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Abstract—This paper investigates the detection of a weak
transient broadband signal. We compare a polynomial subspace
detection approach to a likelihood ratio test. While the later
is statistically optimal, there may be reasons of computational
efficiency and numerical robustness to combine such a likelihood
ratio test with the subspace approach. We provide a review of
these methods, highlight some of their similarities and differences,
and demonstrate in simulations that in particular in the case
of detecting very weak signals or signals in very dispersive
environments, there may be a compelling argument for combining
the likelihood ratio test with a subspace approach.

I. INTRODUCTION

The challenge to fast and reliably detect the emergence of

a potentially weak, broadband transient signal is pertinent to a

number of applications, such as the detection of primary users

in a cognitive radio environment [1]–[3]. In the audio domain,

weak speakers may need to be detected in the presence of

other speakers [4] or against strong background noise [5]. In a

military scenario, there are various uses where the detection of

an often weak transient source, either in RF or sonar domains,

is desirable if not vital [6].

To detect transient signals, often energy-based criteria are

invoked, and utilise transforms such as short-time Fourier

transform-type or wavelet-based operations to find transient

sources via their correlation structure [7]–[9]. For multi-

sensor measurements, data-dependent transforms such as the

Karhunen-Loeve transform [10] derived from the covariance

matrix of the data via an eigenvalue decomposition (EVD)

can attain an optimum energy compaction within a lower-

dimensional subspace. Similar subspace partitioning methods

have been used in e.g. [11]–[15].

For broadband signals, in [6] a polynomial subspace projec-

tion approach has been suggested. Similar to filterbank-based

joint source-channel coder in [16], where a projection onto the

polynomial nullspace of the code is termed a syndrome and

can be used to identify and potentially correct transmission

errors, in [6] an increase in energy in the noise-only poly-

nomial subspace is indicative of a new emerging signal in

the environment. Here, we want to compare this syndrome

approach to the statistically optimum test, the likelihood ratio

test (LRT), for Gaussian data [17], [18].
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Fig. 1. Signal model for measurement x[n] ∈ CM .

Below, based on the system model outlined in Sec. II,

Sec. III reviews the syndrome approach and Sec. IV the LRT

method. We suggest a combination of the two by applying

the LRT to the polynomial subspace-projected data, which we

evaluate in Sec. V.

II. SIGNAL MODEL AND SPACE-TIME COVARIANCE

A. Signal Model

We assume a scenario with M sensors measuring emissions

from an environment containing L < M stationary sources, as

shown in Fig. 1. For this scenario, the sources are modelled as

mutually independent, temporally uncorrelated zero mean and

unit variance signals uℓ[n], ℓ = 1, . . . , L gathered in a vector

u[n] = [u1[n], . . . , uL[n]]
T. Both the power spectral density

of the individual sources as well as a convolutive mixing is

performed by a matrix of impulse responses H[n] ∈ C
M×L.

Further, the measurements are corrupted by additive Gaussian

noise v[n] ∈ C with covariance E{v[n]v[n− τ ]} = σ2
vδ[τ ]I.

A further (L+ 1)st signal illuminates the array, which is tied

via a vector of filters ht[n] ∈ C
M to another zero mean

unit variance uncorrelated Gaussian signal uL+1[n]. It is the

presence of this signal that we would like to detect.

B. Space-Time Covariance Matrices

For the space-time covariance R[τ ] = E
{

x[n]xH[n]
}

of

the measurement vector x[n], we first consider the case

uL+1[n] = 0. We can state the z-transform of the space-time

covariance, the cross-spectral density R(z) =
∑

τ R[τ ]z−τ ,

or short R[τ ] ◦ • R(z), as

R(z) = H(z)HP(z) + σ2
vI . (1)

In (1), we have H(z) • ◦ H[n] as a matrix of transfer

functions; the parahermitian operator {·}P implements a Her-

mitian transposition and time reversal, such that HP(z) =
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{H(1/z∗)}H [19]. As a result, R(z) is a parahermitian matrix,

i.e. it satisfies RP(z) = R(z).
In the case of uL+1[n] 6= 0, its contribution to the overall

CSD is

Rt(z) = ht(z)h
P
t(z) , (2)

where ht(z) • ◦ h[n]. Note that Rt(z) has rank one only,

and that for the overall CSD we have R(z) +Rt(z).

III. POLYNOMIAL SUBSPACE DETECTION

A. Analytic Eigenvalue Decomposition

The parahermitian nature of R(z) generally admits an

analytic EVD [20]–[22]

R(z) = Q(z)Λ(z)QP(z) , (3)

where Λ(z) is a diagonal parahermitian matrix containing

the eigenvalues of R(z), and Q(z) is paraunitary, such that

Q−1(z) = Q(z), holding the corresponding eigenvectors in

its columns. Both Λ(z) and Q(z) exist as analytic functions;

this is an important property, as it allows to approximate par-

ticularly Q(z) arbitrarily closely by polynomials of sufficient

order simply by shifts and truncations [23].

