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Abstract—This paper proposes a novel method for accurately
estimating the ground truth analytic eigenvalues from estimated
space-time covariance matrices, where the estimation process
obscures any intersection of eigenvalues with probability one.
The approach involves grouping sufficiently separated, bin-wise
eigenvalues into segments that belong to analytic functions and
solving a permutation problem to align these segments. By lever-
aging an inverse partial discrete Fourier transform and linear
assignment algorithms, the proposed EigenBone method retrieves
analytic eigenvalues efficiently and accurately. Experimental
results demonstrate the approach’s effectiveness in accurately
reconstructing eigenvalues from noisy estimates. Overall, the
proposed method offers a robust solution for approximating
analytic in scenarios where traditional methods may fail.

Index Terms—Space-Time Covariance, Eigenvalue Estimation,
Polynomial Matrix

I. INTRODUCTION

Problems involving broadband multichannel data xrns P

CM can be conveniently expressed via the space-time covari-
ance Rrτ s “ E

␣

xrnsxHrn ´ τ s
(

where Et¨u is the expecta-
tion operator and t¨uH the Hermitian transposition [1], [2]. The
broadband equivalent to well-known narrowband solutions can
then be reached via the diagonalisation of Rrτ s [3] for every
lag τ P Z — or equivalently of its z-transform, the cross-
spectral density (CSD) matrix Rpzq “

ř

τ Rrτ sz´τ for every
z P C — by means of an eigenvalue decomposition (EVD) [3].

The EVD of a CSD matrix Rpzq “ QpzqΛpzqQP
pzq exists

with analytic factors, if xrns is not associated with any mul-
tiplexing operations [4]–[6]. Then the paraunitary Qpzq and
diagonal Λpzq factors contain the analytic eigenvectors and
the corresponding analytic eigenvalues. Paraunitarity implies
that QP

pzq :“ tQp1{z˚quH “ Q´1
pzq, while the diagonal

Λpzq is parahermitian, such that ΛP
pzq “ Λpzq. Analyticity

is important, as it provides a low approximation order for
polynomial (i.e. finite impulse response filter) approximations
of Qpzq [7], [8]. This directly relates to the computational
complexity and the latency in key to applications such as the
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construction of paraunitary systems [9]–[12] or polynomial
subspace projections [13]–[15].

When working with an estimate R̂rτ s of the space-time co-
variance matrix, a fundamental challenge appears: independent
of the sample size N ă 8 on which the estimate is based,
the eigenvalues λ̂mpzq, m “ 1, . . . ,M will be spectrally
majorised [16], i.e. on the unit circle we have that

λ̂mpejΩq ą λ̂m`1pejΩq, @Ω and m “ 1, . . . , pM ´ 1q, (1)

even if the eigenvalues in Λpzq are unmajorised. Of the
existing algorithms that target an EVD of R̂pzq, the ap-
proaches in [2], [17], [18] will favour (or can be shown
to converge to [2]) spectral majorisation by design. More
recent analytic extraction methods [7], [8], [19] will target
the exact eigenvalues of R̂pzq obeying (1). These algorithms
will, therefore not find unmajorised eigenvalues of Rpzq, and
at best converge to permuted, piecewise analytic functions as
EVD factors, likely resulting in high approximation orders and
perturbed subspaces.

Therefore, in this paper, we aim to define an algorithm
capable to recovering functions close to the unmajorised eigen-
values of Rpzq from an estimate R̂pzq. Our approach rests on
a fundamental property of analytic functions; we recall this in
the following theorem, whose unusual name is motivated by
palaeontologists being seemingly able to reconstruct an entire
dinosaur from some small bone fragment:

Theorem 1 (Dinosaur Bone Theorem): Given a small portion
of an eigenvalue λpzq, e.g. a segment on the unit circle, it is
possible to reconstruct λpzq in its entirety.
Proof: Analytic functions are defined as matching their own
Taylor series everywhere within their region of convergence.
All derivatives required for the Taylor series expansion can
therefore be determined from a non-vanishing, arbitrarily small
segment, which we call here a bone. ■

