soil reactions for the full 

six-degrees-of-freedom (6DoF) load space. There are two types of soil reactions: distributed soil 
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reactions that act along the caisson skirt length, and concentrated soil reactions that act at the 

caisson base.  

OxCaisson utilizes local soil properties to determine the soil reactions, enabling it to directly 

work with any shear modulus profile. However, the accuracy of its static stiffness estimations is 

verified only for non-layered shear modulus profiles characterized by the following equation:  

𝐺 = 𝐺ref (
2𝑧

𝐷
)

𝛼

(9) 

where 𝛼 is a parameter that influences how the shear modulus increases with depth. 

Suryasentana et al. (2022) found that the soil reactions in OxCaisson depend not only on the 

local shear modulus values, but are also slightly influenced by the 𝛼 value that most accurately 

represents the shear modulus profile. However, the layered shear modulus profiles examined in 

the current study do not align well with Eq. 9, making it challenging to assign suitable 𝛼 values 

to these profiles. Due to this limitation, the current study defaults to using an 𝛼 value of 0 when 

defining the soil reactions in OxCaisson to calculate the static stiffness of the caisson response. 

This simplifies the calculation process but leads to estimates of static stiffness that are less 

accurate. However, this scenario provides an opportunity to assess how well the MFDF 

approach can address and correct these predictive inaccuracies. 

To visualise the correlations between the high- and low-fidelity data, Fig. 4 shows the 

relationship between the normalized stiffness calculations from the high- and low-fidelity data for 

all the layered soil profiles considered in this study. These normalized stiffness calculations are 

𝐾𝑉

𝐺𝑅𝐷
,

𝐾𝐻

𝐺𝑅𝐷
,

𝐾𝑄

𝐺𝑅𝐷3 ,
𝐾𝑀

𝐺𝑅𝐷3, which corresponds to the normalized vertical, horizontal, torsional and

moment stiffness, respectively. 𝐺𝑅 is the global reference shear modulus described in Table 1 

and 𝐷 is the caisson diameter. Fig. 4 indicates a reasonable assumption of linear correlation 

between the high- and low-fidelity data, albeit with some noise. 

MFDF model predictions 

The inputs into the MFDF and GP-HF models are 
𝐿

𝐷
, 𝐺1

ref, 𝐺2
ref, 𝐺3

ref, 𝜈, 𝛼 and the outputs are the

static stiffnesses of the suction caisson foundations. During the training process, the MFDF 
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models receive both high-fidelity and corresponding low-fidelity data to learn the correlations 

between them. Once trained, the MFDF models can predict the static stiffness of a suction 

caisson foundation for a given input by taking the low-fidelity prediction for that input and 

applying the learnt correlations to enhance its accuracy. The training and operational phases of 

the MFDF models are summarized in Fig. 5. 

Evaluation focus 

This study will evaluate three different aspects of the MFDF models (i.e., LARGP and NARGP). 

Firstly, the sensitivity of the predictive performance to the number of high-fidelity training data is 

examined. To assess this, the full high-fidelity dataset is first split into training and test datasets 

in a 60:40 ratio, with the training dataset referred to as TD60. Three smaller training datasets 

are then created by taking random subsets of TD60, which are equivalent to 30% (TD30), 15% 

(TD15), and 7% (TD7) of the full high-fidelity dataset, respectively. That is equivalent to about 

259, 129, 64 and 32 data points for each stiffness prediction task for T60, T30, T15 and TD7, 

respectively. For every dataset, there is generally a balanced distribution of each of the six input 

parameters, e.g., the 𝐿/𝐷 parameter is evenly distributed between its possible values of 0.25, 

0.5, 1 and 2. The predictive performance of the MFDF models trained on each of these training 

datasets will be compared. This provides insights into the minimum quantity of data required for 

reasonably accurate predictions, and the added value of acquiring more high-fidelity data. 

