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Hele-Shaw flow of a nematic liquid crystal
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Motivated by the variety of applications in which nematic Hele-Shaw flow occurs, a theoretical model for
Hele-Shaw flow of a nematic liquid crystal is formulated and analyzed. We derive the thin-film Ericksen-Leslie
equations that govern nematic Hele-Shaw flow, and consider two important limiting cases in which we can
make significant analytical progress. First, we consider the leading-order problem in the limiting case in which
elasticity effects dominate viscous effects, and find that the nematic liquid crystal anchoring on the plates leads
to a fixed director field and an anisotropic patterned viscosity that can be used to guide the flow of the nematic.
Second, we consider the leading-order problem in the opposite limiting case in which viscous effects dominate
elasticity effects, and find that the flow is identical to that of an isotropic fluid and the behavior of the director
is determined by the flow. As an example of the insight which can be gained by using the present approach, we
then consider the flow of nematic according to a simple model for the squeezing stage of the one-drop-filling
method, an important method for the manufacture of liquid crystal displays, in these two limiting cases.
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I. INTRODUCTION

Following the original experiments by Hele-Shaw [1] and
the pioneering theory for the flow of a viscous fluid by
Stokes [2], interest in what is now termed Hele-Shaw flow
has remained the subject of ongoing research for well over
a century. What is now called a Hele-Shaw cell consists of
two parallel plates separated by a narrow gap which is par-
tially or wholly filled with viscous fluid. Mathematically, this
system naturally lends itself to a thin-film (i.e., a lubrication)
analysis, and significant progress is often possible using ana-
lytical methods and reduced models that are computationally
much cheaper than fully numerical alternatives [3]. Experi-
mentally, Hele-Shaw cells are a useful tool for visualizing
two-dimensional flows that have allowed researchers to in-
vestigate many fluid mechanical effects. Such effects include
viscous fingering [4,5], porosity [6–8], and bubble dynamics
[9,10]. An extensive list of work up to 1998 that details many
of the applications of isotropic Hele-Shaw cells is available at
[11], and a more up-to-date review of Hele-Shaw flow is given
by Morrow et al. [12].

Although much of the work on Hele-Shaw flow has fo-
cused on isotropic fluids, there has also been some interest
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in the Hele-Shaw flow of non-Newtonian fluids, including
the flow of power-law fluids by Hassager and Lauridsen [13]
and the flow of viscoelastic fluids by Ro and Homsy [14].
Somewhat surprisingly, there has been little work on the
theory of Hele-Shaw cells filled with liquid crystals, despite
their relevance to the liquid crystal display (LCD) industry,
in which thin-film flows of liquid crystal between parallel
plates are a key element of device manufacture [15]. Liq-
uid crystals are anisotropic fluids with long-range molecular
orientational order and possibly molecular positional order
that exhibit a rich variety of physical behaviors, including
anisotropic elasticity, viscosity, and surface effects [16]. The
appearance of long-range order can occur as the temperature
changes, in which case the phase is termed a thermotropic
liquid crystal, or as the concentration of a solvent in a solute
changes, in which case the phase is termed a lyotropic liquid
crystal. The most common type of liquid crystal used in LCDs
are thermotropic nematic liquid crystals, which in the present
work we term nematics, which exhibit orientational order but
no positional order. The standard continuum approach used
to mathematically model the behavior of nematics makes use
of the so-called director n, a unit vector representing the
average nematic molecular orientation, together with the fluid
velocity u and fluid pressure p, to formulate the conservation
of mass equation, the conservation of linear momentum equa-
tions, and the conservation of angular momentum equations.
These conservation equations are known as the Ericksen-
Leslie equations [17,18], and they have been successfully
applied to a variety of problems involving the flow of nematics
[16,19].

Although there has been only limited theoretical study of
nematic Hele-Shaw flow, there has been some experimental
work on nematic viscous fingering [20–23], some of which
has included simple theoretical models [22,23]. For example,
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Lam et al. [22] consider a number of fixed director fields
for which the flow of a nematic is identical to the flow of
an isotropic fluid with effective viscosity determined by the
fixed director field. Following the initial experiments on ne-
matic viscous fingering by Buka et al. [20] and Sonin and
Bartolino [21], there have been a variety of extensions of
this work, for example, to the viscous fingering of nemat-
ics under applied electric fields by Folch et al. [24,25] and
Tóth-Katona and Buka [26]. Nematic microfluidic experi-
ments have also been the topic of much recent interest [27];
in particular, experiments by Sengupta et al. [28–30] have
inspired work on a variety of effects, including control of ne-
matic defects [31–33], micropillar induced cavitation [34,35],
and control of nematic flow using external stimuli [36,37].
These experiments have also initiated a number of theoreti-
cal investigations. For example, flow transitions observed by
Sengupta et al. [28–30] have been studied using the Ericksen-
Leslie equations by Anderson et al. [38] and Crespo et al.
[39] and using lattice Boltzmann simulations by Batista et al.
[40]. However, many of these studies employ one-dimensional
models for the nematic that cannot capture two-dimensional
effects. Although in the present work we focus on nematics, a
similar approach may also be useful for the study of lyotropic
microfluidics [41,42].

As previously mentioned, Hele-Shaw flow is particularly
relevant to the industrial manufacture of LCDs, which in-
volves filling the gap between parallel plates with nematic
[43]. LCD manufacturing is currently carried out using one of
two methods: the capillary-filling method and the one-drop-
filling (ODF) method [44]. In the capillary-filling method, the
nematic is introduced at one edge of the parallel plates and
fills the gap between the plates via capillary action, which
results in relatively low flow speeds and long manufacturing
times [15]. In the ODF method, an array of nematic droplets
are dispensed on one plate, and a second (parallel) plate is
lowered onto droplets, squeezing them until they coalesce to
form a continuous nematic film between the plates, which
results in relatively high flow speeds and short manufacturing
times [44]. The ODF method is often preferred because of this
higher manufacturing throughput of devices when compared
to the capillary-filling method. However, the ODF method can
sometimes lead to unwanted optical effects, known as ODF
mura, which degrade the quality of the final display [45–47].
Somewhat surprisingly, there has been relatively little work
to model the nematic flow in these manufacturing methods
using the standard theoretical approach for isotropic Hele-
Shaw flow [3]. For further discussion of nematic flow in LCD
manufacturing see Cousins et al. [48–50].

Motivated by the variety of applications in which nematic
Hele-Shaw flow occurs, in the present work we formulate and
analyze a theoretical model for Hele-Shaw flow of a nematic
liquid crystal. In Secs. II to VII, we derive the thin-film
Ericksen-Leslie equations that govern nematic Hele-Shaw
flow. Then, we consider these equations in a number of impor-
tant limiting cases in which we can make significant analytical
progress. First, in Sec. VIII, we consider the leading-order
problem in the limiting case in which elasticity effects domi-
nate viscous effects and, second, in Sec. IX, we consider the
leading-order problem in the opposite limiting case in which
viscous effects dominate elasticity effects. Finally, in Sec. X,

FIG. 1. A Hele-Shaw cell showing a perspective view of a region
of nematic � (in light blue) bounded between solid parallel plates
at z = 0 and z = d , and with a free surface ∂� with outward unit
normal ν. The Cartesian coordinates x, y, and z, the director n, the
tilt director angle θ , and the twist director angle φ are also shown.

as an example of the insight which can be gained by using the
present approach, we consider the flow of nematic according
to a simple model for the squeezing stage of the ODF method
in these two limiting cases.

II. PROBLEM FORMULATION

We consider the flow of a nematic in a standard Hele-Shaw
cell that consists of two parallel plates separated by a narrow
gap which is partially or wholly filled with the nematic. In
particular, we consider a region of nematic � = �(t ) bounded
between solid parallel plates at z = 0 (which we term the
lower plate) and z = d (t ) (which we term the upper plate),
and with a free surface ∂� = ∂�(t ) with outward unit normal
ν = ν(x, y, z, t ), where x, y, and z are Cartesian coordinates,
t denotes time, as shown in Fig. 1. Note that the thickness
of the cell in the z direction, d (t ), may, in general, be time
dependent, and so we allow for the possibility of the upper
plate to move in the direction perpendicular to the plates, with
the velocity of the upper plate denoted by d ′ = d ′(t ). (Note
that, despite what Fig. 1 might suggest, in the following math-
ematical model it is not necessary for the region of nematic
to be simply connected.) The nematic velocity and the fluid
pressure are denoted by

u = u(x, y, z, t )x̂ + v(x, y, z, t )ŷ + w(x, y, z, t )ẑ, (1)

p = p(x, y, z, t ), (2)

respectively, where x̂, ŷ, and ẑ are the Cartesian coordinate
unit vectors in the x, y, and z directions and u, v, and w are the
components of the velocity in the x, y, and z directions. The
director n = n(x, y, z, t ) is written in the form

n = cos θ (x, y, z, t ) cos φ(x, y, z, t ) x̂

+ cos θ (x, y, z, t ) sin φ(x, y, z, t ) ŷ + sin θ (x, y, z, t ) ẑ,
(3)

034702-2



HELE-SHAW FLOW OF A NEMATIC LIQUID CRYSTAL PHYSICAL REVIEW E 110, 034702 (2024)

where θ (x, y, z, t ) is the angle between the director and the xy
plane, which is commonly called the tilt director angle, and
φ(x, y, z, t ) is the angle between the projection of the director
onto the xy plane and the x axis, which is commonly called
the twist director angle [16].

III. THE GOVERNING EQUATIONS

In this work we consider governing equations for the veloc-
ity, pressure and director in the form of the Ericksen-Leslie
equations [17,18], which are derived from a continuum ap-
proach and the principles of the conservation of mass, the
conservation of linear momentum, and the conservation of
angular momentum.