In our approach, we find Q bones of eigenvalues Λ̂pejΩq

within bands Ωq ă Ω ă Ωq , q “ 1, . . . , Q where the bin-
wise eigenvalues are well separated and therefore are likely
to be spectrally majorised. For different bones from different
frequency intervals, the Taylor series (i.e. time domain recon-
struction) must be similar. Using a suitable clustering algo-
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Fig. 1. Source model for measurement vector xrns.

rithm, we then line up bones to reconstruct an approximation
of our dinosaur: the previously extinct, unmajorised eigenval-
ues of Rpzq. Thus, we name our approach the EigenBone
Method.

Below, Sec. II outlines why estimated space-time covariance
matrices possess spectrally majorised eigenvalues with proba-
bility one even if the ground truth eigenvalues are unmajorised,
and motivates our proposed approach in Sec. III. Its results are
characterised and benchmarked in Sec. IV. The Matlab code
to reproduce all figures is provided online1.

II. PROBLEM DEFINITION

A. Space-Time Covariance and Analytic EVD

Assume that the data vector xrns P CM emerges from
the source model in Fig. 1. There, L mutually independent,
temporally uncorrelated, zero mean, and unit variance Gaus-
sian signals uℓrns, ℓ “ 1, . . . , L, excite innovation filters
fℓrns that shape the sources’ power spectral densities, prior
to convolutive mixing by a system Hrns P CMˆL. Therefore
the cross-spectral density matrix Rpzq ‚ ˝ Rrτ s is given by

Rpzq “ HpzqF pzqFP
pzqHP

pzq , (2)

where Hpzq ‚ ˝ Hrns is a matrix of transfer functions of the
mixing system, and F pzq “ diagtf1pzq, . . . , fLpzqu contains
the L innovation filters fℓpzq ‚ ˝ fℓrns [20]. For causal and
stable systems F pzq and Hpzq, Rpzq in (2) is a matrix
of functions that are guaranteed to be analytic on some
annulus containing the unit circle [4]. Furthermore, because
of the symmetries inherent in the auto- and cross-correlation
sequences contained in Rrτ s, the cross-spectral density is a
parahermitian matrix i.e. Rpzq “ RP

pzq.
For analytic parahermitian matrices that are derived from

unmultiplexed signals xrns, there exists an EVD with analytic
factors [5], [6],

Rpzq “ QpzqΛpzqQP
pzq . (3)

The diagonal matrix Λpzq “ diagtλ1pzq, . . . , λM pzqu con-
tains the analytic eigenvalues. Their corresponding analytic
eigenvectors from the columns of the paraunitary matrix Qpzq,
such that Q´1

pzq “ QP
pzq. If in the source model of

Fig. 1 the mixing matrix Hpzq is paraunitary, then we have
Qpzq “ Hpzq and Λpzq “ F pzqFP

pzq. The analyticity of the
EVD factors has two important implications: (i) functions are
unique within their region of convergence [21], and (ii) while
the factors may represent infinite series, they can be arbitarily
close approximated by polynomials of sufficiently high order
through shift and truncation [7], [22].

1https://github.com/SebastianJiroSchlecht/EigenBones

Fig. 2. Example of analytic eigenvalues of Rpzq (N Ñ 8) and of its
estimate R̂pzq for samples sizes N P t103, 105u.

B. Impact of Space-Time Covariance Estimation

If space-time covariance matrices are estimated from data
xrns, 0 ď n ă N via their best linear unbiased estimator,
then the variance of the estimate R̂rτ s with respect to the
ground truth Rrτ s given by the source model in Fig. 1
depends on both the sample size N and on Rrτ s [23]. This
estimation error leads to a perturbation of both the eigenvalues
and eigenspaces [24]. On the unit circle and in a bin-wise
view, this perturbations tends to reduce as N increases [25],
and one might be misled to think that the analytic EVD of
R̂pejΩq “ Q̂pejΩqΛ̂pejΩqQ̂PpejΩq converges towards that of
Rpzq|z“ejΩ in (3).

