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Abstract—This paper revisits the Brewer-Nash security policy
model inspired by ethical Chinese Wall policies. We draw atten-
tion to the fact that write access can be revoked in the Brewer-

Nash model. The semantics of write access were underspecified
originally, leading to multiple interpretations for which we
provide a modern operational semantics. We go on to modernise
the analysis of information flow in the Brewer-Nash model, by
adopting a more precise definition adapted from Kessler. For our
modernised reformulation, we provide full mechanised coverage
for all theorems proposed by Brewer & Nash. Most theorems are
established automatically using the tool {log} with the exception of
a theorem regarding information flow, which combines a lemma
in {log} with a theorem mechanised in Coq. Having covered all
theorems originally posed by Brewer-Nash, achieving modern
precision and mechanisation, we propose this work as a step
towards a methodology for automated checking of more complex
security policy models.

Index Terms—security policies, information flow, confidential-
ity, revocation, set theory, automated verification

I. Introduction

The Brewer-Nash security policy model, inspired by Chi-

nese Wall policies, used to manage conflicts of interest par-

ticularly in the financial sector, was originally communicated

at S&P’89 [1]. Chinese Walls remain as much a feature of

modern businesses, as when Brewer & Nash motivated their

work, with the ongoing high-profile insider-trading case of Joe

Lewis highlighting the importance of being able to provide

evidence that adequate policies were adhered to.1 In computer

systems, Chinese Walls have been adopted since they allow

freedom of choice initially, until too much information is

requested. There are established implementations of Chinese

Wall policies for Unix [2], and the progression of such policies

to the Xen hypervisor, where multiple organisations may share

the same hardware, was almost inevitable [3].

Brewer & Nash deliberately designed their security policy

model such that features are reminiscent of the Bell-LaPadula

1See, e.g., FT on insider trading: https://www.ft.com/insider-trading

security policy model [4], that informed most lattice-based

security policies. These policy models are schemes for security

policies that maintain confidentiality (and sometimes integrity)

of information by permitting or denying certain flows through

a system. While Bell-LaPadula, which originated in policies

typical of the military, would permit flows from low to

high classification of objects, Brewer & Nash proposed a

flat structure, more typical of companies that do not have a

common administrative authority.

A distinctive feature of Chinese Wall policies, sometimes

referred to as ethical policies, is that they provide some

mechanism for explicitly indicating conflicts of interest at

some granularity such as a dataset containing information

about a specific company or legal entity. A conflict of interest

(CoI) can become problematic, for example, when there are

nondisclosure agreements in place and a single consultant

can read confidential information about competitors for which

consultancy services are offered. CoIs remain a feature of more

recent models of ethical policies, such as quantales of informa-

tion [5]. The year Brewer & Nash communicated their model,

Lin presented a compelling argument that conflicts of interest

should be represented by a general relation between datasets,

since, a conflict-of-interest relation need not be transitive (for

example, if two readers have a conflict of interest with an

author then the two readers are not necessarily in conflict

with each other) [6]. That idea, due to Lin, is now accepted in

the mainstream, e.g., the aforementioned Unix implementation

features a matrix capturing a CoI relation which need not be

transitive.

Brewer & Nash were likely aware that CoI is naturally more

general in the sense of Lin, since they state explicitly that

“since we wish to compare it with the Bell-LaPadula (BLP)

model we will adopt the latter’s concepts of subjects, objects

and security labels.” Thus some of the restrictions in their

model were more so to facilitate an easy comparison with

concepts due in the Bell-LaPadula model. There are other

http://arxiv.org/abs/2405.12187v1
https://www.ft.com/insider-trading


dimensions in which the Brewer-Nash model has evolved

over time, becoming increasingly complex—e.g., permitting

more flexible policies, or distinguishing between permission

to access and instances of access, etc. [7], [8]. The original

model, due to Brewer & Nash, however still survives in

information security textbooks [9].

In this work, we return our attention to 1989 and the original

model of Brewer & Nash. While the model appears to be

simple, there are some features that are not easy to grasp, or

are easily missed, since they are handled in a rather implicit

manner.

1) Firstly, the notion of information flow that they rely on

is not, in our view, as well defined as in later papers on

security policy models.

2) Secondly, the model has a rather novel feature for a

security policy model: write access can be revoked, but

in a rather implicit manner.

Point (1) above is an indicator that, while an appendix with

proofs was provided, the rigour of the proofs conducted was

perhaps not up to today’s standards. This argument applies

whether or not one agrees with our view above on information

flow, thanks to the advances in automated tools and proof

assistants. Since the automated tool for proving decidable

theorems in set theory, called {log} (pronounced set log),

has been used to fully and quickly automate the checking

of the Bell-LaPadula policy model [10], it is natural to ask

whether that automation can be lifted to other security policy

models in general, and Brewer-Nash in particular in this work.

What we will see is that Brewer-Nash is more complex to

verify, and instead we go for a hybrid approach where, for

the theorem concerning information flow, {log} proves an

invariant, while Coq is used to mechanise a proof confirming

that the invariant is sufficient to establish the intended property.

Thus, in summary, our contributions in this direction are:

• Tightening of the definitions given by Brewer & Nash that

we felt necessary to establish their original theorems.

• A fully mechanised proof of the tightened theorems

using {log} and Coq, with maximum work pushed to the

automated {log} component.

The work can also be seen as a seed for a methodology that

may be more generally applied to security policy models that

maintain confidentiality and integrity with respect to informa-

tion flows. Given that related policy models are deployed in

real systems and their failure can have serious consequences,

as discussed at the top of the introduction, it is important to

certify the correctness of security policy models.

Returning to point (2) above, we clarify in a more explicit

manner how write access is handled. In the motivating section,

next, we elaborate on an example where we ask what happens

when you can write to a dataset, and then request (read) access

to another dataset. The example helps us see complications

associated with this scenario, which we believe is the key

novelty of the Brewer-Nash model compared to some more

recent ethical policies. It is also a novelty with respect to

key implementations, for instance the aforementioned Unix

implementation of a Chinese Wall policy bypasses this feature

of Brewer-Nash and instead proposes its own mechanism for

write access. Observations such as this, lead us to believe that

the Brewer-Nash model is not as simple as it first seems, and

hence may be open to misuse without stronger certification.

Summary: Section II illustrates the key novelties and

ambiguities in the operational semantics of the Brewer-Nash

policy model, firstly in a simpler form ignoring sanitized

data. Section III provides a complete operational semantics for

Brewer-Nash policies, including sanitized data, and introduces

the target properties expected of the Brewer-Nash policy

model. Section IV explains how some properties are mecha-

nised using the tool {log} by expressing appropriate invariants.

Section V defines an appropriate notion of information flow

and explains how information flow is mechanised by combin-

ing {log} and Coq. Section VI completes the mechanisation of

all theorems by showing how the remaining theorem can be

established in {log} via an explicit construction of an injective

function. Section VII highlights how the methodology may be

adapted to other policy models in the future.

II. Motivating scenarios: interpretations of access

We explain here a simple scenario in which write revocation

occurs, while refreshing our knowledge about the Brewer-Nash

policy model. In doing so, we examine the constraints on

state transitions determining whether access is permitted to

resources: namely, the simple security rule and the *-property.

The scenario illustrates complications in the original Brewer-

Nash model which does not distinguish between read and write

access in the state—there is only access. When one has access,

one may read henceforth, yet each write access is conditional

on the state. This statement can already be interpreted in

multiple ways and hence we require more precision to resolve

how read and write access are interpreted. We also provide

a more explicit formulation of the Brewer-Nash model that

separately handles read and write access in the state, which we

argue is more amenable to implementation. We omit sanitized

data from this initial discussion to keep to the point.

A. Diagrammatically

Consider the simple state transition illustrated in Fig. 1. This

small example already demonstrates a surprising feature of the

Brewer-Nash model, specifically that write permissions can be

revoked. To follow the illustration observe that there are two

conflict-of-interest classes (CoIC) CoI1 and CoI2 which set up

boundaries between datasets (the rounded regions) indicated

by the solid (red) lines. Intuitively, no subject should be able

to hold data originating from objects in datasets at either side

of the red line. Each dataset has one object in this example:

o1, o2, and o3. In a prior state (not shown in the figure), the

subject s1 can access no object, and has free will to request

access from any dataset, which is permitted by Brewer-Nash.

In this case, the subject has chosen to access o2, resulting in

the state to the left of Fig. 1, where the two-headed arrow

(←−−−→) indicates that s1 has read/write access to o2. When in

the state to the left of Fig. 1, it is impossible for s1 to access o1.