The conservation of mass equation is given by

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (4)

The conservation of linear momentum equations are given
by

ρu̇ = −∂ p̃

∂x
+ ∂

∂x

(
∂D

∂ux

)
+ ∂

∂y

(
∂D

∂uy

)
+ ∂

∂z

(
∂D

∂uz

)

− ∂D

∂θ

∂θ

∂x
− ∂D

∂φ

∂φ

∂x
, (5)

ρv̇ = −∂ p̃

∂y
+ ∂

∂x

(
∂D

∂vx

)
+ ∂

∂y

(
∂D

∂vy

)
+ ∂

∂z

(
∂D

∂vz

)

− ∂D

∂θ

∂θ

∂y
− ∂D

∂φ

∂φ

∂y
, (6)

ρẇ = −∂ p̃

∂z
+ ∂

∂x

(
∂D

∂wx

)
+ ∂

∂y

(
∂D

∂wy

)
+ ∂

∂z

(
∂D

∂wz

)

− ∂D

∂θ

∂θ

∂z
− ∂D

∂φ

∂φ

∂z
, (7)

where D = D(n, N, A) is the nematic viscous dissipation,
which depends on the director n, the corotational time flux
of the director N = ∂n/∂t + (u · ∇)n − (∇u − (∇u)T) n/2
with ∇ = x̂ ∂/∂x + ŷ ∂/∂y + ẑ ∂/∂z, and the rate of the strain
tensor A = (∇u + (∇u)T)/2 [16]. Also appearing in (5)–(7)
are the constant fluid density ρ and the material time deriva-
tives of u, v, and w denoted by u̇, v̇, and ẇ, respectively,
where, for example, u̇ = ∂u/∂t + (u · ∇)u. Additionally, in
(5)–(7), p̃ is the modified pressure [16], henceforth simply
called the pressure for brevity, which can be expressed in
terms of the fluid pressure p as

p̃ = p + WF − �̂, (8)

where �̂ = �̂(x, y, z, t ) is the bulk energy density corre-
sponding to a general conservative body force [16, Sec. 4.3],
for example body forces due to applied electric and/or mag-
netic fields and gravity, and WF = WF(n,∇n) is the nematic
bulk elastic energy density, which depends on the director and
spatial derivatives of the director. In what follows, we leave
�̂ unspecified to keep the approach as general as possible
for now, but in Sec. VII, for simplicity, we will neglect any
conservative body forces and hence set �̂ ≡ 0.

Finally, the conservation of angular momentum equa-
tions are given by

∂D

∂θ̇
= ∂

∂x

(
∂WF

∂θx

)
+ ∂

∂y

(
∂WF

∂θy

)
+ ∂

∂z

(
∂WF

∂θz

)

− ∂WF

∂θ
+ ∂�̂

∂θ
, (9)

∂D

∂φ̇
= ∂

∂x

(
∂WF

∂φx

)
+ ∂

∂y

(
∂WF

∂φy

)
+ ∂

∂z

(
∂WF

∂φz

)

− ∂WF

∂φ
+ ∂�̂

∂φ
, (10)

where θ̇ and φ̇ are the material time derivatives of θ and φ.
Together, the Ericksen-Leslie equations (4)–(7), (9), and (10)
with the unknowns u, v, w, p̃, θ , and φ describe the behavior
in the bulk of the nematic.

To complete the Ericksen-Leslie equations, we now specify
the form of the nematic viscous dissipation D and the nematic
bulk elastic energy density WF appearing in (4)–(7), (9), and
(10). In particular, we use of the standard nematic viscous
dissipation D [16], namely

D = 1
2 [α1(n · A n)2 + 2(α6 − α5)N · A n + α4 tr(A2)

+ (α5 + α6)(A n)2 + (α3 − α2)N2]. (11)

The coefficients α1, . . . , α6 appearing in (11) are the Leslie
viscosities [16]. The expanded expression for the nematic
viscous dissipation D, using the director in the form of (3),
the corotational time flux of the director, N, and the rate of
strain tensor, A, is given in Appendix A. For later use, we note
that the Leslie viscosities can be expressed in terms of the
set of more easily measured nematic viscosities [16], namely
the rotational viscosity γ1, the torsional viscosity γ2, and the
Miesowicz viscosities η1, η2, η3, and η12, as

γ1 = α3 − α2, γ2 = α6 − α5 = α2 + α3,

η1 = 1
2 (α3 + α4 + α6), η2 = 1

2 (−α2 + α4 + α5),

η3 = 1
2α4, η12 = α1. (12)

We take WF to be the Oseen-Frank bulk elastic energy density,
which is defined by

WF = 1
2 K1(∇ · n)2 + 1

2 K2(n · ∇ × n)2 + 1
2 K3(n × ∇ × n)2

+ 1
2 (K2 + K4)∇ · [(n · ∇)n − (∇ · n)n], (13)

where the constants K1, K2, and K3 are the nematic splay,
twist and bend elastic constants, respectively, and the com-
bination K2 + K4 is the saddle-splay elastic constant [16]. To
produce a mathematically tractable set of equations, we use
the one-constant approximation, and so set K1 = K2 = K3 =
K and K4 = 0, where K is the one-constant elastic constant.
It is, in principle, possible to proceed without making the
one-constant approximation, although the subsequent expres-
sions become considerably more algebraically complicated.
In practice, the values of the elastic constants rarely differ by
more than a factor of two, and so the one-constant approxima-
tion qualitatively describes the behavior [16]. Combining the
one-constant approximation, the director in the form of (3),
and WF defined by (13), yields the one-constant approximation
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of the Oseen–Frank bulk elastic energy WF [16], given by

WF = K

2
[(∇θ )2 + cos2 θ (∇φ)2]. (14)

IV. BOUNDARY CONDITIONS: NEMATIC-PLATE
INTERFACES

At the interfaces between the nematic and the lower and
upper plates, the boundary conditions for u are standard no-
slip and no-penetration conditions, namely

u = v = w = 0 on z = 0 (15)

and

u = v = 0 and w = d ′ on z = d. (16)

The boundary conditions on the director at the lower and
upper plates are a result of intermolecular forces between
the nematic and the material of which the plates are made.
These forces can be produced through mechanical and/or
chemical treatment of the plates to achieve a variety of de-
sired preferred orientations [51]. For example, photo-curable
polymers embedded in the nematic or mechanical rubbing
of the plates [52] have been used to create either a homo-
geneous preferred orientation or a patterned anchoring for
which the preferred orientation varies in space. The resulting
intermolecular forces lead to an energetically preferred orien-
tation of the director at the nematic-plate interface, which are
incorporated into boundary conditions for n, called anchoring
conditions.

In situations where the intermolecular forces are strong
enough to prescribe the orientation of the director, the an-
choring conditions are called infinite anchoring conditions
[51]. When the intermolecular forces are weaker than this, the
orientation of the director at the plates is also influenced by
other effects in the system, such as the torque due to elasticity
effects from the bulk of the nematic region. This type of
anchoring is known as weak anchoring, and the reorientation
of the director away from the preferred orientation is known
as anchoring breaking [53].

One particular example of a preferred orientation of the
director occurs when the intermolecular forces between the
nematic and the plates are such that there is a preferred angle
between the director and the plate normal, but the orientation
of the director around the plate normal is not fixed. In this
scenario the energetic preference is for the director to lie
on a cone, a situation known as conical anchoring. Conical
anchoring may be infinite, when intermolecular forces are
strong enough to prescribe the angle of the director relative to
the plate normal, or weak when the orientation of the director
at the plates is also influenced by other effects in the system.

In the present work, as particular examples and to simplify
the resulting analysis, we use the infinite anchoring conditions
discussed above. In particular, we choose two general anchor-
ing conditions that are relevant to a variety of situations. As
explained below, we first consider patterned infinite anchor-
ing, which we then specialize to the cases of unidirectional
rubbed infinite anchoring with a constant pretilt and axisym-
metric patterned infinite anchoring with a constant pretilt.
Second, we consider conical infinite anchoring, which we then

specialize to the cases of homeotropic infinite anchoring and
planar degenerate infinite anchoring.

A. Patterned infinite anchoring

For patterned infinite anchoring, the director has a fixed
orientation at each location on each plate, where these direc-
tions could, in general, be different on the lower and upper
plates. Specifically, patterned infinite anchoring on the lower
and upper plates is given by

θ = �0(x, y) and φ = �0(x, y) on z = 0 (17)

and

θ = �d (x, y) and φ = �d (x, y) on z = d. (18)

In principle, this scenario allows for any patterned design to
be considered on each plate—for example, an axisymmetric
or periodic pattern—but here we restrict our attention to sce-
narios where the patterning is the same on both plates, so that

θ = �(x, y) and φ = �(x, y) on z = 0, d, (19)

and consider the following two examples.

1. Unidirectional rubbed infinite anchoring with a constant pretilt

Unidirectional rubbed infinite anchoring may be achieved
by coating the surfaces of the plates with a polymeric material
and then mechanically rubbing the coating in a particular di-
rection, called the rubbing direction, so that a single preferred
director orientation is created [51]. The directional rubbing
process creates a preferred twist director angle �c, called the
constant rubbing angle. This mechanical rubbing also often
creates a preferred tilt director angle, called a pretilt angle, so
that the director prefers to align at a fixed angle �c (0 � �c �
π/2) to the normal of the plates. Here we assume that the
preferred director orientation is the same on both plates, and
so the boundary conditions for the director for unidirectional
rubbed infinite anchoring with a constant pretilt on both the
lower and upper plates are given by

θ = �c and φ = �c on z = 0, d. (20)

2. Axisymmetric patterned infinite anchoring
with a constant pretilt

We also consider a case of nonuniform patterning, namely
radially independent, axisymmetric patterned infinite an-
choring with a constant pretilt. Such nonuniform patterned
anchoring may be achieved by optical or mechanical meth-
ods, for instance with patterned photoalignment or ion-beam
etching [52,54–57], and here we consider the same patterned
infinite anchoring with a constant pretilt on both the lower and
upper plates, given by

θ = �c and φ = �c + tan−1

(
y

x

)
on z = 0, d.

(21)
For the pattern given by (21), �c is the twist angle between
the director and the radial vector, and so when �c = 0 the
projection of the director field onto the plates is a radial
pattern, when �c = π/2 the projection of the director field
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onto the plates is an azimuthal (i.e., a circular) pattern, and
when 0 < �c < π/2 the projection of the director field onto
the plates is a spiral pattern.

B. Conical infinite anchoring

For conical infinite anchoring, the director has a fixed
pretilt angle to the plane of the plates, �c, but is free to rotate
about the normal of the plates and therefore lies on a cone
with constant opening angle π − 2�c. In this situation, the
boundary condition on the twist director angle is derived from
the fact that the torque on the director about the plate normal
is zero [16]. For the Oseen-Frank bulk elastic energy (14) this
torque condition is φz = 0. Conical infinite anchoring on the
lower and upper plates is therefore given by

θ = �c and φz = 0 on z = 0, d, (22)

and we consider two extreme examples, namely homeotropic
infinite anchoring and planar degenerate infinite anchoring.