Secondly, the sensitivity of the predictive performance to the composition of the training data will 

be examined. To this end, 20 random samplings of the four training datasets (TD60, TD30, 

TD15, TD7) and the test dataset are generated. The mean and variance of the predictive 

performance of the MFDF models trained on these training datasets will be examined to see if 

the accuracy of the MFDF models varied significantly as the composition of the training and test 

data changed. 

Finally, the improvement in the predictive performance facilitated by MFDF will be examined by 

comparison to a metamodel based on a single-fidelity GP regression model (referred to in this 

paper as ‘GP-HF’), which is trained on the high-fidelity data alone. GP-HF will also use a 

constant mean function and an anisotropic Squared Exponential covariance function. 
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Results 

To demonstrate how MFDF would work conceptually for the static stiffness problem, LARGP is 

applied to a simplified problem of predicting the vertical stiffness of a suction caisson in a 

specific layered soil configuration (Case P2 in Table 1 for 𝛼 = 0). The input into LARGP is 𝐿/𝐷, 

which makes this a simple one-dimensional predictive problem. There are four high-fidelity data 

points, with half used for training and the other half for testing. Fig. 6a compares the vertical 

stiffness predicted by LARGP with that predicted by GP-HF. Firstly, it can be observed that the 

LARGP predictions match the test data very well, while the GP-HF predictions were less 

satisfactory. Secondly, GP-HF performs poorly with its (extrapolation) predictions for 𝐿/𝐷 = 2 

compared to its (interpolation) predictions for 𝐿/𝐷 = 0.5, whereas LARGP predictions perform 

well in both cases. Therefore, the inclusion of low-fidelity data, which are quantitatively 

imprecise but correct trend-wise, helps to improve the extrapolation performance for this 

particular example. Note that the accuracy of the extrapolation performance of LARGP may be 

lower for much larger 𝐿/𝐷 ratios as the trend may change as 𝐿/𝐷 increases. 

Fig. 7 compares the static stiffnesses predicted by the MFDF and GP-HF models (all trained on 

the TD60 training dataset) with the actual values from the high-fidelity test dataset. It can be 

observed that both LARGP and NARGP have excellent agreement with the test dataset for all 

stiffnesses. The GP-HF model's predictions are in good agreement with the test dataset. 

However, it is less accurate in predicting the moment stiffness. (see Fig. 7d). 

To evaluate the impact of the amount of training data on model performance, Figs. 8 to 10 

evaluate the predictions of the models using the same test dataset, but with the models trained 

on decreasing subsets of the original training data (from 30% to 7% of the full high-fidelity 

dataset). As the amount of training data decreases, LARGP maintains excellent agreement with 

the test dataset and only displays a noticeable loss of accuracy when the amount of training 

data decreases to 7%, as shown in Fig. 10. In contrast, both NARGP and GP-HF begin to lose 

accuracy when the amount of training data falls below 30% of the full dataset, as shown in Figs. 

9 and 10. 
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To better quantify the accuracy of the models, Table 2 provides the root-mean-square (RMS) 

errors between the model predictions of all the static stiffnesses and the actual values from the 

test dataset for the different training datasets. The RMS errors are calculated as follows: 

𝑅𝑀𝑆 = √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
(10) 

where 𝑛 is number of data, 𝑦𝑖 are the true FEA values from the test dataset and 𝑦̂𝑖 are the 

predicted FEA values by the models. The table shows that the LARGP model has the highest 

level of accuracy, followed by NARGP and GP-HF. The RMS errors for the low-fidelity data are 

also provided to give an indication of its relative inaccuracy compared to the high-fidelity data. 

Note that the RMS errors for the low-fidelity data is independent of the training dataset sizes as 

they are generated by OxCaisson, which does not require training. Fig. 11a further clarifies the 

relationship between the RMS errors and the size of the training data. It is clear that the RMS 

error decreases as the number of training data increases. Moreover, the MFDF models are 

more accurate than OxCaisson for all training dataset sizes, while GP-HF is more accurate than 

OxCaisson for all training dataset sizes except when it is 7% of the full dataset. 