CoI1 CoI2

o1 o2 o3

s1

R(s1,o3)
◮

CoI1 CoI2

o1 o2 o3

s1

Fig. 1. A transition where write is revoked: subject s1 requests access to
o3 (permitted by simple security), which results in write access to o2 being
revoked (due to the *-property).

This is the distinguishing feature of Chinese Wall policies in

general—initially subjects have free choice to access objects,

but, as accesses are granted, permissions may be restricted. In

contrast, subject s1 can request access to o3, which lies in a

separate CoIC. Perhaps here, o1 and o2 are each confidential

data items in datasets of competitors, but o3 is data about a

business operating in a separate market (c.f., banks v.s. oil

companies in the original work of Brewer & Nash).

Since s1 is permitted to access o3, the system can perform

the state transition labelled with the read request in Fig. 1.

However, notice that after that transition, the solid two-headed

arrow (←−−−→) becomes a one way dotted arrow (−−→).

These dotted arrows point from the object to the subject,

indicating that, in the new state, (1) the subject has at some

point been permitted access, (2) only read access is enabled

in that state. Thus the subject can obtain information from

the object, but not the other way round, as suggested by the

direction of these arrows. The arrows therefore indicate that

the write access of o2 to s1 has been revoked as soon as o3 is

accessed, and furthermore s1 is never permitted write access to

o3. This write revocation is specific to a line of work faithful

to Brewer-Nash [6]–[8], but not all ethical policies.

B. Operationally

We explain more formally the machinery at play here, to

understand in what sense revocation of write access is handled

implicitly by Brewer & Nash, before we go on to express how

write revocation may be made more explicit.

The Brewer-Nash policy model is a scheme for policies,

where a specific Brewer-Nash policy is defined by security

labels that are assigned to each object for the lifetime of the

policy. More precisely, a Brewer-Nash policy assumes that

each object o has fixed labels that assign the object a single

CoIC, denoted here by coi(o), and a dataset within that CoIC,

denoted ds(o). States are simply a (finite) relation between

subjects and objects (the access matrix), denoted N. We can

make a state transition updating N to indicate that a subject s

can access an object o, only if o′ is in the same dataset as o

or is in a different CoIC from o. This condition on access is

called the simple security rule.

Definition 1 (simple security). A subject s, object o and matrix

N satisfy the simple security rule whenever:

∀o′ : (s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ coi(o) , coi(o′)
)

Thus read access, conditional on the simple security rule,

can be expressed, using the conventions of labelled transition

systems, as follows.

∀o′ : (s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ coi(o) , coi(o′)
)

N
R(s,o)
◮ N ∪ {(s, o)}

(iR)

Stated otherwise, the above rule expresses that, s can access

o if s has not accessed any other object that is in another

dataset in the same CoIC as o. It is not stated clearly or

expressed formally in the original paper [1], but we can assume

that “access” here refers to read access specifically. The need

for that clarification becomes important, given that the next

property refers to read and write access.

The *-property is described informally by Brewer & Nash

in terms of the capability to “read” and “write”, rather than the

neutral “access” of the simple security rule. More precisely, it

states that write access is permitted if (1) the simple security

rule holds, and (2) no subject “can read” an object in a

dataset different from the one requested. The details of the

operational rule for write access is open to interpretation.

We see arguments for and against an interpretation where

writing (disseminating and appending data) is possible before

requesting read access using Eq. (iR).

One interpretation, coming from the model provided by

Brewer-Nash in their appendix suggests that any access entails

read access, since the formal way “s can read o” is modelled

is by checking whether (s, o) ∈ N′, where N′ is the state after

the transition (see Axiom 6 in the original appendix of Brewer

& Nash [1]). The *-property implies the simple security rule

(hence checking the simple security rule is redundant as noted

first by Lin [6]). This leads us to the following labelled

transition for write access.

∀o′ : (s, o′) ∈ N =⇒ ds(o′) = ds(o)

N
W(s,o)

◮ N ∪ {(s, o)}
(iRW)

For example, assuming the policy given by the labels in Fig. 1,

transitions {(s1, o2)}
W(s1,o2)

◮ {(s1, o2)} and {(s1, o2)}
R(s1,o2)

◮

{(s1, o2)} can be applied indefinitely at first, until the tran-

sition {(s1, o2)}
R(s1,o3)

◮ {(s1, o2), (s1, o3)} occurs. After that

point, transitions {(s1, o2), (s1, o3)}
R(s1,o2)

◮ {(s1, o2), (s1, o3)}

and {(s1, o2), (s1, o3)}
R(s1,o3)

◮ {(s1, o2), (s1, o3)} are enabled

indefinitely. Yet, no write transition involving s1 is enabled.

Thus the write access of s1 to o2 is implicitly revoked.

Other authors have produced alternative interpretations for

how write access is defined. For example, in an influential

lattice-based formulation of a Chinese Wall policy model [11],

it is clear that Sandhu permits write access anywhere if read

access is granted nowhere. In short, according to Sandhu,

subjects are also labelled, and those subjects with no read

access are labelled with the bottom element in a lattice of

security labels, which is below all dataset labels that are

assigned to objects (which, as normal, confine confidential

information in objects to their dataset). Since the *-property

is generalised by Sandhu such that write is permitted upwards

in a particular lattice, clearly subjects that have not yet read

anything can write anywhere.



We, the authors, even are split on how to interpret the

definitions of Brewer & Nash as operational rules (see their

Def. 1 and Axiom 6), and given there is a split in the literature,

we explore both interpretations. If we argue that granting

write access does not automatically grant read access, we can

employ the following rule.2

∀o′ : (s, o′) ∈ N =⇒ ds(o′) = ds(o)

N
W(s,o)

◮ N
(iW)

This models a more permissive policy allowing write access

without granting read access, as indicated by not updating N.

Thus, one can write freely to all datasets, until one dataset is

read from; at which point, write is (implicitly) revoked to all

other datasets (by the *-property). Transitions illustrating this

sequence of operations are presented in Fig. 2, where the head

of the arrow depicting write-only access points in the opposite

direction from read-only access seen previously.

CoI1 CoI2

o1 o2 o3

s1

W(s1,o2)
◮

CoI1 CoI2

o1 o2 o3

s1

R(s1,o2)
◮

CoI1 CoI2

o1 o2 o3

s1

Fig. 2. Transitions in a permissive interpretation of Brewer-Nash policies
where write-only access can be requested anywhere initially. Notice that write
access is revoked when read access is requested.

Eq. (iW) allows each subject to have a phase where they

use their own knowledge (to generate reports based on public

information, for example) and push it to any dataset. This rule

appears to be permissible from the perspective of information

confidentiality, in the sense that we expect that secrets held

within objects (e.g., confidential information about clients that

a trader must respect in the financial sector) will not be leaked

to unintended objects by writing freely before reading anything

confidential. When a subject writes without reading, the sub-

ject can only write information known already before entering

the ecosystem—only the subject’s knowledge or special data

processing skills are given away. There is therefore no viola-

tion of a nondisclosure agreement with a company associated

with a dataset, since only the subject’s own information is

written, which is not subject to confidentiality constraints.

2The rule can be formulated without the lattice machinery of Sandhu, who
anyway does not formalise state transitions. Sandhu suggests only informally
that privileges of a subject may float up the lattice to give the desired dynamics
of the subject. The objective of Sandhu is to explain that Chinese Wall policy
models can be cast in the same light as the Bell-Lapadula policy models when
it comes to the simple security property and *-property; that is, subjects can
read below and write above in a suitable lattice structure, depending on labels
assigned to subjects as well as to objects.

This keeps Brewer-Nash in line with the confidentiality aims

of Bell-LaPadula avoiding inadvertent declassification, but

cannot prevent entirely people going rogue and, for example,

distributing information outside the system (c.f. Teixeira’s

Pentagon leaks via screenshots posted on Discord).

This write-only (aka. append) phase precedes the phase

of read/write editing within one dataset only. And, finally,

there is the read-only phase already discussed, where the

information system assists the subject in ensuring they do not

violate a conflict of interests in their ultimate decision making.

Confidentiality is therefore preserved (formalised in Sec. V).

Both interpretations of write access discussed above have

their merits. Furthermore, we will find that it does not create

problems going forward to have both rules coexisting in one

model. Therefore, either rule, may be selected when imple-

menting a system enforcing a policy. Indeed, some objects

may be governed by Eq. (iRW) and other by Eq. (iW) within

the same system without compromising security.