1. Homeotropic infinite anchoring

The extreme case of conical infinite anchoring when �c =
π/2, so that the cone opening angle is zero, is termed
homeotropic infinite anchoring, and occurs when the director
has a preferred orientation perpendicular to the plates. Such
anchoring is usually achieved through chemically treating the
plates, for instance through coating with a surfactant such as
lecithin [51]. When the director is in this preferred orientation
we see from (3) that n = ẑ and the twist director angle φ is
not defined at the plates. Homeotropic infinite anchoring on
the lower and upper plates is then given by

θ = π

2
and φz = 0 on z = 0, d. (23)

2. Planar degenerate infinite anchoring

The opposite extreme to homeotropic anchoring occurs
when the cone opening angle is π/2 occurs when �c = 0 and
is known as planar degenerate infinite anchoring. In this case
the director at each plate is parallel to the plane of the plate
but is free to rotate around the normal to the plate. Planar
degenerate infinite anchoring on the lower and upper plates
is then given by

θ = 0 and φz = 0 on z = 0, d. (24)

As mentioned above, many other types of anchoring are
possible, several of which would lead to interesting situations,
for example, weak anchoring conditions [51]. A similar anal-
ysis to that described below may be possible, but to keep the
resulting analysis analytically tractable, we will not pursue
these other forms of anchoring in this work.

V. BOUNDARY CONDITIONS: FREE SURFACE

As we will see in Secs. VI to IX, the depth-averaged gov-
erning equations for nematic Hele-Shaw flow are formulated
using only the boundary conditions for u and n on the lower
and upper plates. Boundary conditions for u, n, and p on
the free surface ∂� may be subsequently needed in order to
tackle specific situations in which, for example, the nematic
is surrounded by an ambient gas, an isotropic fluid, a different

nematic material, or a solid boundary. Such boundary con-
ditions on the free surface can be derived through the usual
approach of considering balances of mass, stress, and torque
[16,51,58]. In the present work, we will not restrict ourselves
to specific forms of the free surface boundary conditions in
order to keep the approach as general as possible, until Sec. X,
in which we consider the flow of nematic according to a
simple model for the squeezing stage of the ODF method by
prescribing the behavior of the free surface.

We now introduce an appropriate nondimensionalization
before deriving the thin-film Ericksen-Leslie equations that
govern the flow and director within a nematic Hele-Shaw cell.

VI. NONDIMENSIONALIZATION

We proceed by nondimensionalizing all independent and
dependent variables with appropriate scales. We assume that,
because of whatever specific situation we are considering, we
may define a characteristic length scale of variations in the
xy plane, which we denote by L, and a characteristic length
scale of variations in the z direction, which we denote by
D. Lengths in the xy-plane are therefore nondimensionalized
with L, while lengths in the z direction are nondimensional-
ized with D, and we may define the nondimensional aspect
ratio of the Hele-Shaw cell, denoted δ, by

δ = D

L
. (25)

The characteristic velocity scale in the xy plane is denoted by
U , for which there are several equally sensible choices, in-
cluding U = GD2/μ for a flow driven by a constant pressure
gradient G; U = Q/(LD) for a flow driven by a prescribed
flux Q; and U = S

√
V/(4πD3) for a flow driven by squeezing

a circular cylindrical volume V of nematic between parallel
plates with a characteristic plate speed S. In what follows,
we leave U unspecified to keep the approach as general as
possible for now, but in Sec. X we will use the velocity scale
U = S

√
V/(4πD3). The characteristic timescale is denoted by

τ and will also remain unspecified until later in this section,
when the possible choices for τ will be described. The con-
servation of mass equation (4) implies that the velocity scale
in the z direction is δU . The pressure is nondimensionalized
so that it appears in the leading-order problem. Finally, all vis-
cosities are nondimensionalized using the classical Newtonian
viscosity μ = η3 = α4/2. In summary, the Ericksen-Leslie
equations (4)–(7), (9), and (10) are nondimensionalized ac-
cording to

x = L x∗, y = L y∗, z = Dz∗ = δL z∗, t = τ t∗,

d = Dd∗ = δLd∗, u = U u∗, v = U v∗, w = δU w∗,

p̃ = μU

δ2L
p̃∗, α1 = μα1

∗, α2 = μα2
∗, α3 = μα3

∗,

α4 = μα4
∗, α5 = μα5

∗, α6 = μα6
∗, γ1 = μγ1

∗,

γ2 = μγ2
∗, η1 = μη1

∗, η2 = μη2
∗, η3 = μη3

∗,

η12 = μη12
∗, (26)

where the stars denote nondimensional variables. Henceforth,
the stars are dropped, and all variables are nondimensional
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unless stated otherwise, except for the characteristic velocity
scale U and the characteristic timescale τ .

A. Thin-film flow

We now proceed in a similar way to the standard thin-film
approach used for isotropic Hele-Shaw flow, based on the
assumption that the characteristic length scale of variations
in the xy plane is much larger than the characteristic length
scale of variations in the z direction, so that the aspect ratio
δ = D/L is small, specifically δ � 1.

After applying the nondimensionalization (26), the conser-
vation of mass equation (4) remains the same, and the linear
momentum equations (5)–(7) become

τ2

τ

∂u

∂t
+ δRe

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= −∂ p̃

∂x
+ ∂

∂z

[
g1(θ, φ)

∂u

∂z
+ g3(θ, φ)

∂v

∂z

]

+δτ1

τ

∂

∂z

[
m(θ ) cos φ

∂θ

∂t
+ q(θ ) sin φ

∂φ

∂t

]

+O

(
δ, δ2 τ1

τ

)
, (27)

τ2

τ

∂v

∂t
+ δRe

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −∂ p̃

∂y
+ ∂

∂z

[
g3(θ, φ)

∂u

∂z
+ g2(θ, φ)

∂v

∂z

]

+δτ1

τ

∂

∂z

[
m(θ ) sin φ

∂θ

∂t
− q(θ ) cos φ

∂φ

∂t

]

+O

(
δ, δ2 τ1

τ

)
, (28)

δ2τ2

τ

∂w

∂t
+ δ3Re

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −∂ p̃

∂z
+ δ2 τ1

τ

[
γ2

∂

∂z

(
sin θ cos θ

∂θ

∂t

)

−γ1

(
∂θ

∂z

∂θ

∂t
+ cos2 θ

∂φ

∂t

∂φ

∂z

)]

+ O

(
δ, δ3 τ1

τ

)
, (29)

where g1(θ, φ), g2(θ, φ), and g3(θ, φ) are effective viscosity
functions defined by

g1(θ, φ) = η1 cos2 θ cos2 φ + η2 sin2 θ + cos2 θ sin2 φ

+ η12 sin2 θ cos2 θ cos2 φ, (30)

g2(θ, φ) = η1 cos2 θ sin2 φ + η2 sin2 θ + cos2 θ cos2 φ

+ η12 sin2 θ cos2 θ sin2 φ, (31)

g3(θ, φ) = η1 cos2 θ sin φ cos φ − cos2 θ sin φ cos φ

+ η12 sin2 θ cos2 θ sin φ cos φ. (32)

Note that the effective viscosity functions g1(θ, φ) and
g2(θ, φ) are related through a π/2 shift in the twist angle φ,
i.e., g1(θ, φ) = g2(θ, π/2 − φ), and that the effective viscos-
ity functions can be related to the standard effective viscosity
functions g(θ ) and h(θ ) [16], which are defined by

g(θ ) = η1 cos2 θ + η2 sin2 θ + η12 sin2 θ cos2 θ, (33)

h(θ ) = η2 sin2 θ + cos2 θ, (34)

according to

h(θ ) = g1(θ, π/2) = g2(θ, 0), (35)

g(θ ) = g1(θ, 0) = g2(θ, π/2)

= g1(θ, φ) + g3(θ, φ) tan φ

= g2(θ, φ) + g3(θ, φ) cot φ, (36)

g(θ ) h(θ ) = g1(θ, φ) g2(θ, φ) − g3(θ, φ)2. (37)

Also appearing in (27)–(29) are two timescales, namely the
timescale on which fluid travels the length of the cell, τ1,
which is defined as

τ1 = L

U
, (38)

and the fluid inertia timescale τ2, which is defined in terms of
the reduced Reynolds number δRe and τ1 as

τ2 = δ Re τ1 = ρD2

μ
, (39)

where the usual Reynolds number Re, which measures the
ratio of inertial effects to viscous effects within the system,
is defined by

Re = ρUD

μ
. (40)

As usual, a large Reynolds number therefore corresponds to
the situation in which inertial effects are much stronger than
viscous effects, while a small Reynolds number corresponds
to the opposite situation in which viscous effects are much
stronger than inertial effects.

After nondimensionalization, the no-slip and no-
penetration conditions (15) and (16) are given by

u = v = w = 0 on z = 0 (41)

and

u = v = 0 and w = τ1

τ
d ′ on z = d. (42)

Similarly, applying the nondimensionalization (26) to the
angular momentum equations (9) and (10) and collecting
terms in orders of δ yields

γ1
τ3

τ

∂θ

∂t

= ∂2θ

∂z2
+ sin θ cos θ

(∂φ

∂z

)2

+ δ2

[
∂2θ

∂x2
+ ∂2θ

∂y2
+ sin θ cos θ

((∂φ

∂x

)2
+

(∂φ

∂y

)2
)]
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− Er m(θ )

(
cos φ

∂u

∂z
+ sin φ

∂v

∂z

)

+ δ2L2

K

∂�̂

∂θ
+ O(δEr), (43)

and

γ1
τ3

τ
cos2 θ

∂φ

∂t

= ∂

∂z

(
cos2 θ

∂φ

∂z

)

+ δ2

[
∂

∂x

(
cos2 θ

∂φ

∂x

)
+ ∂

∂y

(
cos2 θ

∂φ

∂y

)]

− Er q(θ )

(
sin φ

∂u

∂z
− cos φ

∂v

∂z

)

+ δ2L2

K

∂�̂

∂φ
+ O(δEr), (44)

where Er is the Ericksen number, defined by

Er = μDU

K
, (45)

a measure of the ratio of viscous effects to elasticity effects
within the system. A large Ericksen number therefore cor-
responds to the situation in which viscous effects are much
stronger than elasticity effects, while a small Ericksen num-
ber corresponds to the opposite situation in which elasticity
effects are much stronger than viscous effects. Also appearing
in (43) and (44) is a third timescale, the director rotation
timescale τ3, which is defined as

τ3 = μD2

K
. (46)

Additionally, the functions m(θ ) and q(θ ) appearing in (43)
and (44) are effective viscosity functions, which are defined
by

m(θ ) = 1
2 (γ1 + γ2 cos 2θ )

and q(θ ) = 1
2 (γ1 − γ2) sin θ cos θ. (47)

The anchoring conditions on the plates discussed in Sec. IV,
are unchanged after applying the nondimensionalization (26).

Note that in (27)–(29), (43), and (44) we have retained the
terms with coefficients of τ1/τ , τ2/τ , and τ3/τ that are the
lowest order in δ as the choice of the timescale τ discussed
subsequently may change the order in δ at which these terms
appear.

