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Exact counterdiabatic driving in finite topological lattice models
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Adiabatic protocols are often employed in state preparation schemes but require the system to be driven by a
slowly varying Hamiltonian so that transitions between instantaneous eigenstates are exponentially suppressed.
Counterdiabatic driving is a technique to speed up adiabatic protocols by including additional terms calculated
from the instantaneous eigenstates that counter diabatic excitations. However, this approach requires knowledge
of the full eigenspectrum meaning that the exact analytical form of counterdiabatic driving is only known for
a subset of problems, e.g., the harmonic oscillator and transverse field Ising model. We extend this subset of
problems to include the general family of one-dimensional noninteracting lattice models with open boundary
conditions and arbitrary onsite potential, tunneling terms, and lattice size. We will derive a general analytical
form for the counterdiabatic term for all states of lattice models, including bound and in-gap states which appear,
e.g., in topological insulators. We also derive the general analytical form of targeted counterdiabatic driving terms
which are tailored to enforce the dynamical state to remain in a specific state. As an example of the use of the
derived analytical forms, we consider state transfer using the topological edge states of the Su-Schrieffer-Heeger
model. The derived analytical counterdiabatic driving Hamiltonian can be utilized to inform control protocols in
many-body lattice models or to probe the nonequilibrium properties of lattice models.

DOI: 10.1103/PhysRevB.109.245421

I. INTRODUCTION

The adiabatic approximation is utilized to enable a variety
of aspects of quantum science. This includes state prepa-
ration, the paradigm of adiabatic quantum computing [1,2],
and coherent quantum annealing [3,4]. It states that if we
initiate a system in an eigenstate of its Hamiltonian, then the
dynamical solution to the Schrödinger equation as we change
a parameter in said Hamiltonian, will approximately remain
in the corresponding instantaneous eigenstate up to a phase
factor [5,6]. This approximation relies upon the parameter
changing slowly, as it is natural in such a scenario to de-
scribe the dynamical state entirely in the adiabatic basis of
the instantaneous eigenstates of the changing Hamiltonian.
If the state remains nondegenerate and the gap between it
and all other states is large with respect to the inverse of the
time taken to traverse the energy landscape, then the adiabatic
approximation is valid [7]. This makes the adiabatic approx-
imation difficult to realize if the parameter change includes
the crossing of a phase transition or, as we will see below,
the closing of a band gap. In any finite time protocol, there
will always be a nonzero probability of transitioning to other
states, and this is exasperated in most experimental settings
due to the limited time allocated to an adiabatic protocol
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as well as losses, heating, noise, and dissipation. Therefore,
speeding up adiabatic protocols, or finding alternative state
preparation schemes, is crucial.

There are many approaches to the particular problem of
speeding up an adiabatic protocol, including numerical op-
timal control [8,9] and shortcuts to adiabaticity [10,11]. In
this work, we will extend the analytical approach of coun-
terdiabatic driving (CD) to include the general family of
Hamiltonians of noninteracting particles in one-dimensional
(1D) lattices. CD was first introduced by Demirplak and Rice
[12,13] in quantum chemistry before being independently
introduced as transitionless driving by Berry [14]. CD adds
control terms to the dynamical Hamiltonian such that the
adiabatic approximation is enforced as the solution of the
dynamical Schrödinger equation for all timescales. It is found
that by solving for the instantaneous eigenstates at all times,
such a control term can be constructed and we will go through
this in detail in Sec. II. Due to CD’s reliance on knowledge of
the instantaneous eigenstates, its exact form is only known for
a very limited set of problems, e.g., harmonic oscillators [15]
and the integrable transverse Ising model [16,17], to which we
will add noninteracting lattice models.