C. Explicitly

From the above model we can see that the Brewer-Nash

model is assuming that write is an atomic action, in the

sense that each time a subject would like to write anything

the *-property must be checked before the write access is

granted, and furthermore we must be sure that the write

access completes before another operation is applied (or at

least before a read request to another dataset is granted, in a

system with more advanced awareness of concurrency). This

approach, by Brewer & Nash to write operations comes at a

cost (in terms of concurrency control and logical checks), due

to the need to check the *-property repeatedly while locking

certain other operations, rather than referring to an access

control matrix. That complexity is perhaps among the reasons

why policies such as Unix Chinese Wall policies [2] do not

implement write access using the *-property at all.

This observation leads us naturally to a more explicit

approach that we introduce in this work, which is to include

an additional write access matrix that makes any previously

granted write access explicit until the *-property is violated.

Read and write access are formalised via the operational rules,

explained next, that refer to a write access matrix W.

As explained when discussing Eq. (iW), an interpretation

of Brewer-Nash is that write access may be write-only, and

hence N is not updated as in the following rule.

∀o′ : (s, o′) ∈ N =⇒ ds(o′) = ds(o)

N,W
W(s,o)

◮ N,W ∪ {(s, o)}
(xW)

Recall that, alternatively, a policy may insist that read access

is granted whenever write access is granted (c.f., Eq. (iRW)),

which is a legitimate interpretation of the partial definitions of

Brewer & Nash.3 In this case, observe below that both the read

3Derived from the explanations of Brewer & Nash that: (1) (s, o) ∈ N means
“s has, or has had, access to object o.” in a passage that can be interpreted as
generically describing all types of access rather than read access specifically,
and; (2) there is no formal mention of read, except “has read” in the *-property
and hence access is the only candidate; (3) the state N′ after a write operation
should contain the subject and object to which write access is granted.



access and write matrix are updated, where in what follows

we define W′ = W \ {(s, o′) : ds(o′) , ds(o)}.

∀o′ : (s, o′) ∈ N =⇒ ds(o′) = ds(o)

N,W
W(s,o)

◮ N ∪ {(s, o)} ,W′ ∪ {(s, o)}
(xRW)

The updated write access matrix W′ explicitly revokes write

access, to any object in another dataset when the above rule is

applied. This caters for the possibility that write access may

have been granted to another dataset, which is clearly possible

if Eq. (xW) is allowed to coexist with Eq. (xRW) above.4

Since, once granted, read access is recorded in N and write

access is recorded in W, we need not check the *-property

each time a read or write occurs, as in the original Brewer-

Nash model. Instead, we simply consult the access matrices

N or W respectively and permit the operation if there is an

appropriate entry. This observation leads us to the following

cheap rule for access, while other rules need only be appealed

to if the rules below fail to grant access.

(s, o) ∈ N

N,W
R(s,o)
◮ N,W

(s, o) ∈ W

N,W
W(s,o)

◮ N,W
(access matrix)

The interesting question is what happens when read access

is requested in another dataset in a different CoIC from where

write has been granted, as per Fig. 1. Neither of the cheap

access matrix lookup rules apply. In this more explicit model,

in order to avoid a violation of the *-property, it is important

also to check that the new read does result in the *-property

being violated for some write that has already been granted.

If it does then either we:

• deny the read operation, or

• explicitly revoke all offending write accesses in W.

In terms of user experience, indeed it seems appropriate to

ask the user (or run some conflict resolution algorithm), since

it may be that the subject welcomes the warning and decides

that they prefer not to read the object in the new dataset, and

instead retain read-write access to their current dataset.

The two options above, correspond to the following op-

erational rule. In the following, W \ {(s, o′) : ds(o′) , ds(o)}

explicitly revokes any offending write accesses.

∀o′ : (s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ coi(o′) , coi(o)
)

N,W
R(s,o)
◮ N ∪ {(s, o)} ,W \

{

(s, o′) : ds(o′) , ds(o)
}

(xR)

Thus the rule above can be used to more explicitly realise the

transition in Fig. 1, as follows.

{(s1, o2)} , {(s1, o2)}
R(s1,o3)

◮ {(s1, o2), (s1, o3)} , ∅

Similarly, the operations in Fig. 2 consist of a write operation

followed by a read that revokes write access to two datasets.

∅, {(s1, o1), (s1, o3)}
W(s1,o2)

◮ ∅, {(s1, o1), (s1, o2), (s1, o3)}
R(s1,o2)

◮ {(s1, o2)} , {(s1, o2)}

An alternative is to allow a read access, without revoking write

access, under conditions ensuring that the *-property will be

4This will also be possible even if Eq. (xW) were forbidden, once we
introduce sanitized data in the next section. N.B. “x” abbreviates “explicit”.

preserved for everything already recorded in W. The condition

is that all objects that the subject can write to according to W

must be in the same dataset as where read access is requested.

This condition concerning W is of course in addition to the

standard assumption that the simple security rule holds with

respect to objects the subject can read from. This restrictive

read rule is expressed as follows.

∀o′ : (s, o′) ∈ N =⇒ (ds(o′) = ds(o) ∨ coi(o′) , coi(o))

∧ (s, o′) ∈ W =⇒ ds(o) = ds(o′)

N,W
R(s,o)
◮ N ∪ {(s, o)} ,W

(xR*)

The “*” in the rule name above highlights the additional check

required to preserve the *-property. We will return to the rules

above in Eq’s (xR) and (xR*) in detail in subsequent sections,

since they are novel rules, and it is not immediately obvious

that they do in fact preserve the *-property. Thus our explicit

rules benefit from the ensuing verification.

Notice that if Eq. (xR*) applies, then Eq. (xR) also applies

and has the same effect. However, if a policy features both

rules then, whenever Eq. (xR*) is not enabled it is possible

to trigger a suitable warning that explains to the subject that

reading the object in question is going to result in write access

being revoked somewhere else. Thus, distinguishing these

transitions helps to demarcate an important transition in the

life of a subject. Eq. (xR*) ensures a subject can continue to

read and write within a dataset; while if only Eq. (xR) applies

then a subject induces a state transition that may prevent the

subject from writing again.

III. Full definitions and theorems to cover

Here we collate the key definitions and theorems that we

mechanise in this work. In subsequent sections, we explain the

theorems in more detail including how {log} and Coq are used

to mechanise them. The theorems are the four theorems stated

by Brewer-Nash in the order that they appear in that work

to facilitate a close comparison. These reformulated theorems

make use of the modernised notation and definitions from the

previous section.

A. The full explicit model with sanitized data

For complete coverage of Brewer-Nash we introduce the

concept of sanitized data, that didn’t play a role in the

previous section. The explicit rules from the previous section

are expanded and collated in Fig. 3.

Sanitized data can refer to public information, general

market information, or, perhaps, data checked and approved to

be distributed within the system without revealing confidential

information of an entity regulated by the policy. How data is

sanitized is perpendicular to the Brewer-Nash model. Indeed,

there is a science of data sanitization, using “association rules”

for example [12], that can determine how some confidential

data may be sanitized for consumption beyond organisational

boundaries.

In the Brewer-Nash security policy model, a special dataset,

denoted by Yo, contains sanitized objects, which is the only

dataset in a conflict of interest class which we call Sanitized



write access request

∀o′ : (s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ ds(o′) = Yo
)

xW
N,W

W(s,o)
◮ N,W ∪ {(s, o)}

read write access request

ds(o) , Yo ∧ ∀o′ : (s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ ds(o′) = Yo
)

xRW
N,W

W(s,o)
◮ N ∪ {(s, o)} ,

(

W \
{

(s, o′) : ds(o′) , ds(o)
})

∪ {(s, o)}

ds(o) = Yo ∧ ∀o′ : (s, o′) ∈ N =⇒ ds(o′) = Yo
xRW⊥

N,W
W(s,o)

◮ N ∪ {(s, o)} ,W ∪ {(s, o)}

read access request

ds(o) , Yo ∧ ∀o′ : (s, o′) ∈ N =⇒ (ds(o′) = ds(o) ∨ coi(o′) , coi(o))
xR

N,W
R(s,o)
◮ N ∪ {(s, o)} ,W \

{

(s, o′) : ds(o′) , ds(o)
}

ds(o) = Yo
xR⊥

N,W
R(s,o)
◮ N ∪ {(s, o)} ,W

∀o′ :
(

(s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ coi(o′) , coi(o)
))

∧
(

(s, o′) ∈ W =⇒ ds(o′) = ds(o)
)

xR∗
N,W

R(s,o)
◮ N ∪ {(s, o)} ,W

access matrix lookup

(s, o) ∈ W
mW

N,W
W(s,o)

◮ N,W

(s, o) ∈ N
mR

N,W
R(s,o)
◮ N,W

Fig. 3. Explicit rules for Brewer-Nash policies, including sanitized data.