B. Characteristic timescales

Inspection of the nondimensional Ericksen-Leslie equa-
tions (4), (27)–(29), (43), and (44) shows that there are three
natural choices for the timescale τ . In situations in which
time-dependent changes in the director angles are important,
it would be appropriate to nondimensionalize time with the
director rotation timescale τ3, so that τ = τ3. This choice
of timescale may be appropriate, for instance, when mod-
eling the director rotation due to flow within a channel for
which the plates exhibit homeotropic anchoring [30] (for one-
dimensional models of these transitions, see [38] and [39]). In

situations in which the dynamics of the flow across the length
scale L are of interest, it would be natural to use the timescale
τ = τ1. On the other hand, when dynamics induced by inertial
effects are of particular interest, the choice of timescale τ = τ2

is appropriate. Table I shows typical values for the timescales
τ1, τ2, and τ3 and the nondimensional numbers δ, Re, and
Er for four different situations, namely analysis of the ODF
method by Cousins et al. [49], capillary-filling experiments
by Mi and Yang [15], viscous fingering experiments by Sonin
and Bartolino [21], and nematic microfluidic experiments by
Sengupta et al. [34]. Table I shows that, in all but one extreme
case, τ1 � τ2, τ3. This regime is typical of many situations
of relevance to LCD manufacturing [49,50], viscous finger-
ing experiments [21,22,24,26], and some experiments with
nematic microfluidic channels [28–30].

Given the many applications for which flow over the length
scale in the xy plane is relevant, e.g., the cases mentioned
above for LCD manufacturing, viscous fingering experiments,
and nematic microfluidic experiments, in the present work
we choose the timescale to be τ1. Of course, other situations
may require a different choice of timescale, or even more
sophisticated analyses involving more than one timescale.
Specifically, we set τ = τ1 and therefore

τ1

τ
= 1,

τ2

τ
= δ Re, and

τ3

τ
= δ Er. (48)

Additionally, we assume that viscous effects are much
stronger than inertial effects, and hence we assume that the
reduced Reynolds number δ Re is small, such that δRe � 1.
This is certainly the case for examples given in Table I, where
δ Re ≈ 10−7–10−9. Also, as mentioned previously, we neglect
any conservative body forces and hence set �̂ ≡ 0.

VII. THIN-FILM ERICKSEN-LESLIE EQUATIONS

We now proceed by employing the standard thin-film
approach used for isotropic Hele-Shaw flow and consider
only the leading-order problem in the limit δ → 0. In this
limit, and setting τ = τ1, δRe � 1 and �̂ ≡ 0 in (4), (27)–
(29), (43), and (44), as discussed above, the leading-order
Ericksen-Leslie equations, hereafter referred to as the thin-
film Ericksen-Leslie equations, are given by

0 = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
, (49)

∂ p̃

∂x
= ∂

∂z

[
g1(θ, φ)

∂u

∂z
+ g3(θ, φ)

∂v

∂z

]
, (50)

∂ p̃

∂y
= ∂

∂z

[
g3(θ, φ)

∂u

∂z
+ g2(θ, φ)

∂v

∂z

]
, (51)

∂ p̃

∂z
= 0, (52)

0 = ∂2θ

∂z2
+ sin θ cos θ

(∂φ

∂z

)2

− Er m(θ )

(
cos φ

∂u

∂z
+ sin φ

∂v

∂z

)
, (53)
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TABLE I. Typical values for the timescales τ1, τ2, and τ3 and the nondimensional numbers δ, Re, and Er for four different situations, namely
analysis of the ODF method by Cousins et al. [47,49], capillary-filling experiments by Mi and Yang [15], viscous fingering experiments by
Sonin and Bartolino [21], and nematic microfluidic experiments by Sengupta et al. [34]. A full statement of all of the parameter values used to
generate these values is given in Appendix B.

τ1 (s) τ2 (s) τ3 (s) δ Re Er

Analysis of the ODF method min. 5.0 ×10−2 2.5 × 10−8 2.5 ×10−4 1.0 × 10−5 1.0 ×10−1

by Cousins et al. [49] max. 2.5 ×10−1 2.5 × 10−4 2.5 1.0 × 10−2 5.0 × 10−1 5.0 ×103

Capillary-filling experiments
by Mi and Yang [15] 1.0 ×103 3.1 ×10−6 4.5 ×10−1 1.0 ×10−4 3.0 × 10−5 4.5

Viscous fingering experiments
by Sonin and Bartolino [21] 1.2 ×10−2 3.8 × 10−7 5.5 ×10−2 3.5 × 10−2 8.8 × 10−4 1.3 ×102

Nematic microfluidic experiments min. 3.0 ×101 7.8 × 10−5 2.9 ×10−1 4.0 × 10−4 5.0 × 10−5 7.2
by Sengupta et al. [34] max. 1.0 ×102 2.0 × 10−6 1.1 ×101 2.5 × 10−3 1.0 × 10−3 1.5 ×102

0 = ∂

∂z

[
cos2 θ

∂φ

∂z

]

− Er q(θ )

(
sin φ

∂u

∂z
− cos φ

∂v

∂z

)
. (54)

Although (50)–(54) do not include any time derivatives, we
note that their solutions can still depend on time t in situations
in which the boundary conditions on the plates and/or the free
surface are time dependent.

Equation (52) shows that the pressure is independent of z,
and hence p̃ = p̃(x, y, t ), but solving the remaining thin-film
Ericksen-Leslie equations (50)–(54) is, in general, difficult
and may require a numerical approach. In the present work,
we take an alternative approach and analyze the thin-film
Ericksen-Leslie equations in a number of limiting cases in
which we can make significant analytical progress. First,
in Sec. VIII, we consider the leading-order problem in the
limiting case in which elasticity effects are much stronger
than viscous effects, and hence the Ericksen number is small
(Er � 1). Examples of such situations include the capillary-
filling method where flow is driven by capillary action [15]
and flows driven by gravity [59]. Second, in Sec. IX, we con-
sider the leading-order problem in the limiting case in which
viscous effects are much stronger than elastic effects, and
hence the Ericksen number is large (Er � 1). Examples of
such situations include the ODF method where flow is driven
by squeezing [49,50] and in recent experiments using nematic
microfluidic devices [30,32,35,60] in which the flow is driven
by a large pressure gradient. Finally, we note that, in choosing
the Ericksen-Leslie theory to model this system, we are not al-
lowing for the presence of defects within the nematic. Defects
are localised regions of high gradients in the director field,
with a corresponding reduction in nematic orientational order.
Such defects can occur at low Ericksen numbers, for instance
in physical systems with complex geometries where solid
boundaries and/or free boundaries have opposing anchoring
conditions [61], or at high Ericksen numbers, for instance
in systems where flow induces high director gradient, and
defect elongation along the direction of the flow can occur
[62]. In order to model such systems, a theory that allows for
changes in the orientational order parameter is required [63],
and, while beyond the scope of the present work, a thin-film

analysis of Hele-Shaw flow using this type of model would be
an interesting future direction of research.

VIII. THE LIMIT OF SMALL ERICKSEN
NUMBER (Er � 1)

In this section, we consider the leading-order problem in
the limit of small Ericksen number (Er � 1), with all the
scenarios of anchoring mentioned in Sec. IV. We consider
the general case of patterned infinite anchoring in Sec. VIII A,
with particular cases of unidirectional rubbed infinite anchor-
ing with a constant pretilt and axisymmetric patterned infinite
anchoring with a constant pretilt, and then consider the gen-
eral case of conical infinite anchoring in Sec. VIII B, with
particular cases of homeotropic infinite anchoring and planar
degenerate infinite anchoring.

A. Patterned infinite anchoring

We begin by considering the scenario of patterned infinite
anchoring, which corresponds to the anchoring conditions
(19). At leading order in Er � 1, the thin-film conservation
of angular momentum equations (53) and (54) subject to (19)
are satisfied by the director angle solutions

θ = �(x, y) and φ = �(x, y). (55)

Therefore, in this limit, the director field throughout the cell is
identical to the director field patterned on the plates. We note
that, in the scenario where the patterned infinite anchoring on
the two plates is different, a numerical approach is, in gen-
eral, required to solve for the leading-order director angles θ

and φ.
At leading order in Er � 1, the thin-film conservation of

linear momentum equations (50) and (51) are given by

∂ p̃

∂x
= g1

∂2u

∂z2
+ g3

∂2v

∂z2
and

∂ p̃

∂y
= g3

∂2u

∂z2
+ g2

∂2v

∂z2
,

(56)

where g1 = g1(�(x, y),�(x, y)), g2 = g2(�(x, y),�(x, y))
and g3 = g3(�(x, y),�(x, y)). Integrating (56) with respect
to z twice, applying the no-slip conditions (41) and (42), and
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rearranging yields solutions for u and v,

u = 1

2gh

(
g2

∂ p̃

∂x
− g3

∂ p̃

∂y

)
z(z − d )

and v = 1

2gh

(
g1

∂ p̃

∂y
− g3

∂ p̃

∂x

)
z(z − d ), (57)

where g = g(�(x, y)) and h = h(�(x, y)). The patterned an-
choring, therefore, creates a fixed director field which in turn
produces an anisotropic patterned viscosity via the effective
viscosity functions g, h, g1, g2, and g3. The flow is then driven
by the pressure gradients ∂ p̃/∂x and ∂ p̃/∂y and differs from
the simple isotropic situation due to the patterned viscosity.
The streamlines of the flow may therefore be tailored by using
plates on which patterned anchoring has been created. This
tailoring of the streamlines is an example of the flow being
guided by the director field, a situation that has previously
been investigated theoretically by Leslie [64], albeit only for
a unidirectional director field. However, in this analysis, the
fixed director was induced by a strong magnetic field and not
by anchoring.

Following the standard approach used in the analysis of
Hele-Shaw flow, we now substitute the solutions for the veloc-
ity (57) into the conservation of mass equation (49), integrate
with respect to z between z = 0 and z = d , and apply the
no-slip and no-penetration conditions (41) and (42), to give
the governing equation for the pressure p̃, namely

∂

∂x

[
1

gh

(
g2

∂ p̃

∂x
− g3

∂ p̃

∂y

)]
+ ∂

∂y

[
1

gh

(
g1

∂ p̃

∂y
− g3

∂ p̃

∂x

)]

= 12d ′

d3
. (58)

Finally, we repeat this process by substituting the solutions for
the velocity (57) into the conservation of mass equation (49),
but now integrating with respect to z between z = 0 and z,
applying the no-slip condition (41), and simplifying the ex-
pression by substituting (58) to give the vertical velocity,

w = d ′

d3
(3d − 2z) z2, (59)

which is independent of the director angles and identically
zero when the upper plate is stationary. After p̃ has been
obtained from (58), the velocity components u and v can be
calculated from (57). In general, for a nonhomogeneous an-
choring pattern, the solution for p̃ from (58) must be obtained
numerically; however, as we shall see shortly, there are cases
in which the symmetry of the anchoring pattern allows for
further analytical progress.

