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Abstract—In order to determine the analytic eigenvalues of
a parahermitian matrix, the state-of-the-art algorithm offers
proven convergence but its complexity grows factorially with the
matrix dimension. Operating in the discrete Fourier transform
(DFT) domain, its computational bottleneck is a maximum
likelihood (ML) sequence estimation, that investigates a set
of paths of likely associations across DFT bins. Therefore,
this paper investigates an algorithm that remains covered by
its predecessor’s proof of convergence but offers a significant
reduction in complexity by trading the number of retained paths
versus the DFT length. We motivates this, and also introduce an
enhanced initialisation point for the ML sequence estimation. The
benefits of this proposed scalable analytic extraction algorithm
are illustrated in simulations.

I. INTRODUCTION

Polynomial matrix algebra has found diverse application in

broadband sensor array applications. Therefore, in last decade

we have seen significant development in field of polynomial

matrix algebra especially the polynomial eigenvalue decom-

position (PEVD), polynomial singular value decomposition

(PSVD) and the polynomial QR decomposition (PQRD).

With recent proof of analytic EVD existence, an analytic

eigenvalues and eigenvectors extraction algorithms [1], [2]

were proposed. Subsequently, the analytic SVD existence

proof is formally established where the singular value are

conventionally restricted to be real-valued on the unit circle

similar to the standard SVD.

The SVD of a polynomial matrix can be computed either

through the time-domain approximate algorithms or via the

application of two analytic EVDs. Both these methods produce

singular values that are complex valued on the unit circle

which is opposed to the convention of singular values being

real-valued on the unit circle.

Therefore, in this document we propose an algorithm that

extracts analytic singular values of a polynomial which are

real-valued on the unit circle. In addition, the algorithm does

not limits the singular values to be positive on the unit circle.

II. ANALYTIC EIGENVALUE DECOMPOSITION

A. Existence and Uniqueness

An analytic parahermitian matrix R(z) : C → CM×M ,

that is not connected to multiplexing operations and hence by

to be edited

paraunitary operations cannot be reduced to pseudo-circulant

form [3], admits an analytic EVD [4]–[6] as

R(z) = Q(z)Λ(z)QP(z) . (1)

In (1), Q(z) is a paraunitary matrix containing analytic

eigenvectors, and Λ(z) is a parahermitian diagonal matrix of

analytic eigenvalues. The analytic eigenvectors are ambiguous

upto an arbitrary allpass functions i.e. if Φ(z) is a diagonal

matrix of allpass factors, then Q(z)Φ(z) is also a valid

eigenvector matrix. In contrast, the analytic eigenvalues in

Λ(z) are unique up to a permutation.

III. ANALYTIC EIGENVALUE EXTRACTION

This section provides the overview of the original algorithm

proposed in [1], [7].

A. EVD in Sample Points of R(z) on the Unit Circle

DFT methods such as [1], [2], [7], [8] compute standard

EVDs in the sample points Ωk = 2πk/K of a K-point DFT

of R[τ ] ◦ • R(z). This yields [9]

R(ejΩk) = Rk = QkΛkQ
H
k for k = 0, . . . , (K − 1) , (2)

where Λk = diag{d
(K)
1,k , . . . , d

(K)
M,k}, ,m = 1, . . . , (M − 1)

is a real diagonal matrix with bin-wise eigenvalues, and Qk

represents the matrix holding in its columns their correspond-

ing eigenvectors in the kth sample point. The eigenvalues in

Λk are unique up to a permutation, which can be fixed by

ordering in a majorised fashion such that d
(K)
m,k ≥ d

(K)
m+1,k,

∀ m = 1, . . . , (M = 1) and k = 0, . . . , (K − 1).
The analytic eigenvalues in (1) evaluated at z = ejΩk can be

related to the bin-wise eigenvalues Λk through a permutation

matrix

Λ(ejΩk) = PkΛkP
H
k . (3)

In [8], this permutation of the eigenvalues is pursued by track-

ing the orthogonality of the eigenvectors. However, challenges

arise at algebraic multiplicities, i.e. in bins where multiple

eigenvalues are identical [1], [10], [11]. Also, any perturbation

of R(z) will typically affect the eigenvectors more strongly

than the eigenvalues [1], [12]. Hence we here focus on the

eigenvalues alone.