To assess how the composition of the training data affects the predictive accuracy of the 

models, Table 3 shows the average and standard deviation of the RMS errors calculated for the 

models, given 20 random samplings of the training and test datasets. Additionally, Fig. 12 

shows the coefficient of variation (COV) values of the RMS errors listed in Table 3. The results 

suggest that there is no clear relationship between the COV of the RMS errors and the size of 

the training dataset. The results also show that NARGP has the highest sensitivity to the training 

data composition as it generally exhibits the highest COV across most of the training data sizes. 

Discussion 

Fig. 11a shows that LARGP is the least sensitive to the number of training data, as its 

predictions remain robust and lose accuracy very gradually as the number of training data 

decreases. This underscores the benefits of data fusion. Even if the low-fidelity data is 

quantitatively inaccurate, the underlying trend predicted by the low-fidelity data can still be 

useful in the absence of high-fidelity training data. This is not surprising, given that the low-
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fidelity data are generated by a physics-based model, albeit a highly simplified one, and the 

MFDF predictions benefit from the physical laws and principles embedded within the simplified 

design model calculations.  

The results suggest that MFDF is highly suitable for large-scale foundation design projects, 

such as offshore wind farms, where obtaining high-fidelity calculations for all foundations can be 

computationally expensive. By using MFDF, it is possible to achieve a 3D FEA comparable level 

of accuracy for the entire wind farm site at a fraction of the computational costs, since 3D FEA 

calculations are only required for a fraction of the total number of foundations. Fig. 10 shows 

that LARGP can achieve reasonable approximations of the 3D FEA results with only 7% of the 

total dataset, or about 32 simulations in this study. Table 3 also demonstrates that the accuracy 

of LARGP is not too sensitive to the training dataset composition, thus suggesting that the 

careful selection of soil profiles for inclusion into the training dataset may not be a critical factor. 

One question that emerges is how to determine that 32 FEA simulations is sufficient for LARGP 

to generate reasonably accurate predictions, without the benefit of hindsight comparisons 

against the full dataset. A potential approach is to start with a small FEA training set (e.g., ten 

simulations). Then, randomly select 70% of it to train the LARGP model and use the other 30% 

to evaluate the RMS error of the LARGP predictions. Thereafter, expand the FEA training set 

and repeat the evaluation process, until the rate of decrease in RMS error stabilizes. Figure 11b 

illustrates the RMS error of the LARGP predictions as the number of FEA simulations increases. 

It can be observed that the rate of RMS error reduction stabilizes around 35 simulations, which 

aligns with the hindsight analysis of 32 simulations in Figure 10. For this study, accumulation of 

additional FEA data could cease after approximately 35 simulations. 

To benefit from MFDF, selecting the appropriate MFDF model that fits the specific problem is 

crucial. Table 3 indicates that in data-limited situations like TD7, NARGP has lower mean 

accuracy than OxCaisson. Therefore, using more advanced MFDF models does not necessarily 

translate to better results. Instead, ensuring that the model's assumptions are compatible with 

the problem is of greater importance, leading to better outcomes. Some plausible reasons for 

LARGP’s outperformance over NARGP are discussed below.  
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Figure 12 reveals that LARGP is significantly more stable and less sensitive to random 

samplings of training data compared to NARGP. NARGP shows a high degree of variance in its 

predictive accuracy, depending on the composition of the training data. One possible 

explanation for this is that NARGP is a more complex MFDF model than LARGP, and there are 

numerous locally optimal hyperparameters that the training process could converge onto, 

leading to widely varying predictions. Table 3 indicates that LARGP is more accurate than 

NARGP, which may seem surprising as NARGP is a more flexible model, capable of modeling 

both linear and non-linear correlations between the high- and low-fidelity data. One possible 

reason for this is that the high- and low-fidelity data exhibit approximately linear correlations (as 

shown in Fig. 4), which allows for more effective hyperparameter training for the simpler LARGP 

model architecture. In addition to robustness and accuracy, LARGP offers other advantages 

over NARGP for the stiffness prediction problem. LARGP is more computationally efficient than 