In summary, in the scenario of patterned infinite anchor-
ing, the thin-film Ericksen-Leslie equations (50)–(54) can be
written in terms of the unknown pressure p̃ as

u = 1

2gh

(
g2

∂ p̃

∂x
− g3

∂ p̃

∂y

)
z(z − d ),

v = 1

2gh

(
g1

∂ p̃

∂y
− g3

∂ p̃

∂x

)
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

∂

∂x

[
1

gh

(
g2

∂ p̃

∂x
− g3

∂ p̃

∂y

)]
+ ∂

∂y

[
1

gh

(
g1

∂ p̃

∂y
− g3

∂ p̃

∂x

)]

= 12d ′

d3
,

θ ≡ �(x, y), φ = �(x, y). (60)

We now consider the particular cases of unidirectional
rubbed infinite anchoring with a constant pretilt and axisym-
metric patterned infinite anchoring with a constant pretilt.

1. Unidirectional rubbed infinite anchoring with a constant pretilt

For unidirectional rubbed infinite anchoring with a con-
stant pretilt, namely (19) with (20), the solution to (60) may be
obtained using a rotation of the xy coordinate system to a new
x̂ŷ coordinate system in which the projection of the preferred
director at the plates is a coordinate axis,

x̂ = 1√
hc

(cos �c x + sin �c y),

ŷ = 1√
gc

(− sin �c x + cos �c y), (61)

where hc = h(�c) and gc = g(�c). At leading order in
Er � 1, the thin-film Ericksen-Leslie equations (50)–(54) can
then be written in terms of the unknown pressure p̃ as

û = 1

2gc

∂ p̃

∂ x̂
z(z − d ),

v̂ = 1

2hc

∂ p̃

∂ ŷ
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

∂2 p̃

∂ x̂2
+ ∂2 p̃

∂ ŷ2
= 12hcgcd ′

d3
,

θ ≡ �c, φ ≡ �c. (62)

In (62), û and v̂ are the velocity components parallel and
perpendicular to the rubbing direction, respectively. Note that
û and v̂ given by (62) can be reformulated in terms of the
gradient of the pressure in the original Cartesian coordinates
as

û =
√

hc

4g2
c

(
cos �c

∂ p̃

∂x
+ sin �c

∂ p̃

∂y

)
z(z − d )

and v̂ =
√

gc

4h2
c

(
− sin �c

∂ p̃

∂x
+ cos �c

∂ p̃

∂y

)
z(z − d ). (63)

For instance, a constant pressure gradient applied in the x
direction, i.e., when G = ∂ p̃/∂x and ∂ p̃/∂y = 0, leads to a
flow given by

û =
√

hc

4g2
c

cos �c Gz(z − d )

and v̂ = −
√

gc

4h2
c

sin �c Gz(z − d ). (64)

The solutions in (64) show that the flow is driven by
the pressure gradient in the x direction but guided by the
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patterned viscosity that has been induced by the rubbed
anchoring. In particular, (64) shows that the magnitude of
the velocity component parallel to the rubbing direction
|û| is greater than the magnitude of the velocity compo-
nent perpendicular to the rubbing direction |v̂| provided
that tan �c < (hc/gc)3/2. So, for example, for unidirectional
rubbed anchoring with �c = 0 and �c = π/4, and for the
nematic 4′-pentyl-4-biphenylcarbonitrile (5CB) [65], which
has dimensional viscosity values η1 = 0.0204 Pa s and η3 =
0.0326 Pa s, and therefore nondimensional viscosity value
η1

∗ = η1/η3 = 0.626, we have tan �c = 1 and (hc/gc)3/2 =
(1/η1

∗)3/2 = 2.02, and hence |û|/|v̂| = 2.02 and the flow is
predominately in the rubbing direction.

2. Axisymmetric infinite anchoring with a constant pretilt

For axisymmetric infinite anchoring with a constant pretilt,
namely (19) with (21), we use the polar coordinate transform,

x = r cos(β − �c), y = r sin(β − �c) (65)

in (60), where r and β are the usual radial and azimuthal
coordinates, respectively, and at leading order in Er � 1 the
thin-film Ericksen-Leslie equations (50)–(54) can be written
in terms of the unknown pressure p̃ as

ur = 1

2gc hc

(
g2c

∂ p̃

∂r
+ 2g3c

1

r

∂ p̃

∂β

)
z(z − d ),

uβ = 1

2gc hc

(
g1c

1

r

∂ p̃

∂β
+ 2g3c

∂ p̃

∂r

)
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

g1c
1

r2

∂2 p̃

∂β2
+ 2g3c

1

r

∂ p̃

∂β
r + g2c

1

r

∂

∂r

(
r
∂ p̃

∂r

)

= 12hcgcd ′

d3
,

θ ≡ �c, φ = �c + β, (66)

where g1c = g1(�c,�c), g2c = g2(�c,�c), and g3c =
g3(�c,�c).

Inspection of (32) and (66) shows that in situations in
which the anchoring pattern is strictly radial or strictly az-
imuthal, i.e., when �c = 0 or �c = π/2, then g3c ≡ 0 and
there is a radial-flow solution that satisfies (66) for which
∂ p̃/∂β = 0 and hence uβ ≡ 0. In these situations, p̃ can be
obtained by direct integration of the pressure equation in
(66) subject to appropriate boundary conditions on ∂�. Con-
versely, in situations in which the anchoring pattern is not
strictly radial or strictly azimuthal, i.e., when �c 
= 0 or �c 
=
π/2, then g3c 
= 0 and no purely radial-flow solution satisfies
(66), and the flow is a spiral, guided by the axisymmetric
anchoring pattern.

B. Conical infinite anchoring

For conical infinite anchoring, which corresponds to the
anchoring conditions (22), at leading order in Er � 1, the

thin-film conservation of angular momentum equations (53)
and (54) are satisfied by the director angle solutions

θ ≡ �c and φ = φ(x, y, t ). (67)

To determine φ we must consider higher-order thin-film con-
servation of angular momentum equations [specifically, (43)
and (44) at first order in δ2]. Provided that Er � δ2 � 1, we
find that the equations yield that the twist director angle φ is
governed by Laplace’s equation, namely

∂2φ

∂x2
+ ∂2φ

∂y2
= 0, (68)

subject to appropriate boundary conditions on ∂�. Note that
unlike in the scenario of patterned anchoring, previously dis-
cussed in Sec. VIII A, in which the anchoring on the plates
fixes the director field throughout the cell, in the scenario
of conical anchoring, the director field is determined by the
anchoring on both the plates and ∂�.

At leading order in Er � 1, the thin-film Ericksen–Leslie
equations (50)–(54) can therefore be written in terms of the
unknown pressure p̃ and twist angle φ as

u = 1

2hcgc

(
g2

∂ p̃

∂x
− g3

∂ p̃

∂y

)
z(z − d ),

v = 1

2hcgc

(
g1

∂ p̃

∂y
− g3

∂ p̃

∂x

)
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

∂

∂x

(
g2

∂ p̃

∂x
− g3

∂ p̃

∂y

)
+ ∂

∂y

(
g1

∂ p̃

∂y
− g3

∂ p̃

∂x

)

= 12hcgcd ′

d3
,

θ ≡ �c,
∂2φ

∂x2
+ ∂2φ

∂y2
= 0. (69)

We now consider the particular cases of homeotropic infinite
anchoring and planar degenerate infinite anchoring.

1. Homeotropic infinite anchoring

For homeotropic infinite anchoring, which corresponds to
the anchoring conditions (19) with � = π/2, at leading order
in Er � 1 the thin-film Ericksen-Leslie equations (50)–(54)
can be written in terms of the unknown pressure p̃ as

u = 1

2η2

∂ p̃

∂x
z(z − d ),

v = 1

2η2

∂ p̃

∂y
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

∂2 p̃

∂x2
+ ∂2 p̃

∂y2
= 12η2d ′

d3
, θ ≡ π

2
, (70)

and we note that with θ ≡ π/2 the twist director angle φ is
not defined. In this situation, the director is therefore fixed
perpendicular to the xy plane, i.e., n = ẑ, throughout the cell (a
situation sometimes called uniform homeotropic orientation).
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TABLE II. A summary of the thin-film Ericksen-Leslie equations (50)–(54) in the limit of small Ericksen number (Er � 1) in terms of the
unknown pressure p̃ (and the unknown twist angle φ in the scenario of conical infinite anchoring). Expressions for the tilt director angle θ , the
twist director angle φ, the pressure p̃, and the velocities u, v, and w are stated. The transformed coordinates x̂, ŷ, r, and β are defined by (61)
and (65).

Small Ericksen number Er � 1

Patterned infinite anchoring (Sec. VIII A) Conical infinite anchoring (Sec. VIII B)

General Rubbed Axisymmetric General Homeotropic Planar degenerate

θ �(x, y) �c
π

2
0

φ �(x, y) �c �c + β
∂2φ

∂x2
+ ∂2φ

∂y2
= 0 undefined

∂2φ

∂x2
+ ∂2φ

∂y2
= 0

p̃ (58)
∂2 p̃

∂ x̂2
+ ∂2 p̃

∂ ŷ2
= 12hcgcd ′

d3
(66) (69)

∂2 p̃

∂x2
+ ∂2 p̃

∂y2
= 12η2d ′

d3
(71)

u (57) û = 1

2gc

∂ p̃

∂ x̂
z(z − d ) (66) (69) u = 1

2η2

∂ p̃

∂x
(z − d ) z (71)

v (57) v̂ = 1

2hc

∂ p̃

∂ ŷ
z(z − d ) (66) (69) v = 1

2η2

∂ p̃

∂y
(z − d ) z (71)

w
d ′

d3
(3d − 2z)z2

The governing equation for the pressure, given in (70), takes
the same form as for isotropic Hele-Shaw flow, and therefore
the flow of a nematic with homeotropic infinite anchoring
is identical to that of the flow of an isotropic fluid with
viscosity η2.

2. Planar degenerate infinite anchoring

For the degenerate form of conical infinite anchoring called
planar degenerate infinite anchoring, which corresponds to
the anchoring conditions (22) with �c = 0, the thin-film
Ericksen-Leslie equations (50)–(54) can be written in terms
of the unknown pressure p̃ as

u = 1

2η1

(
b2

∂ p̃

∂x
− b3

∂ p̃

∂y

)
z(z − d ),

v = 1

2η1

(
b1

∂ p̃

∂y
− b3

∂ p̃

∂x

)
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

∂

∂x

(
b2

∂ p̃

∂x
− b3

∂ p̃

∂y

)
+ ∂

∂y

(
b1

∂ p̃

∂y
−b3

∂ p̃

∂x

)
= 12η1d ′

d3
,

θ ≡ 0,
∂2φ

∂x2
+ ∂2φ

∂y2
= 0, (71)

where b1(φ) = g1(0, φ) = η1 cos2 φ + sin2 φ, b2(φ) =
g2(0, φ) = η1 sin2 φ + cos2 φ, and b3(φ) = g3(0, φ) =
η1 sin φ cos φ − sin φ cos φ. In general, the solution of this set
of equations is found by first solving the Laplace equation for
φ subject to a boundary condition on ∂�, then substituting the
solution for φ into the differential equation for p̃ and solving
for p̃ subject to an appropriate boundary condition on ∂�.