Given the source model in Fig. 1, it is possible to utilise

(3) in order to define a subspace decomposition,

Λ(z) = blockdiag
{

ΛH(z) + σ2
vIL, σ2

vIM−L

}

, (4)

Q(z) = [Q‖(z), Q⊥(z)] , (5)

where ΛH(z) contains the L non-zero analytic eigenvalues

of H(z)HP(z) : C → C
L×L, and Q‖(z) holds the corre-

sponding eigenvectors. The remaining analytic eigenvectors

in Q⊥(z) span the noise-only subspace of R(z), which is

not reached by any of the L sources.

B. Subspace Projection and Syndrome Vector

The subspace decomposition afforded by Q⊥(z) has been

used to detect an emerging weak broadband signal uL+1[n]
in [6] by projecting x[n] onto the noise-only subspace via

s[n] =
∑

ν

QH
⊥[−ν]x[n− ν] , (6)

as also depicted in 2. The resulting s[n] ∈ C
M−L has been

referred to as a syndrome vector, as in the absence of uL+1[n],
we have s[n] ∈ N (0, σ2

vIM−L). In case of uL+1[n] 6= 0,

some of its energy will leak into the noise-only subspace,

where it will increase the variance of the syndrome and thus

may be detected. To some extend, this is a generalisation

of narrowband subspace detection approaches [11], and its

broadband extension via (6) has found use for e.g. voice

activity detection in the presence of stronger speakers [4] or

noise [5].

If temporal correlation in s[n] is ignored, then a detection

variable ‖s[n]‖22 will follow a generalised χ2 distribution. If

additional temporal averaging is applied, the temporal corre-

lation limits the performance. This temporal decorrelation can

be somewhat broken up by averaging over a decimated output

s[nQ] [6], where Q exceeds the period over which s[n] is

correlated.

x[n] QH

⊥
[−n] s[n]M M − L

Fig. 2. Projection of measurements x[n] onto the noise-only subspace, and
syndrome vector s[n].

IV. LIKELIHOOD RATIO TEST APPLICATION

A. Likelihood Ratio Test Considerations

In order to compare or to combine the subspace test with

a likelihood ratio test, we explore the latter for a general

decision on a vector yn ∈ C
K , which can later be constructed

from measurement vectors x[n] or syndrome vectors s[n].
The dimension K will depend on this choice. This vector

yn can have two independent components: y0,n ∈ C
K ,

which is the ever-present stationary noise, and y1,n ∈ C
K ,

which represents the transient component. These signals are

assumed to be zero mean with covariance matrices R0 and

R1, respectively. We want to distinguish the two hypotheses

H0 : yn = y0,n ,

H1 : yn = y0,n + y1,n ,

where y0,n is the contribution from the L stationary sources

and additive noise, and y1,n is due to the transient signal.

For zero-mean Gaussian signals yi ∼ N (0,Ri), i = 0, 1, the

probability density functions of y for the two cases are

p(yn|H0) = (2π|R0|)
− 1

2 e−
1

2
yH

n
R

−1

0
yn , (7)

p(yn|H1) = (2π|R0 +R1|)
− 1

2 e−
1

2
yH

n
(R0+R1)

−1yn , (8)

with | · | denoting the determinant of its matrix argument.

For the likelihood ratio L(yn), we have

L(yn) =
p(yn|H0)

p(yn|H1)
=

|R0 +R1|
1

2

|R0|
1

2

e−
1

2
yH

n
Ayn , (9)

with

A = R−1
0 − (R0 +R1)

−1 = QΛQH . (10)

Thus,

L(yn) =
|R0 +R1|

1

2

|R0|
1

2

e−
1

2
‖Λ

1

2 QHyn‖
2

2 , (11)

represents the likelihood ratio.

We now need to find a threshold c to accept or reject the

hypothesis,

L(yn)
H0

≶
H1

c . (12)

This leads to

‖Λ
1

2QHyn‖
H1

≶
H0

2 ln

{

|R0|
1

2

|R0 +R1|
1

2

c

}

= c′ . (13)

Thus, the term ‖Λ
1

2QHyn‖ defines the test statistic.



B. LRT Applied to Measurements

In the case that we want to work with a window of T
snapshots of the measurement vector x[n], our variable for

the LRT is

yH
n = [xH

n ,x
H
n−1, . . . ,x

H
n−T+1] . (14)

With the space time covariances defined in Sec. II-B, we have

in this case

R0 =







R[0] . . . R[T − 1]
...

. . .
...