(see Fig. 4). The *-property in the presence of sanitized data

is formulated as follows.

Definition 2 (*-property). A subject s, object o and matrix N

satisfy the *-property whenever:

∀o′ : (s, o′) ∈ N =⇒
(

ds(o) = ds(o′) ∨ ds(o′) = Yo
)

Besides strengthening the *-property as shown above, we

have handled the presence of santized data by splitting some

rules from the previous section into multiple rules. For ex-

ample, we have the rules xRW and xRW⊥ for read-write

access in Fig. 3. Notice that clause ds(o) , Yo ensures that

the transition xRW explicitly does not apply if the read-write

request concerns an object in the santized dataset. This is

because the xRW rule is designed such that write access may

be revoked to other datasets and revoking write access is not

necessary when sanitized data is accessed. In contrast, the rule

xRW⊥ describes the effect of requesting read-write access to

sanitized data, where no revocation occurs. The rules xR and

xR⊥ are separated for the same reason. We expand on this

explanation next by providing an example where access to

sanitized behaves differently.

CoI1 CoI2Sanitized

o1 o2 o3

s1

R(s1,o3)
◮

CoI1 CoI2Sanitized

o1 o2 o3

s1

W(s1,o1)
◮

CoI1 CoI2Sanitized

o1 o2 o3

s1

Fig. 4. Even after writing to a private dataset, the user can read from sanitized
data. Furthermore, reading sanitized data does not prevent writing to further
datasets.

Consider the example in Fig. 4 to understand how rules



behave differently when sanitized data is involved. The read

transition in that figure uses rule xR⊥, which allows objects in

the sanitized dataset to be read without revoking write access

anywhere. In contrast, rule xR does not apply to this example,

and if the condition ds(o) , Yo were dropped from xR, then

xR would revoke write access where it is not necessary to do

so. Fig. 4 also illustrates that write access can still be freely

requested elsewhere after reading. This behaviour contrasts to

read access to data that is not sanitized, which always blocks

write operations in other datasets from that point onward.

The notation ⊥ in rule name signals the consistency

of Brewer-Nash with the lattice-based interpretation of

Sandhu [11], mentioned in the previous section. Sandhu as-

signs for sanitized objects, and also subjects who have not read

from a dataset that is not sanitized, the bottom security label

in a lattice of labels. Therefore, since in Sandhu’s lattice-based

model reading is permitted downwards and writing upwards,

subjects with the bottom security label can still request read

access to sanitized data while writing anywhere.

Consider now the example in Fig. 5. This shows an ex-

ceptional revocation behaviour associated with sanitized data.

Initially, subject s1 can read and write to a sanitized object. The

subject can, by calling rule xRW, induce a state change where

their write access to the sanitized object is revoked. Observe

that write access is enabled for object o2. This contrasts to

Fig. 1 which did not involve sanitized data and for which

only read access was enabled after reading from two datasets.

CoI2 Sanitized

o2 o3

s1

W(s1,o2)
◮

CoI2 Sanitized

o2 o3

s1

Fig. 5. Only sanitized data has the property that if read-write access has
been granted, then read-write access may still be granted in another dataset.

B. The four Brewer-Nash Theorems

We state the four theorems proposed by Brewer & Nash

in their original form and using more modern precision. All

of these theorems are stated with respect to the labelled

transition system of the explicit model generated by the rules

in Fig. 3. Thus, all theorems in this section range over any

policy consisting of a fixed set of subjects, objects, CoICs,

mappings ds( . ), and coi( . ), and satisfy axioms:

∀o1, o2 : ds(o1) = ds(o2) =⇒ coi(o1) = coi(o2) (1)

∀o : ds(o) = Yo⇔ coi(o) = Sanitized (2)

Axiom (1), above, ensures that all objects in a dataset are

also in the same CoIC. Axiom (2) formalises the requirement

that there is a unique dataset and CoIC for sanitized data.

A consequence of Axiom (2) is that, when sanitized data is

considered, whenever a subject, object and matrix satisfy the

*-property then they satisfy the simple security rule. Both

directions of the implication in Axiom (2) are necessary to

establish that fact. This helps explain why the simple security

rule is redundant in the rules in Fig. 3 involving write access.

For the first theorem, Brewer & Nash state: “Once a subject

has accessed an object the only other objects accessible by

that subject lie within the same company dataset or within a

different conflict-of-interest class.”

This essentially says that, w.r.t. Fig. 3, it is an invariant

that all subject-object pairs in N satisfy the simple security

rule. A property I is proven to be an invariant by establishing

that if I(N,W) holds and, for any action α and state N′,W′,

if N,W
α
◮ N′,W′, then I(N′,W′) holds. Furthermore, the

initial state ∅, ∅ must satisfy I. This ensures that the property

holds in all states reachable from the initial state.

Theorem 1. The following is an invariant for states N,W: for

all (s, o) ∈ N, s, o and N satisfy the simple security rule.

The second theorem of Brewer & Nash states: “A subject

can at most have access to one company dataset in each

conflict-of-interest class.” This is captured formally by the

consequent of Theorem 2 below.

Theorem 2. Consider any state N,W satisfying the property

that, for all (s, o) ∈ N, s, o and N satisfy the simple security

rule. For any subject s and objects o1 and o2, if (s, o1) ∈ N

and (s, o2) ∈ N and coi(o1) = coi(o2), then ds(o1) = ds(o2).

The premise of the Theorem 2, was absent in the formu-

lation due to Brewer & Nash. The premise clarifies that the

Theorem holds for any state satisfying the invariant established

in Theorem 1. Hence the consequent of Theorem 2 is itself

preserved by all transitions, and hence is itself an invariant.

The third theorem of Brewer & Nash states: “If for some

conflict-of-interest class X there are Xv company datasets then

the minimum number of subjects which will allow every

object to be accessed by at least one subject is Xv.” The

intention of this theorem is to explain to a manager how many

subjects, e.g., consultants, are required to serve all datasets,

e.g., companies, without violation of CoIs.

In the above, “accessed by” is interpreted as read access as

recorded by N. This leads to the following formalisation of

this property as an invariant, where |A| denotes the cardinality

of set A.

Theorem 3. Let S be some set of subjects and D be some

set of datasets fixed for the policy. Also, for any CoIC X, let

Xv = {Y ∈ D : ∃o.ds(o) = Y ∧ coi(o) = X}.

The following is an invariant for states N,W. For any CoIC

X, if for all datasets Y ∈ Xv there exists subject s and object

o such that (s, o) ∈ N and ds(o) = Y, then |Xv| ≤ |S|.

Theorem 4 of Brewer & Nash is formulated as: “The

flow of unsanitized information is confined to its own com-

pany dataset; sanitized information may however flow freely

throughout the system.”

The notion of flow is not defined by Brewer & Nash, and we

defer the definition that we will employ until Sec. V. However,

we assume here that there is some well-defined notion of flow

of information from one object o1 to another object o2, starting



from a given state N,W, denoted o1 { o2 in the following

theorem.

Theorem 4. The following is an invariant for states N,W: For

objects o and o′, if o { o′ starting in N,W, then ds(o) = Yo

or ds(o) = ds(o′).

Brewer & Nash, in their proof of Theorem 4, we believe,

just jump to their desired conclusion by defining a relation

that satisfies a given property. Theorem 4 turns out to be the

trickiest theorem to define more precisely and prove, as we

explain in detail in Sec. V.

IV. Automated reasoning about invariants in {log}

In this section we show how we use {log} to formally

specify and verify that the simple security rule and *-property

are invariants of our formal interpretations of Brewer-Nash

policies. This section covers the mechanisation of Theorem 1

and Theorem 2 and lays essential groundwork towards the

mechanisation of Theorem 4 (Sec. V).

The tool {log} is a constraint logic programming (CLP)

language and satisfiability solver implemented in Prolog where

finite sets are first-class citizens [13], [14]. The tool imple-

ments decision procedures for several fragments of set theory

and set relation algebra [15]–[19]. A few in-depth empirical

studies provide evidence that {log} is able to solve non-trivial

problems, e.g. [20], [21]. On top of its CLP language, {log}

provides a state machine specification language (SMSL) in-

spired in the B notation [22]. A verification condition generator

(VGC) can then be used to automatically generate verification

conditions (VC) ensuring that the state machine verifies some

properties [23, Sect. 11]. {log} inherits many Prolog features.