Table II summarizes the scenarios we have considered in
the limit of small Ericksen number (Er � 1).

IX. THE LIMIT OF LARGE ERICKSEN NUMBER (Er � 1)

In the limit of large Ericksen number (Er � 1), viscous
effects are much stronger than elasticity effects and there
are two distinct cases to consider, namely when the nematic
is a flow-aligning nematic or a non-flow-aligning nematic.
These two cases, which we consider in Secs. IX A and IX B,
respectively, arise at leading order in Er � 1 from the thin-
film angular momentum equations (53) and (54), which are
satisfied by either

m(θ ) = 0 and sin φ
∂u

∂z
− cos φ

∂v

∂z
= 0 (72)

or

q(θ ) = 0 and cos φ
∂u

∂z
+ sin φ

∂v

∂z
= 0. (73)

From the definitions of m(θ ) and q(θ ) in (47) it is clear
that, for general values of the viscosity parameters γ1 and γ2,
solutions satisfying (72) or (73) are mutually exclusive. Also,
we see from the definition of m(θ ) in (47) that a solution
satisfying (72) is only possible when −γ2 > γ1. A material
that obeys this condition is known as a flow-aligning nematic
[16]. When a solution satisfying (72) is not possible, i.e.,
when γ1 > −γ2, the nematic material is known as a non-flow-
aligning nematic or a tumbling nematic [16], and so a solution
satisfying (73) is then required. We note that solutions to
(72) or (73) do not satisfy the anchoring conditions discussed
in Sec. IV, the anchoring being broken by the flow effects;
however, these leading order in Er � 1 equations provide
the leading-order solutions away from the boundaries of the
region and the boundary conditions will be satisfied via ap-
propriate boundary layers [39,50], as discussed in the next
section.

A. Flow-aligning nematics

For a flow-aligning nematic, the definition of m(θ ) given in
(47) yields the well-known flow-alignment solution, θ ≡ ±θL,

034702-11



COUSINS, MOTTRAM, AND WILSON PHYSICAL REVIEW E 110, 034702 (2024)

where

θL = 1

2
cos−1

(
−γ1

γ2

)
(74)

is the Leslie or flow-alignment angle [16]. A stability anal-
ysis of the full system (27)–(29), (43), and (44) previously
showed that in regions of positive or negative shear rate the
director angle prefers to align at the positive Leslie angle θL

or the negative Leslie angle −θL, respectively, [16]. As also
previously demonstrated [38,39,50], this solution is an outer
solution (i.e., a solution in the bulk of the cell away from
the plates and away from any internal location of director
reorientation) and the solution for θ has boundary layers of
thickness O(Er−1/2) � 1 near to the plates, in which the di-
rector adjusts to satisfy the anchoring conditions at the plates,
and an internal layer of thickness O(Er−1/3) � 1 near the
center of the cell, which separates the regions of positive and
negative shear rate and positive Leslie angle θL and negative
Leslie angle −θL, respectively. In the present work, we use
this outer solution and assume that the internal layer (and
therefore the change in the sign of shear rate) is located at
z = d/2. Hence, at leading-order in Er � 1, the solution for
θ is given by

θ =
{

+θL when 0 � z � d/2,

−θL when d/2 < z � d.
(75)

The solution for φ satisfies the second equation of (72).
Therefore, using the approach detailed in Sec. VIII A, at
leading order in Er � 1, the thin-film Ericksen-Leslie equa-
tions (50)–(54) can now be written in terms of the unknown
pressure p̃ as

u = 1

2ηL

∂ p̃

∂x
z(z − d ),

v = 1

2ηL

∂ p̃

∂y
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

∂2 p̃

∂x2
+ ∂2 p̃

∂y2
= 12ηLd ′

d3
,

θ = ±θL, tan φ = v

u
, (76)

where ηL = g(θL) = g(−θL) is the local effective viscosity of
a flow-aligned nematic, which can be defined in terms of the
Miesowicz viscosities as

ηL = η1

2

(
1− γ1

γ2

)
+ η2

2

(
1 + γ1

γ2

)
+ η12

4

(
1 − γ1

γ2

)(
1+ γ1

γ2

)
.

(77)

Therefore, we find that, at leading order in Er � 1, the flow of
a flow-aligning nematic is identical to the flow of an isotropic
fluid with effective viscosity ηL, with the behavior of the
director determined by the behavior of the flow; that is, the
director lies in the plane that contains the flow direction and
the direction of maximum shear stress, and aligns at the Leslie
angle from the flow direction.

TABLE III. A summary of the thin-film Ericksen-Leslie equa-
tions (50)–(54) in the limit of large Ericksen number in terms of
the unknown pressure p̃. Expressions for the tilt director angle θ ,
twist director angle φ, the equation governing the pressure p̃, and the
velocities u, v, and w are stated.

Large Ericksen number Er � 1

Flow-aligning nematic
(Sec. IX A)

Non-flow-aligning
nematic (Sec. IX B)

θ ±θL 0

φ tan−1
(v

u

)
tan−1

(
−u

v

)

p̃
∂2 p̃

∂x2
+ ∂2 p̃

∂y2
= 12ηLd ′

d3

∂2 p̃

∂x2
+ ∂2 p̃

∂y2
= 12d ′

d3

u
1

2ηL

∂ p̃

∂x
(z − d ) z

1

2

∂ p̃

∂x
(z − d ) z

v
1

2ηL

∂ p̃

∂y
(z − d ) z

1

2

∂ p̃

∂y
(z − d ) z

w
d ′

d3
(3d − 2z)z2

B. Non-flow-aligning nematics

For a non-flow-aligning nematic, the two solutions to (73)
are

tan φ = −u

v
with θ = 0 or θ = π

2
. (78)

Of these two possibilities, the stable solution is θ = 0 with
tan φ = −u/v, known as the log-rolling solution [16], which
has been studied in detail theoretically by Alonso et al. [66]
and experimentally by Romo-Uribe and Windle [67]. There-
fore, at leading order in Er � 1, the thin-film Ericksen-Leslie
equations (50)–(54) can be written in terms of the unknown
pressure p̃ as

u = 1

2

∂ p̃

∂x
z(z − d ),

v = 1

2

∂ p̃

∂y
z(z − d ),

w = d ′

d3
(3d − 2z) z2,

∂2 p̃

∂x2
+ ∂2 p̃

∂y2
= 12d ′

d3
,

θ = 0, tan φ = −u

v
, (79)

and we find that, at leading order in Er � 1, the flow of
a non-flow-aligning nematic is identical to the flow of an
isotropic fluid with unit effective viscosity, which corresponds
to a dimensional viscosity η3, with the behavior of the direc-
tor determined by the behavior of the flow; that is, it aligns
perpendicular to both the flow direction and the direction of
maximum shear stress.

Table III summarizes the scenarios we have considered in
the limit of large Ericksen number (Er � 1).
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FIG. 2. A Hele-Shaw cell showing a perspective view of a region
of nematic � with free surface ∂� with outward unit normal ν de-
fined by two overlapping cylindrical droplets (in light blue) bounded
between solid parallel plates at z = 0 and z = d . The Cartesian
coordinates x, y, and z, the tilt director angle θ , the twist director
angle φ, the equal cylindrical radii R, the fixed half separation of
the cylindrical droplets L, the fixed axes of the cylindrical droplets
(−L, 0, z) and (L, 0, z), and the fixed axis on which the center of
mass lies (0, 0, z) are also shown.

X. APPLICATION TO THE ONE-DROP-FILLING METHOD

As an example of the insight that can be gained by using the
present theoretical approach, we calculate the flow that occurs
during the squeezing of two coalescing nematic regions sand-
wiched between two parallel plates, as depicted in Fig. 2. This
situation is a simple model for the squeezing stage of the ODF
method, as discussed in Sec. I, in which regions of nematic
are forcibly coalesced as an upper plate, located at d (t ), is
moved towards a fixed lower plate, located at z = 0, In the
present situation we assume that the decreasing gap between
the plates is given, in dimensional form, by

d = d0 − spt for 0 � t � tf , (80)

where d0 is the initial thickness of the cell, sp is the speed
at which the upper plate moves toward the lower plate, and
tf = (d0 − df )/sp is the time at which the required final thick-
ness of the cell df is achieved.

In the model presented in this section, we neglect any tran-
sient initial inertial effects at the start of the squeezing process
and consider the two limiting cases of small and large Erick-
sen numbers. We also assume that the quasistatic evolution
of the free surface ∂� = ∂�(t ) is prescribed using the solu-
tion of a conservation-of-volume model of two overlapping
cylindrical nematic droplets � = �(t ). The model therefore
neglects any effects that surface tension, elasticity, anchoring,
and contact line dynamics might have on the evolution of the
free surface. Specifically, we assume that the nematic region is
the union of two cylindrical regions of nematic, having equal
radii R = R(t ) and fixed axes (−L, 0, z) and (L, 0, z), with
a combined constant volume V , and outward unit normal ν =
ν(x, y, t ), as shown in Fig. 2. The center of mass of the nematic
region lies on the fixed axis (0, 0, z), and there are cusps in the

free surface formed where the overlapping cylinders meet at
(0,−c, z) and (0, c, z), where c =

√
R(t )2 − L2. The volume

of the nematic region is then given by

V

d
=

[
π − cos−1

(
L

R

)]
R2 + L

√
R(t )2 − L2, (81)

and, due to the conservation of volume, the evolution of the
radius R, which determines the shape of the free surface ∂�

is given implicitly by (81) [48]. The boundary condition for u
and v on ∂� is then given by the kinematic condition

u · ν = R′ on ∂�, (82)

where R′ = dR/dt is the speed at which the free surface ex-
pands, which may be obtained via implicit differentiation of
(81) with respect to t .