NARGP. Using a computer with an Intel i7 2.8 GHz processor (eight central processing units) 

and 8 GB of RAM, LARGP took a total of 15 seconds to be trained on TD60 and make the 

predictions shown in Fig. 7, while NARGP took 2 minutes. This is due to the simpler model 

architecture of LARGP, which allows for faster training of hyperparameters. LARGP is also more 

interpretable than NARGP. For example, Fig. 13 shows the trained scale factor ρ and offset 

factors δ of LARGP to predict the normalized vertical stiffness of the caisson in Fig. 7a. The 

LARGP predictions can be explained as being the low-fidelity data being scaled up by 1.93 and 

then offset by a range of values from -30 to 15 (depending on the inputs). It is important to note 

that, while LARGP is performant in the current study, it may not be the optimal choice for all 

engineering problems. If the high- and low-fidelity data exhibits highly non-linear correlations, 

NARGP is likely to perform better than LARGP. 

While the current study provides valuable insights, there are some limitations. The current study 

only considered three-layered soil profiles. However, real-world soil profiles may have more 

complex structures with different numbers and thicknesses of layers. A plausible solution is to 

adopt a soil profile structure with more layers, which would allow for improved piecewise 

approximation of arbitrary shear modulus profiles, as done by Minga and Burd (2019). The 

current study also did not consider structural factors such as caisson skirt and lid flexibility, 
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which have an influence on the static stiffness response and should be considered for the 

deployment of the proposed approach in design (Doherty et al. 2005; Skau et al. 2019). The 

consideration of both the soil layering structure and the structural factors would increase the 

number of input parameters and the performance of the MFDF approach for such high-

dimensional problems with many inputs requires further investigation. Moreover, this study used 

the OxCaisson model predictions as the low-fidelity data. It is uncertain how the MFDF 

approach would perform if the low-fidelity data is determined using other simplified design 

models (e.g., Doherty et al. 2005; Efthymiou and Gazetas 2018; Skau et al. 2019; Jalbi et al. 

2018, Suryasentana and Mayne 2022, Suryasentana et al. 2023a). Finally, this study applied 

the MFDF approach to estimate the static stiffness of caissons. The applicability of the MFDF 

approach to other design aspects of caisson foundations, such as their ultimate capacities or 

cyclic behaviour, warrants further investigation. For example, low-fidelity data for foundation 

capacities may be generated using failure envelope models (e.g., Gourvenec and Barnett 2011; 

Larsen et al. 2013; Hung and Kim 2014; Vulpe 2015; Suryasentana et al. 2020a, 2020b, 2021) 

and the high-fidelity data may be generated using 3D FEA (e.g., Achmus et al. 2013; Thieken et 

al. 2014). However, the implementation methodology to adapt the MFDF approach for the other 

design aspects needs investigation. Future work should focus on addressing these limitations. 

The proposed MFDF approach is intended to complement existing simplified design models 

rather than replace them. Simplified design models have the advantage of being ‘rule-based’ 

(requiring no training process) and easy to interpret. However, when a limited number of high-

fidelity (e.g., 3D FEA) data are available, the MFDF approach offers a promising solution to 

combine information from multiple physics-based models of varying fidelity to provide more 

accurate predictions than the simplified design model. The MFDF approach can be applied 

across multiple projects where the 3D FEA training data accumulates. This creates a self-

improving framework where the MFDF approach improves its accuracy over time, as it learns 

from more 3D FEA data that cover a wider range of soil conditions and caisson dimensions. 
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Conclusion 