If on the unit circle the eigenvalues of ΛpejΩq intersect,
they must possess an algebraic multiplicity greater than one
for some Ω. In contrast, since the eigenvalues of Λ̂pejΩq are
drawn from a distribution, they will be distinct with probability
one [26], which applies for every frequency Ω. As a result,
the eigenvalues of Λ̂pejΩq will no longer intersect, and be
spectrally majorised with probability one [16].

Example 1: Consider data generated according to Fig. 1 with
f1pzq “ p1 ` az´1q{

?
a with a “ 1

2 p3 ´
?
5q, f2pzq “ p1 `

jaz´1q{
?
a and a paraunitary Hpzq “ r1, 1; z´1, ´z´1s,

which yields a CSD matrix

Rpzq “

„

1´j
2 z ` 3 `

1`j
2 z´1 1`j

2 z2 `
1´j
2

1`j
2 `

1´j
2 z´2 1´j

2 z ` 3 `
1`j
2 z´1

ȷ

(4)

taken from [3]. The eigenvalues of Rpzq are thus the power
spectral densities of the sources, i.e. λmpzq “ fmpzqfP

mpzq,
m “ 1, 2, as shown in Fig. 2, with λ1pejΩq “ 3 ` 2 cosΩ
and λ2pejΩq “ 3 ` 2 sinΩ. For estimates R̂pzq based on
sample sizes of N “ 103 and N “ 105, Fig. 2 shows
the analytic eigenvalues λ̂mpejΩq, which are now spectrally
majorised. The non-trivial algebraic multiplicities of ΛpejΩq

at Ω1 “ π
4 and Ω2 “ 5π

4 have disappeared, and Λ̂pejΩq is
made up of piecewise analytic bones that are permuted at Ωi,
i “ 1, 2. △

The above Example 1 has highlighted that while the per-bin
or per-frequency estimation error reduces, the eigenvalues of
the estimated space-time covariance matrices remain spectrally
majorised even for very large sample sizes N . This has two



profound consequences: (i) we are unable to obtain the ground
truth eigenvalues if we adhere strictly to R̂pzq for any realistic
sample size N ; (ii) even if the ground truth has compact
support, by increasing the sample size N , the approximation
order increases dramatically with N , since the analytic EVD
factors of R̂pzq converge towards piecewise analytic functions.
If the ground truth eigenvalues are unmajorised, then the target
eigenvalues Λ̂pejΩq will aim to approximate non-differentiable
functions, and the eigenvectors in Q̂pzq will converge towards
discontinuities. This leads to high approximation orders, and
significant perturbation in the eigenspaces close to algebraic
multiplicities of ΛpejΩq.

III. PROPOSED EIGENBONE METHOD

The proposed method aims to retrieve the ground truth
eigenvalues from an estimated space-time covariance matrix
R̂pzq via a bin-wise EVD R̂pejΩkq “ Q̂kΛ̂kQ̂

H
k , with Ωk “

2πk
K , k “ 0, . . . , pK ´1q, for a K-point discrete Fourier trans-

form (DFT). The eigenvalues in Λ̂k “ diagtλ̂1,k, . . . , λ̂M,ku

are assumed to be majorised.

A. Determining Analytic Bones

The first step involves determining the analytic bones. A
bone is defined as a succession of bins with a sufficient eigen-
value separation. In the kth bin, we measure this separation as
the minimum distance, δk “ minmpλ̂m,k ´ λ̂m`1,kq between
any two eigenvalues, and define a threshold T above which
we treat eigenvalues as sufficiently far apart such that an
intersection of the ground truth eigenvalues is unlikely. Let
Q be the number of bones that we can identify. Each bone’s
bounds, Ωq and Ωq , can be determined by maximizing the
frequency range while ensuring sufficient separation between
adjacent eigenvalues, i.e.

max
Ωq,Ωq

pΩq ´ Ωqq s.t. δk ą T ,@Ωk P rΩq, Ωqs . (5)