Free surfaces formed between a nematic and air (or vac-
uum) have been found to exhibit a variety of types of
anchoring [51]. However, since homeotropic anchoring is the
most commonly reported anchoring at free surfaces [51,53],
and because this type of anchoring at a free surface is exhib-
ited by a key component of modern nematic mixtures used
in the ODF method, namely 4′-pentyl-4-biphenylcarbonitrile
(5CB) [65], we take the anchoring condition on ∂� to be
homeotropic infinite anchoring, such that

ν · n = 1 on ∂�. (83)

The anchoring conditions on the plates are assumed to
be planar degenerate infinite anchoring (as discussed in
Sec. VIII B 2). Note that, in the limit of large Ericksen number,
which we will discuss shortly, the behavior of the director
field is determined by the behavior of the flow in the bulk of
the nematic region, and the anchoring conditions on the free
surface and plates are not required.

An alternative approach to specifying the boundary condi-
tions at the free surface ∂� could be to consider the balances
of stress and torque as well as the kinematic condition on
∂�. For example, considering the balance of normal stress
on an isotropic free surface leads to the well-known isotropic
Young-Laplace equation, which allows the effect of surface
tension to influence the shape of the free surface [68,69]. The
boundary conditions on a nematic free surface can be consid-
erably more complex than in the isotropic case and involve
the combined effects of surface tension, elasticity, anchoring,
and contact line dynamics [58,70]. However, Cousins et al.
[47] previously used the relatively simple model described
above to make qualitative comparisons between theoretical
predictions for the speed at which the free surface expands and
experimental photographs of ODF mura, demonstrating that
the timescale of coalescence due to surface tension effects is
much longer than the timescale of the ODF squeezing process.
This previous work did not calculate the flow or director field
within the nematic region but, as we shall see shortly, this
simple model of the free surface also leads to solutions for
the director field that compare well to experimental results.

Before considering the limits of small and large Ericksen
numbers, we introduce the appropriate nondimensionalization
for the flow of nematic during the squeezing stage of the ODF
method. In particular, we take the characteristic length scale
in the z direction to be the initial separation of the plates
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TABLE IV. Typical parameter values for the ODF method,
specifically the initial thickness of the cell, d0, the volume of the
region consisting of two overlapping cylindrical nematic regions, V ,
the speed at which the upper plate moves downward towards the
lower plate, sp, the initial radius of each droplet, R0, and the final
thickness of the cell, df [47,48].

Parameter

d0 V sp R0 df

Typical value 74.0 µm 4.5 µl 1.0 mm s−1 4.4 mm 5.0 µm

D = d0, the characteristic length scale in the xy plane to be
half the separation of the droplets, which is also the initial
radius of the cylindrical regions, L = L = R0 = √

V/(πd0),
and the characteristic velocity scale to be the velocity scale
for a flow driven by squeezing a circular cylindrical volume V
of nematic between parallel plates U = S

√
V/(4πD3), where

the characteristic plate speed S is given by (80) as S = sp.
The aspect ratio δ, the Ericksen number Er, and the reduced
Reynolds δRe can then be written in terms of d0, sp, V and the
nematic material parameters, namely

δ =
√

πd3
0

V
, Er = μsp

K

√
V

4πd0
, and δRe = ρspd0

2μ
.

(84)

Using the typical parameter values for the ODF method listed
in Table IV and the parameters values of the nematic 5CB,
namely μ = η3 = 0.0326 Pa s−1 and K = 6.1 pN [71], with
(84) yields δ = 0.017, Er = 2.2 × 103, and δRe = 0.017.
These values are consistent with those for the ODF method
listed in Table I, as well as with the assumptions δ � 1,
δRe � 1 and Er � 1, and therefore the limit of large Erick-
sen number is likely to be the most appropriate. However,
for completeness and to compare the two different limiting
behaviors, we will also consider the behavior in the limit of
small Ericksen number.

In order to allow comparison between our theoreti-
cal predictions and experimental results, we calculate an
approximation to the (relative) optical transmission, denoted
T = T (x, y), through the droplets between crossed polarizers
aligned with the x axis and the y axis, which is measured
relative to the transmission of light when the component of
the director n in the xy plane is aligned with one of the
polarizers [72]. Since the director is either independent of z
in the small Ericksen number limit (see Table II) or piecewise
constant in the z direction in the high Ericksen number limit
(see Table III), a simple approximation of the transmission
is possible, and the relative optical transmission is given by
T = sin2 2φ [72]. With this measure of transmission, 100%
optical transmission occurs when the twist angle φ is π/4
or 3π/4, i.e., when the component of n in the xy plane is
π/4 from both polarizers, and 0% optical transmission occurs
when the twist angle is 0 or π/2, i.e., when the component of
n in the xy plane is aligned with one of the polarizers.

A. The limit of small Ericksen number

In the limit of small Ericksen number (Er � 1), and with
planar degenerate anchoring on the plates, the appropriate
equations are provided in the final column of Table II. We
proceed by first solving Laplace’s equation for the twist angle
φ given by (71) subject to the anchoring condition (83), and
then solving the equation for the pressure p̃ given by (71)
subject to the kinematic condition (82). We note that (68) and
(83) can be solved analytically using a conformal mapping
from two intersecting circles to the half-plane; however, this
approach leads to integrals that must be evaluated numerically,
and so there is little advantage of pursuing this approach
over a purely numerical approach. We therefore use COMSOL

Multiphysics [73] to numerically solve (68) and (83) for the
twist director angle φ, and subsequently numerically solve
Eq. (71) for the pressure p̃. Once the solutions for φ and p̃
are determined, the expressions for u and v in (71) determine
the velocity. From (71) we see that a nonuniform solution
for the director field will lead to an anisotropic patterned
viscosity via the effective viscosity functions b1, b2, and b3,
which themselves depend on the nondimensional viscosity η1

(equal to the ratio of dimensional viscosities η1/η3). The flow
is driven by the squeezing together of the plates but guided by
the patterned viscosity. Note that, in the special case that the
dimensional viscosities η1 and η3 are equal, the director does
not affect the flow.

Figure 3 shows the numerically calculated solutions for
pressure p̃ and the director field n [the top row, (a)–(c)], as
well as the speed |u| and streamlines [the middle row, (d)–(f)],
and the optical transmission [the bottom row, (g)–(i)] at lead-
ing order in the limit of small Ericksen number (Er � 1) for
the parameters listed in Table IV at three different times: the
first column, (a), (d), and (g), for t = 0.02 s when d = 54 µm
and R′ = 0.05 m s−1; the second column, (b), (e), and (h), for
t = 0.04 s when d = 34 µm and R′ = 0.12 m s−1; and the
third column, (c), (f), and (i), for t = 0.06 s when d = 14 µm
and R′ = 0.49 m s−1. Note that, since the director field is
fixed by the infinite anchoring on the free surface, there is
a discontinuity in the director field at the cusp located at
(0,−c). The symmetry of the system means that there is
another solution with a defect at the cusp at (0, c), which is
a reflection of the solution in Fig. 3 in the line through the
centers of the cylinders. There are also higher energy solutions
that satisfy (68) and (83), including a solution with defects at
both cusps, but these solutions are unlikely to occur in practice
due to their higher energy. Asymmetry in the director field
solution leads to asymmetry in the effective viscosity, and then
to asymmetry in the pressure p̃ and the velocity, shown by
the streamlines in Figs. 3(d)–3(f). Figures 3(g)–3(i) show the
optical transmission T in the limit of small Er and provides
a visualization of the director field that can be readily be
compared to the optical transmission observed in experiments.

B. The limit of large Ericksen number

For the limit of large Ericksen number (Er � 1), which
is probably more appropriate to the ODF method than the
limit of small Ericksen number discussed in Sec. X A, we
consider flow-aligning nematics [50], again the most relevant
choice for the materials used in the ODF method. In this
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FIG. 3. Top row (a)–(c): the pressure p̃ (colored background) and the director field n (black rods); middle row (d)–(f): flow speed |u|
(colored background) and streamlines (solid black lines); bottom row (g)–(i): the optical transmission T (greyscale), in the limit of small
Ericksen number (Er � 1) for two coalescing droplets at t = 0.02 s when d = 54 µm and R′ = 0.05 m s−1 [first column, (a), (d), and (g)];
t = 0.04 s when d = 34 µm and R′ = 0.12 m s−1 [second column, (b), (e), and (h)]; and t = 0.06 s when d = 14 µm and R′ = 0.49 m s−1

[third column, (c), (f), and (i)].

case, at leading order the director is determined by the flow,
and hence the anchoring conditions on both the free surface
and the plates are not satisfied, the anchoring being broken
by the flow effects. Specifically, the torque on the director
at the free surface and the plates due to anchoring forces is
overcome by the torque due to flow effects, and the resulting
director orientation is determined entirely by the flow. This
phenomenon is a flow-induced type of anchoring breaking
that has been discussed in the context of channel flow by
Cousins et al. [50].

The solution in the limit of large Ericksen number for
a flow-aligning nematic can be obtained from the equa-
tions given in the first column of Table III, with the solution
to Poisson’s equation for the pressure, which is given in (76),
subject to the kinematic condition (82) also providing the so-
lutions for the velocities and twist director angle. Similarly to
Sec. X A, we note that (76) and (82) can be solved analytically
using a conformal mapping (see [68,69] for more details);
however, this approach again leads to integrals that must be

evaluated numerically, and so again there is little advantage of
pursuing this approach over a purely numerical approach. We
therefore again use COMSOL Multiphysics [73] to numerically
solve the Poisson equation for the pressure in (76).

Figure 4 shows the numerically calculated solutions for
pressure p̃ and the director field n [the top row, (a)–(c)], as
well as the speed |u| and streamlines [the middle row, (d)–(f)],
and the optical transmission T [the bottom row, (g)–(i)] at
leading order in the limit of large Ericksen number (Er � 1)
for the parameters listed in Table IV at three different times:
the first column, (a), (d), and (g), for t = 0.02 s when d =
54 µm and R′ = 0.05 m s−1; the second column, (b), (e), and
(h), for t = 0.04 s when d = 34 µm and R′ = 0.12 m s−1;
and the third column, (c), (f), and (i), for t = 0.06 s when
d = 14 µm and R′ = 0.49 m s−1. The pressure p̃ shown in
Figs. 4(a)–4(c) initially attains a local maximum at the center
of each droplet, and as t increases, and hence as d decreases,
the maximum in the pressure moves towards the center of the
two coalescing droplets. Figures 4(d)–4(f) show that at t =

034702-15



COUSINS, MOTTRAM, AND WILSON PHYSICAL REVIEW E 110, 034702 (2024)

FIG. 4. Top row (a)–(c): the pressure p̃ (coloured background) and the director field n (black rods); middle row (d)–(f): flow speed |u|
(coloured background) and streamlines (solid black lines); bottom row (g)–(i): the optical transmission T (greyscale), in the limit of large
Ericksen number (Er � 1) for two coalescing droplets at t = 0.02 s when d = 54 µm and R′ = 0.05 m s−1 [first column, (a), (d), and (g)];
t = 0.04 s when d = 34 µm and R′ = 0.12 m s−1 [second column, (b), (e), and (h)]; and t = 0.06 s when d = 14 µm and R′ = 0.49 m s−1

[third column, (c), (f), and (i)].