For a broader context, we note that approaches have been
developed to give approximate CD terms for complex settings
where it is not possible to construct the exact CD, with the
most successful to date being that of local, or variational, CD
[18–20]. This approach relies on recasting the CD terms into
a description in terms of the adiabatic gauge potential, which
encodes all of the diabatic transitions that one needs to counter
and is equivalent to the CD term we will define in Sec. II.
An approximation to the adiabatic gauge potential is then
obtained through a variational minimization procedure. The
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case of noninteracting particles in 1D lattices was considered
as an example in the original proposal for local CD [18] and
an approximate adiabatic gauge potential was obtained. The
approach of local CD has been further developed to include
its combination with numerical optimal control to improve
annealing protocols [21] and to inform the structure of terms
utilized in reinforcement learning for optimal control [22].
Local CD has been implemented experimentally for adiabatic
state transfer in a one-dimensional lattice [23] and has been
extended to many-body lattice models [24,25]. Recently, nu-
merical approaches to derive the adiabatic gauge potential
in general many-body settings have been introduced either
utilizing Krylov subspace methods [26] or the Lie algebra of
the expansion [27].

While the methods presented in this work can be applied
to any general noninteracting 1D lattice model, we will focus
on the particularly interesting case of time-reversal-symmetric
topological insulators which can host edge modes in the band
gaps of their spectrum [28–31]. While direct brute-force nu-
merical diagonalization of the time-independent Schrödinger
equation is always an option, analytical approaches have been
developed to characterize the topological states in cases of
semi-infinite commensurate lattices [32,33] through the ex-
tension of Bloch’s theorem. It is also possible to obtain the
topological edge states from the bound states of scattering
matrix approaches [34,35]. We will utilize the approach of
Ref. [36], which allows for all states to be obtained, both
within energy bands and in the gaps between them, for gen-
eral 1D noninteracting topological lattice models with open
boundary conditions. We will outline this approach in Sec. III
which will enable us to write the general analytical form of
CD for noninteracting lattice models in Sec. IV. We will
then consider as an example the topological Su-Schrieffer-
Heeger (SSH) model which has been used as a toy model
for the control of topologically protected state transfer proto-
cols [37–45]. We will show both the form of the analytically
obtained CD for the SSH model and consider the proper-
ties of the modified dynamical Hamiltonian which enforces
adiabaticity.

II. COUNTERDIABATIC DRIVING

CD enforces the adiabatic approximation to be the dynam-
ical solution to Schrödinger’s equation through the addition
of control terms [12–14]. For an arbitrary time-dependent
Hamiltonian H[λ(t ))], where λ(t ) is the changing param-
eter, the instantaneous eigenstates |ψn[λ(t )]〉 and energies
En[λ(t ))] are given by

H[λ(t )]|ψn[λ(t )]〉 = En[λ(t )]|ψn[λ(t )]〉, (1)

with n being the quantum number of the eigenstates. The adi-
abatic approximation then gives the solution of the dynamical
Schrödinger’s equation to be

|�n[λ(t )]〉 = exp

(
− i

h̄

∫ t f

t0

dtEn[λ(t )]

)
|ψn[λ(t )]〉, (2)

where we have excluded the Berry phase which would give
the geometric phase in a cyclic protocol [46]. From here we

will drop the explicit time dependence of the parameter λ and
work in units of h̄ = 1. We also note that the arguments of this
section, and the rest of this work, can be easily extended to the
case of a set of changing parameters.

To enforce Eq. (2) to be the solution to the dynami-
cal Schrödinger equation in arbitrary driving times, we are
required to add to the original Hamiltonian the CD term
of [14]

HCD = i
∑

n

λ̇|∂λψn(λ)〉〈ψn(λ)|, (3)

where λ̇ represents the derivative of the parameter λ

with respect to time. In order to construct the exact CD
term we therefore need to be able to solve the instanta-
neous Schrödinger equation for all points along the path
dictated by λ.

III. EXACT STATES OF NONINTERACTING
LATTICE MODELS

We will briefly introduce the known solutions to the gen-
eral noninteracting problem on a lattice described by the
Hermitian Hamiltonian

H =
L−1∑

x=x0+1

(−Jxb†
xbx+1 − J∗

x b†
x+1bx + μxnx ), (4)

with the lattice being L sites labeled by x which takes consec-
utively increasing integer values between x0 + 1 and L − 1,
b†

x (bx) being the creation (annihilation) operator of a particle
on the site at position x, nx the number operator on the site
at x, Jx the tunneling strength between sites x and x + 1,
and μx the onsite potential for site x. We will consider open
boundary conditions and crystalline models where the system
has a finite unit cell and thus a periodicity, which we label as
τ , allowing us to simplify the problem via Bloch’s theorem.
However, the techniques outlined here can be applied in other
one-dimensional lattice cases.