This paper presents a multi-fidelity data fusion (MFDF) approach for estimating the static 

stiffness of suction caisson foundations in layered soil conditions. The proposed approach 

combines low-fidelity calculations from simplified design models with high-fidelity calculations 

from 3D FEA models. This enables greater training data efficiency compared to single-fidelity 

models, making it more practical for large-scale foundation design optimization. The study 

evaluates two GP-based MFDF models, LARGP and NARGP, and compares their predictive 

accuracy to that of a single-fidelity model. The results demonstrate that LARGP outperforms 

NARGP in terms of accuracy, computational efficiency, prediction robustness, and sensitivity to 

training data composition. Furthermore, LARGP achieves better accuracy than the single-fidelity 

model and simplified design model, even when trained with limited data. The study highlights 

the importance of selecting an appropriate MFDF model that fits the problem being considered, 

in order to fully benefit from MFDF.  
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List of notations 

𝑧 depth below ground level 

𝐷 caisson diameter 

𝐿 caisson skirt length 

𝐺 shear modulus of soil 

𝜈 Poisson’s ratio of soil 

𝛼 parameter governing the change of the soil shear modulus profile with depth 

𝐺R global reference shear modulus value 

𝐾𝑉 vertical stiffness of the soil-foundation interaction 

𝐾𝐻 lateral stiffness of the soil-foundation interaction 

𝐾𝑀 rotational stiffness of the soil-foundation interaction 

𝐾𝑄 torsional stiffness of the soil-foundation interaction 

𝑝atm  atmospheric pressure 

𝜌 scale factor for LARGP 

δ offset factor for LARGP 
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Table 1 Shear modulus profiles for three-layered soil profiles analyzed in the numerical study 

(see Fig. 2a), where the shear modulus profile in each layer is described by Eq. 8. 𝐺𝑅 =

1000𝑝atm is the global reference shear modulus value and 𝐿 is the caisson skirt length. 

Reference shear modulus for each layer 

Name 
𝐺1

ref/𝐺𝑅

(𝑧/𝐷 <  0.3𝐿/𝐷) 
𝐺2

ref/𝐺𝑅

(0.3𝐿/𝐷 ≤  𝑧/𝐷 <  0.7𝐿/𝐷) 
𝐺3

ref/𝐺𝑅

(𝑧/𝐷 ≥ 0.7𝐿/𝐷) 

P1 1 2 4 

P2 1 4 2 

P3 2 1 4 

P4 2 4 1 

P5 4 2 1 

P6 4 1 2 

Table 2 Calculations of root-mean-square (RMS) errors of the model predictions for different 

training data sizes (i.e., TD60, TD30, TD15, TD7), but for the same test dataset. 

Model RMS Error 

(TD60) 

RMS Error 

(TD30) 

RMS Error 

(TD15) 

RMS Error 

(TD7) 

LARGP 0.33 0.80 2.75 4.00 

NARGP 1.76 4.86 8.13 12.11 

GP-HF 3.77 5.96 9.67 14.92 

OxCaisson 13.89 13.89 13.89 13.89 

Table 3 Calculations of the average RMS errors (±one standard deviation) of the model 

predictions for different training data sizes (i.e., TD60, TD30, TD15, TD7), given 20 random 

samplings of the training and test datasets. 

Model Average RMS 

Error (TD60) 

Average RMS 

Error (TD30) 

Average RMS 

Error (TD15) 

Average RMS 

Error (TD7) 

LARGP 0.23 (±0.06) 0.97 (±0.46) 3.52 (±1.72) 5.81 (±1.88) 

NARGP 0.83 (±0.76) 5.68 (±3.94) 9.45 (±5.76) 16.59 (±8.54) 

GP-HF 3.19 (±1.37) 6.11 (±1.58) 10.20 (±4.14) 17.75 (±7.68) 

OxCaisson 12.97 (±1.05) 12.97 (±1.05) 12.97 (±1.05) 12.97 (±1.05) 

24

Multifidelity data fusion for the estimation of static stiffness of suction caisson foundations in layered soil



Figures 

Figure 1 Illustrative example showing the predictive capabilities of LARGP, even with limited 

high-fidelity training data. GP-HF is the machine learning model trained on high-fidelity data 

alone. 
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(a) 