For instance, variables must begin with a capital letter; the

main program building block are predicates expressed as Horn

clauses of the form head(params) :- body. where body is a

{log} formula (note the dot at the end of body).

We describe here the {log} formalisation of the Brewer-

Nash policy model, available in the companion replication

package [24]. The set of objects of the system (Objects), the

function mapping objects onto security classes (L) and the

dataset containing sanitized information (Yo) and its conflict

of interest class (Xo, aka. Sanitized in the previous section)

are introduced as parameters of the model.

parameters([Objects, L, Yo,Xo]).

The state space of the system is given by two state variables:

N, denoting the current read accesses for each subject; and W,

denoting the current write accesses for each subject.

variables([N,W]).

Axioms are used to state properties of parameters. For

example, L is a function whose domain is Objects.5

axiom(axiomL).

axiomL(L,Objects) :- pfun(L) ∧ dom(L,Objects).

5Instead of using the exact {log} ASCII notation, we rather use a more
math-oriented one thus avoiding some syntactic nuisances.

Above, pfun is a {log} constraint stating that its argument is

a function whereas dom states that Objects is the domain of

L. Since finite sets are the main data structure in {log}, {log}

admits sets of ordered pairs, i.e., binary relations.

Relations N and W, as we will shortly see, are augmented

with the labels associated with objects (the dataset and CoIC)

because {log} proofs become faster. This is a difference be-

tween purely theoretical considerations such as those discussed

in Sec. II and III and the representation of those concepts in

an automated tool. Invariants are used to ensure that labels in

N and W are subject to the conditions imposed on L.

State invariants are given as predicates that depend on

parameters and state variables. An invariant property appealing

to the simple security rule is encoded as follows in {log}.

invariant(simpSec).

simpSec(N) :-

∀(S 1, (O1, (C1,D1))), (S 2, (O2, (C2,D2))) ∈ N :

S 1 = S 2 =⇒ (C1 , C2 ∨ D1 = D2).

That is, N is a set of ordered pairs of the form (S , (O, ℓ)) where

S is a subject, O an object and ℓ a security label (which in

turn is of the form (C,D) for some CoIC C and dataset D).

Then, if (S , (O, ℓ)) ∈ N it means that subject S is accessing

object O in read mode and the security label of O is ℓ. In

this way, simpSec states that, if a subject is accessing two or

more objects in read mode, their CoIC are different or their

datasets are the same. It is easy to check that simpSec is a

faithful formalisation of the invariant in Theorem 1.

Note that in simpSec the quantification is a restricted

quantification made with ordered pairs instead of variables.

A restricted quantification is a formula of the form ∀x ∈ A : φ

equivalent to ∀x(x ∈ A =⇒ φ). The presence of ordered

pairs as quantified expressions is a distinctive feature of {log}

which allows us to increase the decidable fragment of formulas

featuring restricted quantifiers [19].

An invariant preserving the *-property for all pairs in W is

defined as follows. The preservation of this invariant will be

used in Sec. V as part of the proof of Theorem 4.

invariant(starProp).

starProp(Yo,N,W) :-

∀(S 1, (O1, (C1,D1))) ∈ N; (S 2, (O2, (C2,D2))) ∈ W :

S 1 = S 2 =⇒ (D1 = D2) ∨ D1 = Yo.

That is, W has a similar structure to N although its interpre-

tation is that subject s is accessing object o in write mode.

In this way, starProp states that if a subject accesses some

objects in read mode and others in write mode then they

must belong to the same dataset or the subject is reading

only sanitized information (Yo). As with N, the property where

(S , (O, ℓ)) ∈ W implies (O, ℓ) ∈ L, is stated as an invariant.

After giving all the invariants the initial state can be defined.

This states that no access is granted to any subject initially.

initial(init).

init(N,W) :- N = ∅ ∧W = ∅.



Now state transitions, called operations, are specified. Oper-

ations are predicates depending on at least one state variable. If

state variable X is changed during the transition its new value

is denoted by X′. Operations are given by specifying their pre-

and post-conditions as {log} formulas. The first operation we

show corresponds to a model where read access is granted only

if simple security and *-property are preserved. This is called

*-property read, denoted here spRead, and corresponding to

xR* in Fig. 3 (it also incorporates xR⊥).

operation(spRead).

spRead(Xo, Yo, L,N,W, S ,O,N′) :-

(S , (O, (C,D))) < N

∧ applyTo(L,O, (C,D))

∧ ∀(S 1, (O1, (C1,D1))) ∈ N : (press)

S 1 = S =⇒ (C1 , C ∨ D1 = D)

∧ (D = Yo (presp)

∨ ∀(S 1, (O1, (C1,D1))) ∈ W :

S 1 = S =⇒ D1 = D)

∧ N′ = {(S , (O, (C,D))) / N}. (post)

In the above, spRead takes Xo, Yo, the state variables, a subject

(S ) and an object (O), and returns N′, i.e. the new value of N.

All but the last line are pre-conditions. The first precondition

ensures that S has not opened O for reading. The second pre-

condition states that the security label of O is (C,D) by using

the {log} constraint applyTo. Pre-condition press checks the

simple security rule (Def. 1). Pre-condition presp is necessary

to preserve the *-property. It ensures that O is a sanitized

object or that the dataset of the objects that S has write

access to coincides with the dataset of O. If all these hold,

then (S , (O, (C,D))) is added to N by means of an extensional

set constructor available in {log}. In effect, since {X / A} is

interpreted as {X} ∪ A, then N′ is equal to N plus the ordered

pair in question. Given that spRead grants read permission,

W′ is not included as an argument, thus W = W′.

The {log} code includes two more variants of the read opera-

tion. In one of them, called wkRead, the presp pre-condition is

not present. Operation wkRead can result in a conflict of inter-

ests, as illustrated in Figure 6. Notice that the initial accesses of

s1 and s2 respect the simple security invariant, since o1 and o3

are in different CoI classes. After s1 requests this excessively

“weak” read access to o3 (since only the simple security pre-

condition holds) s1 can access privileged information stored

in o1 which should not be allowed as s1 already gained access

to o2. The access to privileged information is facilitated by

s2 as it may transfer information from o1 and store it into

o3. Such shortcomings are identified by {log} when reporting

that wkRead does not preserve starProp when attempting its

mechanised verification.6

A variant of read that does preserve our invariants, called

revoke read, named rvkRead in the {log} code and xR in Fig. 3,

6Guidelines on how to reproduce the automated verification are provided
in the replication package [24].

CoI1 CoI2

o1 o2 o3

s1 s2

wkRead(s1,o3)
◮

CoI1 CoI2

o1 o2 o3

s1 s2

Fig. 6. A conflict of interests resulting from executing the wkRead operation.

does not contain presp, as wkRead. Instead, however, it updates

W by revoking all the write accesses of S to objects whose

dataset is different from the dataset of O. The update on W is

specified as follows.

(D = Yo ∧W′ = W

∨ D , Yo

∧ diff(W, {(S 1, (O1, (C1,D1))) ∈ W | S 1 = S ∧ D1 , D},W′))

Above, diff(A, B,C) is a {log} constraint interpreted as C =

A \ B. W′ must be an argument of rvkRead. The condition

D , Yo ensures that reading sanitized data does not result in

write access being revoked.

The specification of the operation xW in Fig. 3, called write

in {log}, is as follows.

operation(write).

write(Yo, L,N,W, S ,O,W′) :-

(S , (O, (C,D))) < W

∧ applyTo(L,O, (C,D))

∧ ∀(S 1, (O1, (C1,D1))) ∈ N : (prew
sp)

S 1 = S =⇒ (D1 = D ∨ D1 = Yo)

∧W′ = {(S , (O, (C,D))) / W}.

In order to ensure that *-property is preserved after write,

prew
sp checks that the objects already opened in read mode

by S belong to the dataset of O or all of them contain only

sanitized information.

There exists a second variant of the write operation, called

read-write, written readWrite, covering both xRW and xRW⊥

in Fig. 3. While this operation ensures that *-property is

preserved similarly as write, it also updates N and W. The

new request—i.e. (S , (O, (C,D)))— is added to N while W

is updated either by revoking all the write accesses of S to

objects whose dataset is different from the dataset of O—as

done in operation rvkRead shown earlier—or by adding the

request when S is accessing only sanitized information.