In order to be workable, as the Q bones, we only retain those
that satisfy a minimum length across successive bins, i.e. pΩq´

Ωqq ą B for some threshold B.
Example 2: To demonstrate the segmentation approach for

the estimated space-time covariance R̂rτ s|N“103 of Exam-
ple 1, Fig. 3 shows the minimum eigenvalue distance per bin
for a 210-point DFT, a threshold T “ 1

16 , and the resulting
Q “ 2 bones, of which the first is wrapped. △

Determining the appropriate threshold T for segmentation
can be challenging due to the trade-off between bone accuracy
and computational feasibility. If the threshold is set too high,
numerous bones are detected, rendering the subsequent assign-
ment problem ill-conditioned. Conversely, setting the threshold
too low may result in missed eigenvalue intersections, leading
to inaccuracies in recovering the ground truth eigenvalues.

In practice, missing an intersection tends to be more detri-
mental than splitting bones into smaller portions, as it can
significantly affect the accuracy of the reconstructed eigen-
values. To address this, more sophisticated splitting criteria
can be devised. For example, utilizing higher-order derivatives

Fig. 3. (a) Minimum eigenvalue distance δk and threshold T , and (b) the
resulting Q “ 2 bones for the matrix R̂rτ s from Example 1.

or considering additional spectral characteristics may provide
a more robust bone division, enhancing the accuracy of
eigenvalue retrieval. For more complex scenarios with a larger
number of eigenvalues, it may also be advisable to split each
eigenvalue independently into bones.

B. Solving the Permutation Problem
To associate the eigenvalue bones, we project each of the

bones onto a common basis using an inverse partial discrete
Fourier transform (iDFT), facilitating the recovery of time-
domain coefficients for each bone. The linear least-squares
problem

ℓq,mrτ s “ argmin
ℓ1rτs

ÿ

ΩkPWq

∣∣∣∣∣ÿ
τPS

ℓ1rτ se´jΩkτ ´ λ̂m,k

∣∣∣∣∣
2

, (6)

with Wq “ tΩq, . . . ,Ωqu, aims to determine the time-domain
coefficients ℓq,mrτ s of the qth bone of the mth eigenvalue. In
(6), S “ t´s, . . . ,´1, 0, 1, . . . , su denotes the support of the
time-domain coefficients. Since the ill-conditioning of the least
squares problem (6) increases with shorter bones (Ωq ´ Ωq)
and larger temporal supports S, we generally select S ! B.
Sophisticated methods for signal extrapolation within limited
bandwidths, such as the Papoulis-Gerchberg algorithm and its
extensions, have also been developed to address this issue
[27]–[29].

Example 3: For bones in Fig. 3 as part of Example 2, Fig. 4
illustrates the reconstructions via (6) with a maximum lag s “

2. On this reconstructed common basis, it is easy to associate
the matching functions: With respect to the first bone in the
l.h.s. plots, the eigenvalues in the second bone in the r.h.s. plots
are swapped.

The permutation problem is then formulated as a linear
assignment problem, with the Hungarian algorithm [30] being
one efficient method for its solution. This algorithm minimizes
the cost of associating bones, as expressed by:

min
P

trtCPu , (7)

where P is a permutation matrix and C is the cost matrix
defined as:

Cij “
ÿ

τPS

|ℓi,1rτ s ´ ℓj,qrτ s|2 . (8)



Fig. 4. Time domain functions derived from the Q “ 2 bones via (6).

Fig. 5. Retrieved analytic eigenvalues based on the proposed method for
Example 1.

Here, the first bone is arbitrarily chosen as the reference.
Instead of matching every bone with the first bone iteratively, a
multi-way matching approach can be employed [31]. Solving
the assignment problem (7) for each k yields the index permu-
tation pkpmq, aligning the bones ℓm,1, ℓp2pmq,2, . . . , ℓpQpmq,Q

to form the mth aligned eigenvalue.