To obtain the analytical form of the counterdiabatic terms
we will require that the system is described by Hamiltonian
(4) and that we have open boundary conditions. We note that
the solution could be obtained for periodic boundary condi-
tions and on the infinite, or semi-infinite, lattice through the
generalization of the results studied here, e.g., by using the
states obtained in Refs. [32,33]. We will consider models with
a repeated unit cell, and hence a periodicity, which is common
to condensed matter problems. However, periodicity is not a
required condition to analytically obtain the counterdiabatic
driving terms corresponding to Hamiltonian (4), as the L-
component Bloch function of an aperiodic model could, in
principle, be solved for.

It may also be helpful to state what is not considered in
this work. Primarily we note that the tight-binding model of
Hamiltonian (4) does not allow for geometries beyond that of
a one-dimensional chain, or for longer-range tunneling than
nearest neighbors. We also do not consider terms due to inter-
actions, with the common examples being onsite interactions
and long-range interactions.
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The noninteracting states which are solutions to the
Schrödinger equation for Hamiltonian (4) can be written as

|ψα〉 =
L−1∑

x=x0+1

ψα (x)b†
x|0〉, (5)

with |0〉 being the state with no particles, and ψα (x) being the
coefficients of the state in each site x. We will refer to ψα (x)
as the wave function as it fully describes the quantum state.
The general wave function for both states within a band or in
a band gap, e.g., topological edge states [28,31] or Shockley-
type bound states [47], can be written as [36]

ψα (x) = N

[
φ+(x)αx − φ+(L)

φ−(L)
φ−(x)α2L−x

]
, (6)

with 0 < |α| < 1 being the parameter which fully charac-
terizes the individual states and N a normalization factor.
The Bloch functions φ+(−)(x) correspond to those associated
with α (α−1). These Bloch functions can be obtained using
Bloch’s theorem, i.e., by considering the local Schrödinger
equation for each site in the unit cell and individually taking
an ansatz of either φ+(x)αx or φ−(x)α−x then using φ±(x) =
φ±(x + τ ) so that the Bloch functions are obtained after solv-
ing τ − 1 linear coupled equations. Note, in the course of
solving for the Bloch functions we will also obtain the ana-
lytical form of the energy spectrum E (α). The normalization
factor for each state can be calculated using the Bloch func-
tions and the quantized values of α as

N =
⎡
⎣ L−1∑

x=x0+1

∣∣∣∣∣φ+(x)αx − φ+(L)

φ−(L)
φ−(x)α2L−x

∣∣∣∣∣
2
⎤
⎦

−1/2

. (7)

The quantization of α to give a finite number of states
is dependent on the boundary condition and the form of the
Hamiltonian. We can solve for α in two ways, either by tak-
ing the general quantization condition given by the boundary
conditions ψ (x0) = ψ (L) = 0 to obtain

α2(L−x0 ) = φ+(x0)φ−(L)

φ+(L)φ−(x0)
, (8)

or by considering the Schrödinger equation at a single site, we
will consider it at site x0 + 1 and use ψ (x0) = 0 to obtain

E (α) = Jx0+1
ψ (x0 + 2)

ψ (x0 + 1)
+ μx0+1. (9)

When solving for a bound state in the system we will need to
solve the local Schrödinger equation given by Eq. (9), as the
presence of a bound state does not solely rely on the boundary
conditions which is what leads us to the quantization condition
of Eq. (8).

States contained within energy bands and not within band
gaps are described in terms of plane waves with real quasimo-
mentum k. This means that a number of the solutions obtained
from the above equations will be of the form α = eik and if
no in-gap states are present, then all the solutions will be of
this form. It is worth noting that for a commensurate system
φ±(x0) = φ±(L), we can solve for the quasimomenta for any
Hamiltonian without even defining the Hamiltonian, as the
quantization condition of Eq. (8) in this case is e2i(L−x0 )k = 1,

which has known solutions of

k = πn

L − x0
, (10)

with n ∈ Z being the quantum number that characterizes the
different eigenstates. The fixed quasimomenta of commensu-
rate lattices will allow us to simplify the CD terms for them
substantially, as we will outline below.