R[1− T ] . . . R[0]






. (15)

Likewise, R1 can be constructed from lag components of

Rt[τ ]. While we know that Rt[τ ] is rank one, we can only

say that R1 will a most possess rank T [24].

In terms of dimensions, we have Ri ∈ C
(MT )×(MT ),

i = 0, 1. Thus, for large values of M and T , the inversion can

be computationally and numerically challenging. Typically in

practice, in the presence of the transient signal, we measure

R0 + R1. If the covariances are available separately, then

once for (10) the inverse R−1
0 has been calculated, we can

determine the low rank update (R0 + R1)
−1 via the matrix

inversion lemma [25].

C. LRT Applied to Syndrome

If the LRT is applied to T snapshots of the syndrome vector

y[n], we work with a variable

yH
n = [sHn , s

H
n−1, . . . , s

H
n−T+1] . (16)

Taking note of its space-time covariance R′[τ ] =
E
{

y[n]yH[n− τ ]
}

and its corresponding CSD matrix R′(z) :
C → C

(M−L)×(M−l),

R′(z) = QP
⊥(z)R(z)Q⊥(z) , (17)

we can construct R0 akin to (15). Similarly, R1 can be

obtained. We now have covariance matrices Ri, i = 0, 1 of

size T (M − L)× T (M − L).
With respect to the LRT applied to measurement data in

Sec. IV-B, we disregard any possible distinction between the

stationary sources and the transient signal in the signal-plus-

noise subspace of R(z). However, if the transient source

is weak, two advantages arise: firstly, by suppressing the

dominant eigenvalues of R(z) in R′, the condition number

of the matrices Ri will be reduced for the LRT applied to

the syndrome versus the one applied to the measurement

data. Secondly, the covariance matrices are now of a reduced

size. Thus, the matrix inversions become numerically and

computationally less challenging.

With respect to just assessing the energy on the syndrome

vector as in Sec. III-B, there the evaluation of ‖s[n]‖2 treats

all components of the noise-only subspace equal, while the

LRT weights contributions by the term Λ
1

2 ; in the case of

the LRT applied to the syndrome vector, this will reflect the

eigenvalues of the transient source (offset by the variance

σ2
v of the additive noise) within the noise-only subspace of

the stationary sources. Hence, subspace components with a

stronger contribution by the transient signal will be weighted

stronger, thus emphasising the difference between the more

heuristic syndrome energy approach in [6] and the statistically

optimum LRT.

V. SIMULATIONS AND RESULTS

We now want to compare the three tests: the simple

syndrome approach of Sec. III-B, the LRT applied to the

measurement data in Sec. IV-B, and the proposed LRT based

on the syndrome in Sec. IV-C.

A. Performance Metrics, Algorithms, and Parameters

We generally want to assess the separation of distributions

when data belongs to either of the two hypotheses. A useful

metric is the receiver operating characteristic (ROC) [26],

which in our case evaluates the probability of correctly de-

tecting the transient signal versus the false alarm of incorrect

detecting a transient signal, i.e. with respect to the test in (13)

the threshold c′ is exceeded in the absence of any transient

signal.

To obtain a single numerical value assessing how well two

distributions separate, we also define the separation distance

δ as

δ =
|µ1 − µ0|

(σ0 + σ1)/2
. (18)

This ratio assesses the difference of the means µi , normalised

by the mean of the standard deviations σi, for the two

hypotheses Hi, i = 0, 1.

For the general test setup, w.r.t. the model in Fig. 1 we

assume M = 8 sensors and L = 5 stationary sources.

When present, the transient signal sits in the noise floor, and

possesses a power equal to the variance σ2
v of the additive

noise term v[n] in Fig. 1. We will alter the signal to noise

ratio (SNR) γ measured between the stationary sources and

the additive noise (and therefore the transient source) as

γ =
tr{R[0]} −Mσ2

v

Mσ2
v

, (19)

where tr{·} is the trace operator. Other variable parameters in

the tests are the temporal window T , and the dispersiveness

of the mixing systems, measured by the time domain support

of H[n] and ht[n] in Fig. 1, which equals the length K of the

finite impulse response filters of these systems.

In term of algorithms, we assess the LRT applied to the

measurements and to the syndrome, labelled LRT(x) and

LRT(s) respectively. Since the syndrome approach in [6]

ignores temporal correlation, as a reference we include an

LRT approach that only utilises R[0] and Rt[0] for its con-

struction, labelled LRT2(x), i.e. it also ignores the temporal

correlation of the data. We also show results with space-time

covariance matrices estimated over 105 samples using a best

linear unbiased estimator [27], which essentially provides the

performance of a generalised LRT [18].
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Fig. 3. Separability of distributions for different approaches with M = 8,
L = 5, K = 8, and an SNR γ = 10dB.
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Fig. 4. ROC curve for the case T = 10 in Fig. 3.