C. Eigenvalue Retrieval

Once the permutations are resolved, the eigenvalues can
be determined using various methods. A simple approach
involves bone-size weighted averaging, such that for the ap-
proximated analytic eigenvalues λ̂mrτ s, we have that

λ̂mrτ s “
1

ř

q |Wq|

Q
ÿ

q“1

|Wq| ¨ ℓq,mrτ s , (9)

with |Wq| the number of bins in the qth bone. Such a time-
domain averaging approach takes into account that longer
bones tend to provide more accurate results and offers the
advantage of statistical averaging across the entire frequency
range. Ultimately, the discrete Fourier transform of λ̂mrτ s

yields the reconstructed unmajorized frequency-domain eigen-
values λ̂mpejΩq.

Example 4: The reconstruction of the above example based
on the time domain bone functions ℓq,mrτ s in Fig. 4 via (9) is
shown Fig. 5. The retrieved eigenvalues accurately match the
unmajorised ground truth in Fig. 2.

IV. RESULTS

We demonstrate the proposed method’s effectiveness com-
pared to the state-of-the-art and in one challenging scenario.

A. Comparison to State-of-the-Art

Examples 2-4 have explored the application of the pro-
posed approach to the system in Example 1 with N “ 105

samples. The resulting approximated eigenvalues in Fig 5

Fig. 6. Benchmark methods applied to R̂pzq|N“105 with approximated
eigenvalues λ̂mpejΩq for (a) SMD [18] and b) [7], and the decay of their
time domain coefficients for (c) SMD and (d) [7].

closely matched the unmajorised ground truth functions. In
contrast, applying the polynomial EVD algorithms such as
sequential matrix diagonalisation (SMD) algorithm (with a
maximum of 200 iterations, [18]) and the analytic eigenvalue
extraction method in [7] to the same parahermitian matrix
yields the estimates shown in Fig. 6. SMD is known only
to yield incomplete diagonalisation [4], and neither algorithm
can recover the unmajorised ground truth. Additionally, since
in particular [7] tries to closely approximate functions that
are only piecewise analytic, the decay of the eigenvalue
coefficients as shown in Fig. 6(d) is poor. By comparison,
the proposed method yields a finite time domain support of
only seven coefficients for the results in Fig. 5.

B. Challenging Scenario

For a more challenging scenario (Example 4 in [8]),
the M “ 3 ground truth eigenvalues λmpejΩq are given in
Fig. 7(a), together with their bin-wise estimates based on
N “ 105 samples. With K “ 210 bins and a threshold
T “ 1

8 according to (5) for the minimum eigenvalue distance,
the proposed method yields the segmentation in Fig. 7(b).
There are now Q “ 5 bones of various lengths, and intervals
where at least some of the eigenvalues are closely spaced
have been excluded. The reconstructions of the individual
bones via (6) yield the time domain functions in Fig. 8,
and it is a straightforward process to associate functions
across the Q “ 5 different bones. The bone-size weighted
reconstruction from the time-domain bones using (9) yields
the approximations in Fig. 9. Our method retrieves eigenvalues
close to the ground truth, even accurately reconstructing the
middle section near Ω “ π that was initially discarded in the
segmentation process.

V. CONCLUSION

We have presented a novel method for accurately recovering
unmajorized eigenvalues from space-time covariance matrices,
where the estimation from data will obsure the analytic
eigenvalues with probability one. Our approach demonstrates
robustness in handling noisy data and complex scenarios, as
illustrated through two examples. By leveraging segmentation
and time-domain coefficient matching, our method achieves
superior performance compared to traditional approaches, both
in terms of retrieving the analytic unmajoried eigenvalues as



Fig. 7. (a) Spectrally majorised association of bin-wise eigenvalues with
ground truth underlaid in grey; (b) segmentation result.

Fig. 8. Time domain function ℓq,mrτ s reconstructed from bones with real
(˝) and imaginary parts (˚). The axis position indicates the majorised order
of bones, while the frame color shows the resolved permutation.

Fig. 9. Retrieved unmajorised analytic eigenvalues.

well as achieving a low order approximation. These results
show the potential of our method to uncover correct spectral
association in broadband array processing.
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