Note that while for a general tight-binding model with a
defined unit cell, any present edge states will be in gap. It is
possible to have other in-gap states which are not due to the
topology or on the edge, e.g., states bound to a defect [36,47].
In this work, we will use the terms in-gap state and edge state
interchangeably but note here that the general solution given
in Eq. (6) and, therefore, the derived counterdiabatic terms of
Sec. IV, can be applied to other in-gap bound states.

We do not make any assumption on whether the creation
and annihilation operators of Hamiltonian (4) obey commuta-
tion or anticommutation relations, but consider the solutions
for a single-particle which are given by Eq. (6). From these,
the noninteracting picture can be developed for many parti-
cles, if it is of interest, for either bosonic or fermionic systems.

IV. EXACT COUNTERDIABATIC DRIVING IN LATTICES

A. All states

To write the counderdiabatic terms of noninteracting lattice
models we first need to outline the construction of the operator
summed over in Eq. (3). The eigenstates of general 1D lattice
models are given by Eq. (5) with the wave function ψα (x)
given in Eq. (6). Using these, we can then take the derivative
with respect to λ to obtain

∂λψα (x) = N

[
φ+(x)αxAα (x) − φ+(L)

φ−(L)
φ−(x)α2L−xBα (x)

]
,

(11)

where we have defined

Aα (x) = ∂λN

N
+ ∂λφ+(x)

φ+(x)
+ x

∂λα

α
(12)

and

Bα (x) = ∂λN

N
+ ∂λφ+(L)

φ+(L)
− ∂λφ−(L)

φ−(L)

+ ∂λφ−(x)

φ−(x)
+ (2L − x)

∂λα

α
. (13)

We will now outline how each term for Aα (x) and Bα (x)
can be analytically obtained. First, the terms which are deriva-
tives of Bloch functions can be obtained after these are solved
for in a given model. We will discuss this for an the example
in Sec. V and can not go further here without knowing the
form of the Bloch functions.

Next, we consider the term ∂λN , which we can write as

∂λN = −1

2
N3

L−1∑
x=x0+1

[ψ̃∗
α (x)∂λψ̃α (x) + ψ̃α (x)∂λψ̃

∗
α (x)], (14)

with ψ̃α (x) = ψα (x)/N , i.e., the wave function without
normalization. The derivative of the unnormalized wave

245421-3



CALLUM W. DUNCAN PHYSICAL REVIEW B 109, 245421 (2024)

functions can be written out as

∂λψ̃α (x) = φ+(x)αxÃα (x) − φ+(L)

φ−(L)
φ−(x)α2L−xB̃α (x),

(15)
with

Ãα (x) = Aα (x) − ∂λN

N
(16)

and

B̃α (x) = Bα (x) − ∂λN

N
. (17)

Finally, we are left with the term proportional to ∂λα. For
commensurate systems where the quasimomentum of the bulk
states is well defined by k = nπ/(L − x0) (see Sec. III), the
term ∂λα will be zero for all states within the bulk energy
bands. This is because for these states α = eik and the quasi-
momentum is entirely defined from the boundary conditions.
Note, in this case, the ∂λN is also zero, and we can simplify
the expressions for Aα (x) and Bα (x) considerably to only rely
on the Bloch functions. This still leaves us with needing to
know ∂λα for in-gap states or for bulk states in incommen-
surate lattices. We can obtain this by differentiating the local
Schrödinger equation of Eq. (9) with respect to λ. Once we
know α we can then simply substitute this in and rearrange
this new differentiated local Schrödinger equation to analyti-
cally obtain ∂λα.