B. Basic Simulation

With the fixed parameters as specified in Sec. V-A, Figs. 3

and 4 show the simulation results for a mixing system with

K = 8 and an SNR of γ = 10dB, i.e. the stronger stationary

sources are 10dB above the noise and the transient signal.

In Fig. 3, the separability δ as defined in (18) is given for

different temporal windows T = 1, . . . , 10. For T = 1, there

is temporal correlation to consider, and LRT(x) and LRT2(x)
perform identical. As T increases, both methods include more

averaging, and the separability increases; taking the correct

temporal correlation into account provides a higher increase

in δ for LRT(x) than for LRT2(x).

In comparison, the syndrome-based methods start with a

higher separability for T = 1 than the tests operating on

x. Since LRT(x) is the statistically optimum approach, this

is suprising and likely due to the temporal decorrelation

w.r.t. the stationary sources applied by Q⊥(z). Eventually, as

T is increased, the resulting performance advantage of LRT(s)

w.r.t. LRT(x) evaporates, and the latter shows the best perfor-

mance for T > 5 in this situation. Interestingly, the syndrome

approach [6], which different from LRT(s) does not apply any

weighting of the contributions in the noise-only subspace and

ignores temporal correlation, performs reasonably well and

much better then LRT2(x) — it is again the decorrelating

property of Q⊥(z) that may provide a benefit.

Since δ is a simplified assessment of how well distributions

separate, Fig. 4 shows the ROC curve for T = 10. Here, there

is an advantage for the LRT approach to assess the entirety of

the available data in the measurements x[n] rather than in the

preprocessed syndrome s[n]. Note that in both Figs. 3 and 4,

the estimates are sufficiently accurate to not cause any drop

in performance.
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Fig. 5. Separability with K = 16 compared to Fig. 3.
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Fig. 6. ROC curve for the case T = 10 in Fig. 5.

C. Changing SNR and Support of Mixing System

In order to harden the suspicion that in the presence of

temporal correlation it is advantageous to work with the

syndrome vector preprocessed by the Q⊥(z), we increase

the temporal correlation by doubling the support of H(z) to

K = 16. The result on the separability in Fig. 5 indeed shows

that the performance gap widens compared to Sec. V-B, and

that over the range of 0 < T ≤ 10, the LRT directly applied to

the measurement data does not anymore reach the performance

of the syndrome-based LRT. This is also highlighted by the

ROC curve for T = 10 in Fig. 6.

In the previous simulation, the difference in performance

between LRT based on precise knowledge and GLRT based

on estimated covariance matrices was neglible. In Fig. 5,

there is a break-down in performance for GLRT based on the

measurement data for T > 8. Here, in the case of T = 10,

the matrix R0 for LRT(s) is 30 × 30, while for LRT(x) it

is 80 × 80 with a condition number that is increased by 3

orders of magnitude w.r.t. the sybdrome-based case. Hence,

any estimation errors tend to have a more severe impact and

may lead to very poor results.

In addition to increasing K w.r.t. the experiment in

Sec. V-B, we now also increase the power of the stationary

sources from γ = 10dB to γ = 20dB. This has the effect

of increasing the condition number of the covariance matrices

when based on x[n] rather than s[n]. It also means that it

becomes more difficult for LRT(x) to extract information on

the transient source from the signal subspace of the now

even stronger stationary sources. Considering the separability

results in Fig. 7, the reason that it cannot perform as well as

LRT(s) is likely due to the decorrelating nature of Q⊥(z).
Both effects together increase the advantage of the proposed

LRT(s) over LRT(x). Note that while the simplistic measure



1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

Fig. 7. Separability with K = 16 and SNR γ = 20dB compared to Fig. 3.
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Fig. 8. ROC curve for the case T = 10 in Fig. 7.

δ suggests a marginally better separation for the syndrome

approach in [6] than for LRT(x) at T = 10, considering the

ROC curve in Fig. 8 reveals somewhat reversed fortunates

when considering the actual distributions. This, though, does

not affect the superior performance of LRT(s) over LRT(x)

VI. CONCLUSIONS

We have considered the detection of weak transient signals

using both a polynomial subspace projection approach and

a likelihood ratio test. Both can be derived from the space-

time covariance matrix of the data. We have shown that the

consideration of temporal as well as spatial correlations is vital

to the performance of the detector; this is not surprising. As a

remarkable result though, simulation results indicate that both

for detecting very weak signals, as well as for operating in

very dispersive mixing environments, there is an advantage to

restrict the likelihood ratio test to the projected (here referred

to as syndrome) data rather than applying it directly to the

measurements. This is likely due to the decorrelating effect

that the subspace projection operation has on the data.
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