0.02 s the streamlines form two radial distributions with the
streamline origins located at the maxima in the pressure, and
as t increases and the two maxima in the pressure approach the
center of the coalescing droplets, the streamlines approach a
single radial distribution with the streamline origins located at
the center of the coalescing droplets. As expected, the director
field n shown in Figs. 4(a)–4(c) is determined by the flow and
hence aligns with the streamlines shown in Figs. 4(d)–4(f).
Finally, Figs. 4(g)–4(i) show the optical transmission T in
which a +1 defect is positioned at the center of each of the
two coalescing droplets and a −1 defect is positioned at the
center of the two coalescing droplets [19]. As t increases, and
hence as d decreases, the defects move towards the center
of the two coalescing droplets and merge. Again, the optical
transmission shown in Figs. 4(g)–4(i) provides a visualization
of the director field that can be readily compared to the optical
transmission observed in experiments.

XI. CONCLUSIONS

In the present work, we considered the flow of a nematic in
a standard Hele-Shaw cell that consists of two parallel plates,
one of which may move in the direction perpendicular to the
plates, separated by a narrow gap which is partially or wholly
filled with the nematic.

In Secs. II to VII, we derived the thin-film Ericksen-Leslie
equations that govern the flow and director within a nematic
Hele-Shaw cell. The thin-film Ericksen Leslie equations are
given by the conservation of mass equation (49), the con-
servation of linear momentum equations (50) and (51), and
the conservation of angular momentum equations (53) and
(54) subject to the no-slip and no-penetration conditions on
the plates (41) and (42) and we chose two general anchoring
conditions described in Sec. IV that are relevant to a variety
of situations. These governing equations may, in principle,
be generalized to include conservative body forces and other
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FIG. 5. Experimental photographs of the optical transmission of light through a two-droplet ODF test setup between crossed polarizers by
Merck KGaA using an unknown nematic material or nematic mixture (with polarizer direction indicated by the green arrows). Left to right
shows the increase of time. Regions of white show complete optical transmission through the droplets and regions of black show no optical
transmission. (Photographs provided by Merck KGaA.)

choices of boundary conditions on the plates and/or the free
surface ∂�.

In Secs. VIII and IX, we solved the thin-film Ericksen-
Leslie equations in the limits of small and large Ericksen
numbers. In the limit of small Ericksen number, the anchoring
pattern on the plates determines the director field through-
out the cell, and therefore the director field is fixed. The
fixed director field produces an anisotropic patterned viscos-
ity. In particular, in the cases of unidirectional rubbed infinite
anchoring with a constant pretilt and axisymmetric infinite
anchoring with a constant pretilt, the flow is guided along the
rubbing direction and guided by the axisymmetric anchoring
pattern leading to a spiral flow, respectively. Mi and Yang [15]
and Sengupta [36] experimentally observed a reduction in the
velocity of a nematic capillary flow when the flow was per-
pendicular to the rubbing direction compared to when the flow
was parallel to the rubbing direction. Analogous behavior has
also been observed in spreading nematic droplets on rubbed
surfaces, both experimentally by Tortora and Lavrentovich
[74] and in molecular dynamics simulations by Vanzo et al.
[75], where elongation of the droplet free surface is guided
by the rubbing direction, which leads to ellipsoidal nematic
droplets known as tactoids. In the limit of large Ericksen num-
ber, there are two cases, either the nematic is a flow-aligning
nematic or the nematic is a non-flow-aligning nematic. In both
of these cases, the flow is identical to the flow of an isotropic
fluid, and the behavior of the director is determined by the
flow. Summaries of the thin-film Ericksen-Leslie equations in
the limits of small and large Ericksen numbers are given in
Tables II and III, respectively.

Finally, in Sec. X, we applied the results of the limits of
small and large Ericksen numbers to a simple model for the
squeezing stage of the ODF method. The optical transmis-
sion calculated in these limits, shown in Figs. 3(g)–3(i) and
4(g)–4(i), respectively, provides a clear visualization of the

director field which can be compared to the optical trans-
mission observed in experiments. The optical transmission
of light measured through a two-droplet ODF test setup by
Merck KGaA using an unknown nematic material or ne-
matic mixture is shown in Fig. 5. Visual comparison of the
experimental photographs and the results of the present theo-
retical model in the limit of large Ericksen number shown in
Figs. 4(g)–4(i) show a striking resemblance, suggesting that
the present theoretical model may provide a useful description
of the ODF method. We also note that it is clear from the
experimental photographs shown in Fig. 5 that the droplets
remain approximately cylindrical, justifying our modeling as-
sumption that surface tension effects can be neglected.

We anticipate that many other nematic systems, includ-
ing experiments on nematic viscous fingering and nematic
microfluidics, can also be analyzed using the thin-film
Ericksen-Leslie equations derived in the present work, thus
providing computationally cheaper models (which in some
special cases allow for analytical solutions) than fully nu-
merical alternatives, for studying flow in nematic Hele-Shaw
cells.
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APPENDIX A: NEMATIC VISCOUS DISSIPATION

The standard nematic viscous dissipation D [16], given by (11), is obtained using the velocity and director in the form of (1)
and (3), respectively, with the definitions of the corotational time flux of the director N and the rate of strain tensor A mentioned
in the text. The components are summarized here:

(n · A n)2 = [cos2 φ cos2 θ ux + cos2 θ cos φ sin φ(uy + vx ) + cos2 θ sin2 φ vy + cos φ cos θ sin θ (uz + wx )

+ cos θ sin φ sin θ (vz + wy) + sin2 θ wz]
2, (A1)

N · A n = 1
4 [−2 cos φ cos θux(2 cos θφ̇ sin φ + 2 cos φ θ̇ sin θ + cos θ sin φuy + sin θuz − cos θ sin φvx − sin θwx )

− cos θ sin φ(uy + vx )(2 cos θφ̇ sin φ + 2 cos φ θ̇ sin θ + cos θ sin φuy + sin θuz − cos θ sin φvx − sin θwx )

− sin θ (uz + wx )(2 cos θφ̇ sin φ + 2 cos φ θ̇ sin θ + cos θ sin φuy + sin θuz − cos θ sin φvx − sin θwx )

+ cos2 θ (cos φ(uz + wx ) + sin φ(vz + wy))(2θ̇ + cos φuz + sin φvz − cos φwx − sin φwy)

− sin θ (vz + wy)(−2 cos φ cos θφ̇ + 2θ̇ sin φ sin θ − cos φ cos θuy + cos φ cos θvx + sin θvz − sin θwy)

+ cos φ cos θ (uy + vx )(2 cos φ cos θφ̇ − 2θ̇ sin φ sin θ + cos φ cos θuy − cos φ cos θvx − sin θvz + sin θwy)

+ 2 cos θ sin φvy(2 cos φ cos θφ̇ − 2θ̇ sin φ sin θ + cos φ cos θuy − cos φ cos θvx − sin θvz + sin θwy)

+ 2 cos θ sin θ (2θ̇ + cos φuz + sin φvz − cos φwx − sin φwy)wz], (A2)

tr(A2) = 1
2

[
2u2

x + (uy + vx )2 + 2v2
y + (uz + wx )2 + (vz + wy)2 + 2w2

z

]
, (A3)

(A n)2 = 1
4

[
4 cos2 φ cos2 θ u2

x + 4 cos2 θ cos φ sin φ ux(uy + vx ) + cos2 φ cos2 θ (uy + vx )2

+ cos2 θ sin2 φ(uy + vx )2 + 4 cos2 θ cos φ sin φ(uy + vx )vy + 4 cos2 θ sin2 φ v2
y

+ 4 cos φ cos θ sin θ ux(uz + wx ) + 2 cos θ sin φ sin θ (uy + vx )(uz + wx )

+ cos2 φ cos2 θ (uz + wx )2 + sin2 θ (uz + wx )2 + 2 cos φ cos θ sin θ (uy + vx )(vz + wy)

+ 4 cos θ sin φ sin θvy(vz + wy) + 2 cos2 θ cos φ sin φ(uz + wx )(vz + wy) + cos2 θ sin2 φ(vz + wy)2

+ sin2 θ (vz + wy)2 + 4 cos φ cos θ sin θ (uz + wx )wz

+ 4 cos θ sin φ sin θ (vz + wy)wz + 4 sin2 θw2
z

]
, (A4)

N2 = 1
4

[
(2 cos θ φ̇ sin φ + 2 cos φ θ̇ sin θ + cos θ sin φ uy + sin θ uz − cos θ sin φ vx − sin θ wx )2

+ cos2 θ (2θ̇ + cos φ uz + sin φ vz − cos φ wx − sin φ wy)2

+ (2 cos φ cos θ φ̇ − 2θ̇ sin φ sin θ + cos φ cos θ uy − cos φ cos θ vx − sin θ vz + sin θ wy)2
]
, (A5)

where partial derivatives are denoted with subscripts, so that, for example, ux = ∂u/∂x.

APPENDIX B: TYPICAL PARAMETER VALUES

The values of the timescales τ1, τ2, and τ3 and nondimen-
sional numbers δ, Re, and Er in Table I are calculated from
(38), (39), (46), (25), (40), and (45), respectively, with the
typical parameter values stated below.

Analysis of the ODF method was carried out by Cousins
et al. [49] for a range of present and possible future
length scales, depths and upper plate speeds given by L =
50 µm–5 mm, depths D = 50 µm–0.5 µm, and plate speeds
2 µm s−1–1 mm s−1 (which yields a velocity scale in the range
U = 0.0002 –0.1 m s−1), respectively. Typical values for the
nematic isotropic viscosity μ = 0.01 Pa s, one-constant elas-
tic constant K = 10 pN, and density ρ = 1000 kg m−3 are
also used.

Capillary-filling experiments were carried out by Mi
and Yang [15] for the nematic 5CB in rectangular chan-
nels of length L = 0.1 m, depth D = 10 µm, with front
propagation speed of U = 0.01 cm s−1 for the nematic
5CB [15].

Air-nematic viscous fingering experiments were carried
out by Sonin and Bartolino [21] for the nematic 5CB by lifting
the upper plate of a Hele-Shaw cell of length L = 0.1 mm,
depth D = 3.5 µm, upward plate speed 280 µm s−1 (which
yields a velocity scale of U = 8 mm s−1).

Microfluidic experiments in channels containing a mi-
cropillar were carried out by Sengupta et al. [34] for the
nematic 5CB in channels of length L = 20 mm, with a
range of depths D = 8–50 µm and flow velocities U = 200–
670 µm s−1.
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