(b) 

Figure 2 (a) Schematic diagram of a suction caisson foundation and the three-layered soil 

profiles investigated in this paper. The loading reference point (LRP) is at the center of the 

caisson lid base. (b) Exemplar shear modulus profile for Case P2 of Table 1 for 𝛼 = 0.5 and 

𝐿/𝐷 = 1. 
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(a) 

(b) 

Figure 3 (a) Close-up view of the half of the 3D FEA mesh around the suction caisson. (b) 

Schematic diagram of the one-dimensional Winkler model of the suction caisson foundation as 

modeled in OxCaisson. 
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(a) (b) 

(c) (d) 

Figure 4 Relationships between the high-fidelity data generated by 3D FEA and the 

corresponding low-fidelity data generated by OxCaisson for the normalized (a) vertical, (b) 

torsional, (c) horizontal, and (d) moment stiffness of a suction caisson for all the layered soil 

profiles considered in this study. 
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Figure 5 Schematic diagram summarizing the training and operational phases of the MFDF 

model. 
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Figure 6 Comparison of high-fidelity (HF) data (calculated using 3D FEA) for the normalized 
vertical stiffness of a suction caisson embedded in a specific layered soil configuration (Case P2 
of Table 1 for 𝛼 = 0) and the corresponding low-fidelity (LF) data (calculated using OxCaisson). 
The mean predictions of LARGP and GP-HF are also shown. 
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(a) (b) 

(c) (d) 

Figure 7 Comparison of high-fidelity data (calculated using 3D FEA) for the normalized (a) 

vertical, (b) torsional, (c) horizontal, and (d) moment stiffness of a suction caisson for all the 

layered soil profiles considered in this study with the corresponding predictions by the MFDF 

models (LARGP and NARGP) and the single-fidelity machine learning model (GP-HF) for the 

training dataset TD60. 
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(a) (b) 

(c) (d) 

Figure 8 Comparison of high-fidelity (HF) data (calculated using 3D FEA) for the normalized (a) 

vertical, (b) torsional, (c) horizontal, and (d) moment stiffness of a suction caisson for all the 

layered soil profiles considered in this study with the corresponding predictions by the MFDF 

models (LARGP and NARGP) and the single-fidelity machine learning model (GP-HF) for the 

training dataset TD30. 
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(a) (b) 

(c) (d) 

Figure 9 Comparison of high-fidelity (HF) data (calculated using 3D FEA) for the normalized (a) 

vertical, (b) torsional, (c) horizontal, and (d) moment stiffness of a suction caisson for all the 

layered soil profiles considered in this study with the corresponding predictions by the MFDF 

models (LARGP and NARGP) and the single-fidelity machine learning model (GP-HF) for the 

training dataset TD15. 
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(a) (b) 

(c) (d) 

Figure 10 Comparison of high-fidelity (HF) data (calculated using 3D FEA) for the normalized 

(a) vertical, (b) torsional, (c) horizontal, and (d) moment stiffness of a suction caisson for all the

layered soil profiles considered in this study with the corresponding predictions by the MFDF 

models (LARGP and NARGP) and the single-fidelity machine learning model (GP-HF) for the 

training dataset TD7. 
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(a) 

(b) 

Figure 11 (a) Influence of the training data size (as a percentage of the full high-fidelity dataset) 

on the RMS errors for the various models. (b) RMS error for LARGP stabilizes at around 35 

FEA simulations. 
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Figure 12 Influence of the training data size (as a percentage of the full high-fidelity dataset) on 

the COV of the RMS errors for the various models, given 20 random samplings of the training 

and test datasets. 
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Figure 13 The trained scale factor 𝜌 and a histogram of the trained offset factors 𝛿 of LARGP 

for predicting the normalized vertical stiffness of the caisson in Fig. 7a. The scale factor is 

constant, while the offset factor may vary for each input. 
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