Example 1: To illustration the bin-dependent permutation

matrices Pk, k = 0, . . . , (K− 1), in (3), consider the analytic

eigenvalues shown in Fig. 1(a). Their K = 8 uniformly spaced

sample points on the unit circle are shown in Fig. 1(b). The
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Fig. 1. (a) Analytic eigenvalues evaluated on the unit circle, (b) K = 8
sample points of analytic eigenvalues on the unit circle, and (c) spectrally
majorised eigenvalues obtained from the binwise EVD of sample points of

R(z) on the unit circle. (d
(8)
m,k

, k = 0, 1, . . . , 7)

Fig. 1(c) shows the bin-wise eigenvalues which are ordered

in each DFT bin in decreasing order, i.e. they are spectrally

majorised [13]. The objective is to permute the bin-wise

eigenvalues in each bin via determining Pk such that the

permuted bin-wise eigenvalues associate smoothly across DFT

bins as the samples of analytic eigenvalues in Fig. 1(b).

B. Assessing Associations Across Bins

For a spatial dimension M , there are M ! possible permuta-

tions of arranging the eigenvalues in a single bin. Assuming

that the eigenvalues are fixed in the k = 0th bin, across

all K bins, this leaves M !K−1 possible associations to be

checked. A suitable metric for smoothness of an association

has demonstrated to be the power in the derivatives of a

Dirichlet interpolation across the sample point [14], [15].

Minimising this power can be proven to yield the analytic

eigenvalues, but unfortunately is unfeasible even for modest

values of M and K. Therefore, the proposition in [1] has been

to replace an exhaustive search with an iterative ML sequence

detection. By starting from the first bin, we

and the goal is to identify the one that results in maximum

smoothness of the Dirichlet interpolation performed over the

ordered bin-wise eigenvalues [1]. The algorithm works on

bin-by-bin basis by appending the J th bin to the association

constructed by permuting previous (J − 1) bins denoted as

d
{0→J−1}
m,K ,m = 1, . . . ,M . Therefore, to identify a possible

correct permutation for the J th bin, it computes the smooth-

ness of an interpolation upto first J−bins while assuming

the remaining (K − J) samples such that the interpolation

across all K samples is maximally smooth [?], [?], [15]. This

accomplished by maximizing

χP =

M
∑

m=1

||R2d
{0→J−1}
m,K ||2F (4)

where R2 ∈ J× J is the lower-right partition of the upper-

right triangular matrix R obtained through the QR decompo-

sition of D
1
2WH with

D =

{

∑P
p=0 diag

{

02p, 12p, ..., L2p
K , L2p

K , ..., 1
}

,K odd
∑P

p=0 diag
{

0, 1, ..., (LK − 1), (0.5)
1
2pLK ,

(LK − 1), (LK − 2), ..., 1
}2p

,K even,

(5)

with P as the maximum derivative order chosen to measure the

smoothness of interpolation, and WK denotes the K−point

unitary DFT matrix. The factor LK = K/2 and (K − 1)/2
for even and odd K, respectively [1].

C. Permutations and Paths

The J th bin can be appended to the previous (J − 1) bins

in M ! ways, resulting in an equal number of possibilities

for associations or paths. For example, considering MK
sample points with the first bin set as a reference, there can

be (M !)K−1 potential associations or paths, with only one

being the correct association. However, managing such a vast

number of paths becomes computationally impractical, even

for smaller values of M . In the remainder of the paper, we

refer to incomplete associations as paths. The original algo-

rithm [1] adopts an approach that restricts the displacement

of an index at a particular position in permutation generation

to a specified maximum limit. For example, if the index

displacement distance is restricted to 1 unit, the total number

of permutations for M = 3 would be [1, 2, 3], [1, 3, 2], [2, 1, 3],
where the first position cannot have 3 and the third position

cannot expect 1. This approach is applicable due to the bin-

wise eigenvalues initially ordered in decreasing order in each

bin. The experiment in [1] uses a displacement limit of 3 units,

resulting in the total number of permutations per bin varying as

2, 6, 24, 78, 230, 675, 2069, ... with M = 2, 3, 4, 5, 6, 7, 8, ....
Similarly, the number of paths Np is kept the same as

the number of reduced permutations in each bin unless the

smoothness metric of any of the paths exceeds the smoothness

measure of the majorized path.