Once the operations have been given, the VCG is run thus

generating a new file containing a number of VCs. Among the

most important VCs are the so-called invariance lemmas. An

invariance lemma is a VC of the form I ∧ T =⇒ I′, where I

is an invariant, T an operation and I′ is I[∀v ∈ st(I) : v 7→ v′]

with st(I) the set of state variables of I. Informally, an invari-

ance lemma states that if an invariant holds in some state and

an operation is executed, the invariant holds in the next state.

In other words, the invariant is preserved by the operation.



Given that {log} is a satisfiability solver, invariance lemmas

generated by the VCG take a negated form: ¬(I ∧ T =⇒ I′).

Hence, if {log} determines that the above is unsatisfiable, the

inner formula is a theorem. The VCG generates an invariance

lemma for each invariant and operation. For example:

¬(starProp(Yo,N,W) ∧ write(Yo, L,N,W, S ,O,W′)

=⇒ starProp(Yo,N,W′))

Note that in the consequent N appears rather than N′, since N

remains unchanged in write (N′ is not one of its arguments).

Since an invariance lemma trivially holds if either the

invariant or the operation are unsatisfiable, {log} also generates

VCs ensuring that the initial state satisfies every invariant and

that all operations are satisfiable. The VCG generates also a

predicate calling all the VCs. Then, when the user runs this

predicate {log} attempts to discharge all the VCs.

Besides the standard VCs concerning the verification of

state machines, {log} users can define their own VCs in the

form of clauses declared as theorem. As with invariance

lemmas, {log} theorems have to be written in negated form.

Each such declaration is included by the VCG as a VC.

User-defined theorems have been used to prove, for instance,

Theorems 1 and 2. For Theorem 2 we first define a clause with

its consequent (t2) and then we declare a theorem (theorem2)

where simpSec is the hypothesis required to prove t2. We can

use simpSec as an hypothesis because we have proved that it is

a state invariant. The fact that simpSec is enough to prove these

theorems shows the importance of finding the right invariants

for a model and, more specifically, the importance of simpSec

and starProp in this context. This is further stressed in Sec. V.

V. Information flow

A goal of the Brewer-Nash policy model is to ensure

that sensitive information flows within its intended context.

This section explains the mechanisation of Theorem 4 that

establishes confidentiality with respect to certain information

flows resulting from read and write operations. We formalise

information flow and prove in Coq the confidentiality property

expressed by Brewer & Nash in Theorem 4, using properties

automatically discharged by {log}. Properties that {log} dis-

charges include that (1) the *-property is an invariant, (2) read

access monotonically increases. We settle for a definition of

information flow based on Kessler’s [7], the earliest definition

of information flow in the context of Chinese Wall policies

that is precise enough for our purposes.

A. Defining information flows

When defining information flow we make use of big-step

labelled transitions, that perform zero or more transitions

before the given label occurs.

Definition 3 (big-step transition). N0,W0
αn
◮ Nn+1,Wn+1

whenever there exists N1,W1, . . .Nn,Wn and for all i ∈

[0 . . .n], Ni,Wi
αi
◮ Ni+1,Wi+1 (according to Fig. 3).

We can now express formally a suitable notion of informa-

tion flow, inspired by Kessler [7].

CoI1 CoI2

o1 o2 o3 o4

s1 s2

R(s1,o1)
◮

CoI1 CoI2

o1 o2 o3 o4

s1 s2

W(s2,o4)
◮

CoI1 CoI2

o1 o2 o3 o4

s1 s2

Fig. 7. Part of a flow between o2 and o4. Prior steps can establish o2 { o3,
via s1. Action W(s2, o4) completes the flow o2 { o4, despite write access to
o3 being revoked, since o3 may already be influenced by o2 .

Definition 4 (information flow). Starting in state N1,W1,

information can flow from object o1 to object on+1, written

o1 { on+1 whenever:

∃s1, . . . , sn; o2, . . . , on; N2, . . . ,N2n+1; W2, . . . ,W2n+1 :

∀i : 1 ≤ i ≤ n =⇒

N2i−1,W2i−1
R(si ,oi)

◮ N2i,W2i
W(si,oi+1)

◮ N2i+1,W2i+1

The above defines a sequence of read and write operations

permitted by the policy starting from the given state. The

sequence starts by a subject reading from the initial object o1

and reflects the possibility that any subsequent write operation

by that subject is possibly influenced by information in o1.

Any other subject that reads an object written to by s1 may in

turn be influenced by o1 (even if the influence is inadvertent),

and hence any object they later write to may be influenced by

confidential data in o1. Clearly, there can be many such flows

starting in a given state.

The use of big-step transitions in the definition of a flow

permits some operations that are not contributing directly

to the given flow to occur in between operations that do

contribute to the flow. In this way, we range over arbitrary

sequences of reads and writes containing a flow in Definition 4.

For an example of a flow, consider part of an information

flow between o2 and o4 in Fig. 7. Beginning in state ∅, ∅, the

flow in question can be enabled by the following small step

transitions.

R(s1,o2)
◮ {(s1, o2)} , ∅

W(s1,o3)
◮ {(s1, o2), (s1, o3)} , {(s1, o3)}

R(s2,o3)
◮ {(s1, o2), (s1, o3), (s2, o3)} , {(s1, o3)} (†)

R(s1,o1)
◮ {(s1, o1), (s1, o2), (s2, o2), (s2, o3)} , ∅

W(s2,o4)
◮ {(s1, o1), (s1, o2), (s1, o3), (s2, o3), (s2, o4)} , {(s2, o4)}

In the above, the state marked with (†) corresponds to the left

hand side of Fig 7. The read operation following that state,

also appearing in the figure, is not active in the information

flow under scrutiny, since it follows a read. It should be

considered as part of a big step transition comprising the

final two operations together, where only the second is part



CoI1 CoI2

o1 o2 o3 o4

s1 s2

R(s2,o4)
◮

CoI1 CoI2

o1 o2 o3 o4

s1 s2

W(s1,o2)
◮

CoI1 CoI2

o1 o2 o3 o4

s1 s2

Fig. 8. These transitions do not result in a flow from o1 to o3, since write
access to o3 is revoked before information about o1 flows via s2 .

of this particular flow. That is, the final two operations above

correspond to the big-step transition.

{(s1, o2), (s1, o3), (s2, o3)} , {(s1, o3)}
W(s2,o4)

◮ {(s1, o1), (s1, o2), (s1, o3), (s2, o3), (s2, o4)} , {(s2, o4)}

Notice that there is not a state of the system where all the read

and write operations between o2 and o4 are simultaneously

enabled. In contrast, the transitions in Fig.8 are not part of

a flow from o1 to o3. This is because write access to o3 is

revoked before o1 is read. These two examples help explaining

why the rich notion adopted from Kessler is appropriate for

modelling information flow.

B. Mechanising confidentiality via {log} and Coq

Now that we have the missing ingredients to define Theo-

rem 4, we can proceed to mechanise the proof using {log} and

Coq. The following recalls starProp from Sec. IV.

Definition 5. For state N,W, we have ∗(N,W) whenever, for

all (s, o) ∈ W, s, o and N satisfy the *-property (Def. 2).

We already mentioned that the above is proven to be

invariant in {log}. To be precise, the following expresses what

is mechanised in {log}.

Lemma 1. If N,W
α
◮ N′,W′ then ∗(N,W) ⇒ ∗(N′,W′).

Furthermore, N ⊆ N′ and α = R(s, o) ⇒ (s, o) ∈ N′ and

α =W(s, o)⇒ (s, o) ∈ W′. Also, ∗(∅, ∅) holds.

We then observe that big-step transitions also preserve the

properties that we guaranteed in Lemma 1

Corollary 1. If N,W
α
◮ N′,W′ then ∗(N,W) ⇒ ∗(N′,W′).

Furthermore, N ⊆ N′ and α = R(s, o) ⇒ (s, o) ∈ N′ and

α =W(s, o)⇒ (s, o) ∈ W′.

Proof. Consider N0,W0
αn
◮ Nn+1,Wn+1, and proceed by in-

duction on the number of one-step transitions. In the base case,

there is a one-step transition, and hence the result follows im-

mediately from Lemma 1. Consider the inductive case where

N0,W0
αn
◮ Nn+1,Wn+1 and Nn+1,Wn+1

αn+1
◮ Nn+2,Wn+2.

By the induction hypothesis, we have that N0 ⊆ Nn+1 and

∗(N0,W0) ⇒ ∗(Nn+1,Wn+1). Furthermore, by Lemma 1, we

have Nn+1 ⊆ Nn+2 and ∗(Nn+1,Wn+1) ⇒ ∗(Nn+2,Wn+2), and

αn+1 = R(s, o)⇒ (s, o) ∈ Nn+2 and α =W(s, o)⇒ (s, o) ∈ W′.

Thus N0 ⊆ Nn+2 and ∗(N0,W0) ⇒ ∗(Nn+2,Wn+2), as re-

quired. �

Having introduced these preliminaries, we can prove The-

orem 4. As explained in Sec. III, the confidentiality property

targeted by Brewer & Nash essentially says that along any

flow, either the information flowing is sanitized or it stays

within the same dataset. We use the Coq proof assistant to

mechanise the proof of the following intermediate theorem,

that proves that, in states where everything in W satisfies the

*-property, the consequent of Theorem 4 holds. Hence, since

we have a mechanised proof that the premise of Theorem 5

is an invariant in {log}, then Theorem 4 follows immediately

from Lemma 1 and Theorem 5.

Theorem 5. Consider any state N1,W1 such that ∗(N1,W1).

If o and o′ are objects, then if o { o′ starts in N1,W1, then

either ds(o) = Yo or ds(o) = ds(o′).

Proof. Assume that ∗(N1,W1) and also assume that o and o′

are objects such that o{ o′ starts in N1,W1.

By Definition 4, since o { o′, we have some n such that

s1, . . . , sn; o1, . . . , on+1; N1, . . . ,N2n+1; and W1, . . . ,W2n+1 such

that N2i−1,W2i−1
R(si,oi)

◮ N2i,W2i
W(si,oi+1)

◮ N2i+1,W2i+1, and

o = o1 and o′ = on+1.

We then proceed by induction on n.

• Base case, n = 0. In this case o { o and hence trivially

ds(o) = ds(o), as required.

• Induction hypothesis. For for n = k we have if o{ ok+1

then either ds(o) = ds(ok+1) or ds(o) = Yo.

• Inductive case, n = k + 1.

Notice that o{ o′ can be decomposed into o{ ok+1 {

o′, where o′ = ok+2. In turn, o { ok+1 is of length k

so [by induction hypothesis] ds(o) = ds(ok+1) ∨ ds(o) = Yo. If

ds(o) = Yo we are done immediately, hence we consider

next when ds(o) = ds(ok+1).

We now aim to establish that either ds(ok+1) = Yo or

ds(ok+1) = ds(ok+2) holds. Now, by Corollary 1, we

have ∗(N2i−1,W2i−1) ⇒ ∗(N2i,W2i) and ∗(N2i,W2i) ⇒

∗(N2i+1,W2i+1), for 1 ≤ i ≤ k + 1. Consequently, by tran-

sitivity repeatedly, we have ∗(N1,W1) ⇒ ∗(N2k+3,W2k+3)

and, since we assumed that ∗(N1,W1) holds, we have that

∗(N2k+3,W2k+3) holds. Furthermore, also by Corollary 1,

we have N2k+2 ⊆ N2k+3 and (sk+1, ok+1) ∈ N2k+2 and

(sk+1, ok+2) ∈ W2k+3. Hence, since N2k+2 ⊆ N2k+3 and

(sk+1, ok+1) ∈ N2k+2, we have (sk+1, ok+1) ∈ N2k+3.

Now, since ∗(N2k+3,W2k+3), by Def. 5, since we have

(sk+1, ok+2) ∈ W2k+3, it must be that sk+1, ok+2, and N2k+3

satisfy the *-property. Thus, by Def. 2, we have that

ds(ok+1) = ds(ok+2) or ds(ok+1) = Yo holds, since we have

just established that (sk+1, ok+1) ∈ N2k+3.

Since we have just established that ds(ok+1) = Yo or

ds(ok+1) = ds(ok+2) holds and we are considering the

case when ds(o) = ds(ok+1), we have that either ds(o) =

ds(ok+2) or ds(o) = Yo holds, as required.
�



C. On the mechanisation of the proof

We summarise here how the above proofs are mechanised

in the replication package accompanying this article [24]. The

proofs, in Coq, of Corollary 1 and Theorem 5 are aligned with

the proofs shown above. Both proofs are established by induc-

tion, the former over the length of a big-step transition, and

the latter over the number of big-step transitions comprising

an information flow. We do not automate fully these proofs

in {log} since the process for casting inductive proofs in {log}

currently would comprise manually casting the inductive steps

as sub-problems without formal guarantees that the inductive

conclusion follows from those sub-problems. The reliance of

the proof of Theorem 5 on Corollary 1 is achieved by assuming

appropriate axioms in Coq. Similarly, the reliance of the proof

of Corollary 1 on Lemma 1 is achieved by assuming axioms in

Coq. The proofs of Theorem 5 and Corollary1 have not been

attempted in {log} since their statements are formulas that do

not fit in any of the fragments of set theory for which {log}

implements decision procedures. Before using {log} to prove

those formulas, we need to prove some decidability results

about a fragment of set theory resulting from the combination

of a few of its decidable fragments.

VI. Minimum subjects to access all datasets, mechanized

In this section, we achieve full mechanisation of all theo-

rems originally posed by Brewer & Nash. The missing proof,

of Theorem 3, ensures that whenever all datasets in a CoIC

are accessed then, there are at least as many subjects in the

system as datasets. This is clearly a special case of a stronger

theorem stating that, for any CoIC, the number of datasets that

have been accessed in that CoIC is no greater than the total

number of subjects in the system. The proof of this theorem

can be automatically handled by {log}, by using a few tricks

which we explain next.

Let C be the set of all possible CoICs and let S be the set

of subjects in the system. Also, define the set of all datasets

of CoIC X accessed in state N as follows.

DN
X = {Y | ∃(s, o) ∈ N : coi(o) = X ∧ ds(o) = Y} (3)

The strengthening of the consequent of Theorem 3 mentioned

above can be formulated as follows.

∀X ∈ C : |DN
X | ≤ |S| (4)

To see why proving that the above is an invariant establishes

Theorem 3, consider Xv as defined in Sec. III. Observe that

if, for all datasets Y ∈ Xv, there exists subject s and object

o such that (s, o) ∈ N and ds(o) = Y, then we also have that

Xv = DN
X

.

As we know from set theory, comparing the cardinality of

sets, as in Eq (4) can be achieved by exhibiting a surjective

partial function from S to DN
X

. We can construct such a

surjective partial function as follows:

f N
X = {(s, Y) | ∃(s, o) ∈ N : coi(o) = X ∧ ds(o) = Y} (5)

Since f N
X

is surjective, a given dataset Y can be accessed by

more that one subject but a subject cannot access more than

one dataset in a CoIC. Furthermore, since the range covers

all datasets in the CoIC that have been accessed, there must

be at least as many subjects as datasets being accessed in the

CoIC. Thus it remains to check only the following, to ensure

our construction is correct (ran denotes the co-domain of a

relation).

∀X ∈ C : pfun( f N
X ) ∧ ran( f N

X ) = DN
X (6)

We use several tricks to achieve the effect of verifying Eq (6)

in {log}. Firstly, a new state variable, Sds, is added to the

model that was introduced in Sec. IV. Sds is a set of ordered

pairs of the form (X, f ) where X ∈ C and f is a set of ordered

pairs (s, Y) where s is a subject and Y a dataset. Second, the

following invariant is added to the model to ensure that each

f is a partial function.

invariant(minSub).

minSub(Sds) :- ∀(X, F) ∈ Sds : pfun(F).

Thirdly, Sds is updated whenever a read access is requested,

to ensure that f is kept in step with f N
X

above. For instance, in

spRead the update is performed by conjoining the following

(recall that S is the subject requesting access to an object

whose label is (X, Y)):

dom(Sds, A)

∧ ( X ∈ A

∧ applyTo(Sds, X,R)

∧ oplus(Sds, {(X, {(S , Y) / R})}, Sds′)

∨ X < A

∧ Sds′ = {(X, {(S , Y)}) / Sds})

That is, Sds is updated depending on whether X is already

in Sds’s domain or not. In the first case, (S , Y) is added to

the image of X through Sds7, whereas in the second case

(X, {(S , Y)}) is added to Sds. In other words, Sds is updated

in such a way that every time a subject s reads from a new

object o whose security label is (X, Y), then (s, Y) is added

to the image of X through Sds. Put it in other way, in any

state, if X is a CoIC, then Sds(X) is the set of pairs (s, Y)

such that subject s is reading from some object o such that

L(o) = (X, Y).