D. Iterative Procedure

The algorithm requires two associations at DFT sizes K/2
and K/2 to determine whether the identified association is

correct. It then calculates

ξ1 =

M
∑

m=1

K/2−1
∑

k=0

|d
{2k}
m,K − d

{k}
m,K/2|

2, (6)

and if it is smaller than a certain threshold ǫ (approx. zero), it

creates a possibility that the association is correct. However,

if the association is correct, the difference between the inter-

polation through K and K/2 sample points should converge

to zero for K → ∞ [1] i.e.

Θm(ejΩ) = d(m,K)(e
jΩ) − d(m,K/2)(e

jΩ) , (7)



where dm,K(ejΩ) is a Dirichlet interpolation over K eigen-

values sample in association d
{0→K−1}
m,K . Hence, the power in

its pth derivative is used as a second metric

ξP2 =
1

2π

M
∑

m=1

∫ π

−π

∣

∣

∣

dP

dΩP
Θm(ejΩ)

∣

∣

∣

2

dΩ, (8)

which, if ξP2 < ǫ′, indicates that the association is correct. The

time domain sequence λ̂m[τ ] is then obtained via a K/2−point

IFFT of d
(0→K/2−1)
m,K/2 ,m = 1, . . . ,M . On the contrary, if ξ1 >

ǫ, K is doubled, and the process is repeated until the correct

association is found, i.e., (ξP2 < ǫ′) ∧ (ξ1 < ǫ).

E. Scalability with Spatial and Temporal Dimension

This algorithm scale very poorly with spatial and not so well

with the temporal dimension R(z). Although, permutations

per bin (Ppb) are reduced through the maximum displacement

approach but for higher spatial dimension, these reduced

permutations for large value of M are still considerably high.

Additionally, a large number of paths further exponentiate

the computational cost, contributing to the complexity growth

with respect to the temporal dimension. For instance, if Np

paths are kept in the extraction process with the DFT size

doubled in each iteration, the total number of permutations in

I iterations becomes 2NpPpbK
(

1−( 12 )
I
)

where K is the final

DFT size. Since K is dependent upon the temporal dimension

of R[τ ] and the ground-truth eigenvalues, this also prohibits

its scalability with temporal dimension.

IV. MODIFICATION AND PROPOSED ALGORITHM

In this section, we propose two important modifications

to the DFT-domain approach in [1], which help to extract

the analytic eigenvalues from a parahermitian matrix at a

significantly reduced cost.

A. Number of Paths versus DFT Size

The ML sequence estimation embedded in the state-of-the-

art algorithm in Sec. III uses a number of paths Np to find

the correct association across bins, and grows the DFT size

K until the association can be established confidently. The

role of the DFT size is to allow a sufficiently fine frequency

resolution such that the Dirichlet interpolation is close enough

to the exact and unique continuous-frequency eigenvalues.

Large numbers of paths often find the correct association

within a smaller DFT size. However, if the number of paths

is fewer, a larger DFT size may be necessary to identify

the correct association. Therefore, a sufficiently large DFT

order can render the correct association the smoothest choice

among the total (K−1)M ! possibilities, even from the starting

bins with as few as a single path. This creates the possibility

that there may exist a maximum DFT length KSP such that,

for K ≥ KSP, a single path can easily extract the correct

association. It is important to note that KSP will be relative

to the temporal and spatial dimensions of the input R(z).
Therefore, increasing the DFT length can support fewer paths

to extract the correct association. However, indiscriminately

increasing the DFT size is not a prudent approach. There are

Fig. 2. (a) Analytic eigenvalue example with multiplicity at beginning (b)
analytic eigenvalues evaluated at K = 8 DFT bins, (c) extracted correct
association using single path with kMSEB = 1.

cases where a very large DFT length may be required. For

example, if there is an algebraic multiplicity near Ω = 0 or

in the initial DFT bins, a single path may require a very large

DFT order. The same effect is possible for multiple paths with

multiple crossings in the starting bins. This effect is illustrated

through an example.