Finally, two more invariants are included ensuring that N

and Sds are always aligned. That is, the first invariant states

that if (X, f ) belongs to Sds and (S , Y) belongs to f , then there

exists (S , (O, ℓ)) in N such that ℓ = (X, Y). The {log} code is

the following.

invariant(align Sds N).

align Sds N(Sds,N) :-

∀(X, F) ∈ Sds; (S 1, Y) ∈ F :

∃(S 2, (O, (X1, Y1))) ∈ N : S 2 = S 1 ∧ X1 = X ∧ Y = Y1.

The second invariant (namely align N Sds) states the oppo-

site inclusion—i.e., if an ordered pair is in N, then there’s a

corresponding ordered pair in Sds.

7oplus is a {log} constraint interpreted as B’s overriding operator.



Discussion on scope: We have now fully interpreted and

mechanised the original work of Brewer & Nash. Table I

provides hints to the reader about what to search for in the

replication package [24] to know the actual implementation of

the mechanisation. It is natural, in the future, to consider more

comprehensive indicators that conflicts-of-interest are avoided.

For example, we could check that there is never a flow to

a subject from two objects in different datasets but the same

CoIC. This is stronger than Theorem 3, since we should prove

that indirect flows from objects to subjects are also mitigated

(Theorem 4 concerns flows from objects to objects). The scope

of the current paper however is complete, since we aimed to

clarify and mechanise the original Brewer-Nash model.

TABLE I
Binding between theorem name and the counterparts used to achieve its

automated verification

B&N Theorem Implemented by Mechanised in

Theorem 1 t1

theorem1

Theorem 2 t2

theorem2

minSub

Theorem 3 align Sds N {log}

align N Sds

lemma1 N spRead

lemma1 N wkRead

lemma1 N rvkRead

Theorem 4 lemma1 W write

lemma1 N readWrite

Corollary 1 Coq

secure

VII. Related and Future work: supporting policy makers

There are refinements of Brewer-Nash and related security

policy models that can be analysed, some already mentioned

in the introduction. This work can be seen as laying down

a methodology that can be used to automate the analysis of

such security policy models. Indeed, elements similar to our

more explicit approach appear in Kessler [7], who treats access

grants and operations separately. A priority would be to adapt

the model in this work to the conflict-of-interest relation of

Lin [6], mentioned in the introduction, replacing the more

restrictive Bell-LaPaudula-inspired CoIC labels of the Brewer-

Nash that we have respected in this work.

In related work, the Bell-LaPadula policy model has already

been verified in {log} [21]. In that work, VCs were manually

generated. The presence of the VCG in the current paper

not only automates a nontrivial task but, mainly, increases

confidence in the correctness of the VCs and the model, by

reducing the possibility of human error in the toolchain. There

is also related work on using {log} for verifying properties of

the Android Permission System [25] automating much of a

23KLOC Coq proof, which is evidence that the methodology

employed can scale.

As policy models can become complex we argue that the

“policy maker” can benefit with efficient automated tools for

analysing design decisions. Consider for example Fig. 9, where

the right-hand side can only be expressed using the more

general conflict-of-interest relation due to Lin [6]. Suppose

a new policy model (not Brewer-Nash) permits a subject

s2 to write to o2 while retaining read access to another

dataset. In this case, (1) a CoI relation itself is updated

such that the dataset of o1 absorbs the CoI of the dataset of

o3, and, (2) since that would create violation of the simple

security property, read access to o2 is revoked entirely for s3.

That is, access for one subject is revoked due to actions of

another subject and furthermore the whole system becomes

more restrictive, leading to conflict resolution questions. The

analysis of information flow properties becomes trickier when

read can be revoked since Lemma 1, which assumes that read

access monotonically increases, would be violated.

CoI1 CoI2

o1 o2 o3 o4

s1 s2 s3

W(s2,o2)
◮

CoI1 CoI3 CoI2

o1 o2 o3 o4

s1 s2 s3

Fig. 9. Can a policy allow s2 to insist on write access to o2? Does this
result in an updated conflict-of-interest relation and also read access of s3 to
o2 being revoked?

In this work, we have extensively made use of {log} to

automatically verify properties and theorems. The same tool

allows policy makers to simulate the behaviour of their policy

model before attempting any serious proofs without any extra

effort. In effect, the tool can be used to retrieve the post-

state after having executed one of the specified operations

(e.g. rvkRead or readWrite) given a particular pre-state. The

replication package [24] includes guidelines to simulate some

of the scenarios and examples included in the paper. The same

tool’s feature may also be used to discover the pre-state of an

operation given the post-state (reverse simulation) or verify if

a property holds in a particular given state.

Consider for example the pre-state shown in Fig. 9. If we

want to verify whether starProp holds or not, we can ask {log}

to solve the following.

N = {(s1, (o1, (c1, d1), (s1, (o3, (c2, d3))), (s2, (o2, (c1, d2))),

(s2, (o3, (c2, d3))), (s3, (o2, (c1, d2))), (s3, (o4, (c2, d4)))}

∧W = ∅

∧ starProp(yo,N,W).

Values of N and W are returned by {log}, meaning starProp is

satisfiable, otherwise the answer would have been no (unsat).

There is related work on security policies using automated

tools other than {log}. Some of those papers define a system



model, for example, in terms of temporal constraints in first-

order logic [26] or using Z [27]. The system model is then

checked to determine whether it satisfies some formulation

of the simple security rule. In those two papers, the former

formulates a variant of the *-property, while the latter appears

to omit it entirely. Our {log} model could potentially also be

combined with a system model to check whether the system

satisfies the simple security and *-property, similarly to such

papers. However, the role of the current paper is comple-

mentary to that work, since we are unaware of prior work

mechanising properties of Brewer-Nash such as Theorems 1

to 4. Variants of the *-property in the literature that we have

alluded to could benefit from being justified by adapting our

model and checking that appropriate variants of such theorems

are discharged.

Future work includes verifying the relationship between the

implicit model at the beginning of Sec. II, and the explicit

model in Fig. 3. Recall that the implicit model did not

include the matrix W, and W was key for proving invariants

establishing Lemma 1, in addition to making Brewer-Nash

more implementable.

∀o′ : (s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ ds(o′) = Yo
)

iW
N

W(s,o)
◮ N

∀o′ : (s, o′) ∈ N =⇒
(

ds(o′) = ds(o) ∨ ds(o′) = Yo
)

iRW
N

W(s,o)
◮ N ∪ {(s, o)}

∀o′ : (s, o′) ∈ N =⇒ ds(o′) = ds(o) ∨ coi(o) , coi(o′)
iR

N
R(s,o)
◮ N ∪ {(s, o)}

Fig. 10. Implicit rules for Brewer-Nash policies, including sanitized data.

When enhanced with santized data, as shown in Fig. 10,

the implicit and explicit models align in the sense that any

operation in one is possible in the other. They are even

bisimilar, an observation guaranteeing that results concerning

information flow are preserved in the implicit model. We leave

these formal comparisons as future work.

VIII. Conclusion

The theme of this agenda is to equip policy makers such

that they may make bolder well-informed decisions regarding

policies, preserving confidentiality constraints on information

while potentially increasing access. How can such policy

makers be sure that their policies preserve their intended

information flow properties? More specifically, in this work,

we argue that the widespread usage of Chinese Wall policies

and high-stake consequences of policy failure, mean that we

should not rely solely on the definitions and original proofs

of Brewer & Nash and we should bring them up to the level

of assurance given by modern mechanised tools. Indeed, we

have mechanised in {log} invariants formulated in terms of the

simple security rule and *-property (Theorem 1, Lemma 1 &

Sec. IV); and also that the number of subjects in a system

cannot be less than the number of datasets accessed in each

conflict of interest class (Theorem 3 & Sec. VI). The steps of

Theorem 4 mechanised in Coq are expressed in Theorem 5.

We have deliberately stuck closely to the original Brewer-

Nash security policy model in this work. This is to remove

any doubt that we verify anything other than the core model

proposed by Brewer & Nash, and also because we believe

that, even for that model, the operational semantics of access

was left somewhat open to interpretation, as elaborated on

in Sections II and III. Indeed, in Section II we have pointed

out that interpretations are not unique (e.g., if write access

can be granted without read access, that opens up an initial

phase where data can be pushed from subjects to multiple

datasets independently of a conflict of interest, before read is

granted within a confidential dataset, resulting in write being

revoked elsewhere). Furthermore, the space of existing and

future extensions of Brewer-Nash is large, as touched on in

Section VII, and the systematic exploration of that space is

open to creativity, where debates may be further substantiated

by adapting the methodology employed in the current paper.
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[24] A. Capozucca, M. Cristiá, R. Horne, and R. Katz, “The chinese
wall security policy scrutinised,” May 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.11191778
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