Example 2: Lets consider an instance of R(z) ∈ C3×3 with

ground truth eigenvalues

λ1(z) =
(1.45 + j4.67)z

10
+ 1 +

(1.45− j4.67)z−1

10
(9a)

λ2(z) =
(7.17− j48.91)z

100
+ 1 +

(7.17− j48.91)z−1

100
(9b)

λ3(z) =
(1.35− j4.67)z

10
+ 1 +

(1.35 + j4.67)z−1

10
(9c)

illustrated in Fig. 2(a) with K = 8 point DFT shown in

Fig. 2(b). To extract the correct association with a single path,

a DFT size of at least K = 128 is required, provided that

the DFT size is doubled in each iteration. However, if there

are Np = 7 paths, the correct association can be extracted

at a DFT size of K = 8. This finding suggests that a larger

number of paths necessitates a smaller DFT size to achieve

the correct association.

B. Maximally Separated Eigenvalues Bin

The Example 2 requires K = 128 DFT bins to find

the correct association with a single path. The necessity

for such a large DFT length is due to the presence of

non-trivial algebraic multiplicity in the early bins. If this

issue is addressed, it is possible that a smaller number of

paths could be used to extract the correct association with

a smaller DFT size. For this, we determine the bin where

the eigenvalues are maximally separated and assume it as the

starting bin for every path. We can do so due to eigenvalues

being 2π−periodic, and so in sample points with K as its



period. The sequence in which bins will be visited becomes

[kMSEB, kMSEB + 1, ...,K − 1, 0, 1, ..., kMSEB − 1] where

kMSEB denotes maximally separated bin. The pseudo-code

for finding kMSEB is outlined in Algorithm 1 for total of

K−bins. This search operation can be performed either K
bins or its fraction round(ηK), 0 < η ≤ 1. The search is

repeated every time K is varied. By designating kMSEB as the

first bin, it facilitates reduced number of paths to capture the

appropriate associations in the initial bins, which in turn leads

to a comparatively straightforward addition of the subsequent

bins.

By employing the maximally separated bin technique, it is

possible to extract the correct association with the use of a

single path in 8 DFT bins, as demonstrated in Fig. 2 (c), where

kMSEB = 1. This finding indicates that, in conjunction with

a sufficiently large K, the maximally separated bin approach

enables the method of [1] to decompose a higher-dimensional

para-Hermitian matrix using reduced number of paths.

Algorithm 1: : Search for kMSEB for Approach-I

for k = 0 : K − 1 do

for m = 1 : M − 1 do

∆dm = |d
(K)
m,k − d

(K)
m+1,k|;

end

dk = min{∆d1,∆d2, ...,∆dM−1};

end

kMSEB = argmax
k

{dk}

C. Stopping Criterion

The original method requires computation of two smoothest

associations with K/2 and K−point DFT to calculate ξn,

where n = 1, 2. These associations must be stored separately

as d
{0→K−1}
m,K and d

{0→2K−1}
m,2K . By examining ξ1, it is deter-

mined whether these two associations are the same. If these

are same, ξP2 assesses the time domain aliasing to verify the

sufficiency of the DFT length for the extraction of analytic

eigenvalues. Alternatively, according to Theorem 4 in [1], the

convergence of ξP2 confirms the correctness of the extracted

association.

Given the reliance on ξp2 for convergence as per Section

IV-C in [1], it’s apparent that ξ1 becomes unnecessary. The

condition ξP2 → 0 suffices as both a necessary and sufficient

criterion for confirming association correctness, serving as

a suitable stopping point for the algorithm. Discarding ξ1
eliminates the need for keeping the previous association con-

structed at K/2 DFT size. Since ξP2 requires two association,

the association at K DFT size is obtained from the current

iteration while for K/2 DFT size can be derived from it

using even-indexed samples. This enables the computation of

Θm(ejΩ) for evaluating ξP2 via (8) with (7).

D. Convergence

The proposed method maintains reliance on the convergence

criterion of ξp2 , thereby preserving the validity of the original

convergence proof. However, the reduction in the number of

paths might impact the algorithm’s convergence towards the

correct association. To address this, the iterative increment

of K contributes to smoothing the eigenvalues, thereby sup-

porting convergence with a reduced number of paths towards

the desired solution. Additionally, the concept of maximally

separated bins aids in capturing the association’s nature in the

initial bins, facilitating the addition of later bins with minimal

difficulty.

V. SIMULATION AND RESULTS

A. Ensemble Test for Various Paths

An ensemble of 100 instantiations of R(z) ∈ C4×4 is

created and analytic eigenvalues are extracted using various

number of paths Np = {2, 4, 6, 10}. The execution time

averaged over the whole ensemble which is given in Table I. It

can be seen that for the constructed ensemble, reduced number

of paths perform computationally better compared to large

number of paths. However, it must be reminded that an optimal

number of paths are difficult to determine.

TABLE I
EXECUTION TIME USING DIFFERENT NUMBER PATHS

Np = 2 Np = 4 Np = 6 Np = 10
0.10± 0.07 s 0.12± 0.05 s 0.14± 0.07 s 0.17± 0.11 s

B. Comparison With Original Method

The proposed modified approach is compared against the

original method in [?] through an ensemble comprising 500
R(z) instantiations of spatial dimension M = 4 for every

order of Ord{λm(z)} = {10, 12, . . . , 30}. These instantiations

are constructed through the source model in [?], [?]. Within

the maximum DFT limit of 210, the proposed modified method

couldn’t extract eigenvalues through a single path for all

instantiations within the constructed ensemble. However, with

two paths Np = 2, all instances were easily decomposed

resulting in ξp=3
2 < 10−18. The extracted eigenvalues matched

exactly with the sample points of ground truth eigenvalues

and the resulting time domain support was equal to that of

the ground-truth as already proved in Fig. 9 of [1] and so we

don’t re-illustrate it here.

In Figure 3, the execution time for M = 4 is plotted

against Ord{λm(z)}. Notably, the modified approach exhibits

significantly lower execution times for both Np = 2 and

Np = 4 compared to prior research [1]. To further illustrate

this improvement, we conducted ensemble experiments for

higher spatial dimensions, M ∈ 5, 6, 7, 8, and the results are

presented in Figure 4. Remarkably, the reduced paths method

successfully extracted analytic eigenvalues using only 2 paths

within the maximum available DFT limit. Specifically, the

proposed modified method extracts eigenvalues of C6×6 faster

than the original method in [1] extracts that of the C4×4 when

temporal dimensions are kept same. This suggests the potential

to process data from two additional sensors within the same

time frame in a broadband array. It must reminded that the



Fig. 3. Execution time of the proposed parallel approach compared to [?]
over an ensemble containing R(z) ∈ C4x4 instantiations.

Fig. 4. Execution time of the proposed parallel approach with Np = 2 over

an ensemble containing R(z) ∈ CMxM ,M ∈ {5, 6, 7, 8} instantiations.

original method is not simulated for spatial dimensions of

M = {5, 6, 7, 8} due to very high execution time.

VI. CONCLUSION

This paper has put forward suggestions for altering the

analytic eigenvalue extraction algorithm detailed in [1] in

order to decrease its computational expense for diagonalizing

higher spatial dimension para-Hermitian matrices. Specifically,

the revised method relies on larger DFT sizes to reduce the

number of paths required for the extraction of eigenvalues.

Additionally, the extraction process is initiated from a bin

where the eigenvalues are maximally separated in order to

further support the reduced number of paths in succeeding

in the extraction. The effectiveness of the proposed modified

method is demonstrated by its significant outperformance

compared to the original method in terms of computational

cost.
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