We can now write the form of the additional CD term to
counter transitions between all instantaneous eigenstates as

HCD = i
∑

α

L−1∑
x,x′=x0+1

θα (x, x′)b†
xbx′ , (18)

where the summation runs over both x and x′ such that the
CD term couples all sites in the chain. The strength of this
coupling is described by the function

θα (x, x′) = |N |2ψ∗
α (x′)

[
φ+(x)αxAα (x)

− φ+(L)

φ−(L)
φ−(x)α2L−xBα (x)

]
. (19)

B. Targeted states

In certain situations, e.g., in ground-state coherent quantum
annealing, we will only be interested in staying in one single
state of the system and it is desirable to only counter the
diabatic terms out of this target state. We propose that this
targeted CD can be realized by the addition of terms of the
form

Hα
CD = i|∂λψα (x)〉〈ψα (x)| − i|ψα (x)〉〈∂λψα (x)|. (20)

Similar forms for CD of particular states have been consid-
ered previously [48–50], especially when trying to reduce the
energetic overhead for implementation. We can then write this
for noninteracting lattice models as

Hα
CD = i

L−1∑
x,x′=x0+1

[θα (x, x′)b†
xbx′ − θ∗

α (x, x′)b†
x′bx], (21)

with α being that of the targeted state, e.g., the instantaneous
ground state for coherent quantum annealing. We will see
in the example of Sec. V that the targeted CD term can
result in a simplification of the control terms that need to be
implemented.

C. Properties of the general counterdiabatic driving terms

Having derived the general forms of the CD for all states
and targeted at a particular state we can briefly discuss the
implications of their general form.

First, the counterdiabatic terms are not limited to the
nearest-neighbor tunneling restriction of the Hamiltonian
considered. They instead couple through tunneling be-
tween all sites. The coupling between sites is reminiscent
of density-dependent tunneling, which would be the only
term of the extended tight-binding model relevant to a
noninteracting system. However, in this case, the density-
dependent tunneling is required in a “mean-field way,”
with it not being dependent on the density in the new
counterdiabatic Hamiltonian but the density in the original
Hamiltonian.

The form of the long-range tunneling of the CD is then
dependent on θα (x, x′) given in Eq. (19). To understand this
term we can ignore the normalization constant |N |2, which is
only a constant prefactor. The conjugate state ψ∗

α (x′), which
is the density on the site corresponding to the annihilation
operator, is an envelope function. As a result, θα (x, x′) for each
state with a corresponding α will be bounded by the form of
the state.

The key detailed features of the CD are then contained
in the functions Aα (x) and Bα (x). For the context of this
discussion it will be sufficient to consider one of these func-
tions Aα (x) given by Eq. (11), with the other sharing similar
terms. We can first note that the derivative of the normal-
ization term is reliant on the other terms in Aα (x), as seen
in Eqs. (14)–(17). The next term in Aα (x) is dependent on
the derivative of the Bloch functions, which itself will be
periodic up to τ . However, the final term is proportional
to x which breaks the periodicity of the Hamiltonian. As
a result, the long-range tunneling of the CD, θα (x, x′), will
not in general be periodic with the same periodicity as the
Hamiltonian.

Note, for the case of periodic boundary conditions
the analytical state is given by ψPB

α (x) = Nφ+(x)αx, i.e.,
the first term of the open boundary solution. In this case the
CD term is equivalent to Eqs. (18) and (21) but with the
condition that Bα (x) = 0 and φ−(x) = 0. Therefore, even for
the case of periodic boundary conditions, where the states
themselves are periodic with the periodicity τ , the CD term
will in general not be periodic due to the final term of
Aα (x).

However, there is a central case where this linear term
in x is not present, and that is the commensurate case of
φ±(x) = φ±(x + τ ) considered in detail in the example below.
In this case, if there are not any in-gap states then ∂λα = 0
for all states and the term proportional to x plays no role.
However, if there are edge states present in the spectrum of
a commensurate lattice, then for these states alone ∂λα �= 0,
and we will get a contribution from the term proportional to
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x with a constant prefactor, or slope, dependent on α, which
itself is not x dependent.

V. STATE TRANSFER IN THE TOPOLOGICAL
SU-SCHRIEFFER-HEEGER MODEL

A. Su-Schrieffer-Heeger model

As an example, we will consider adiabatic state trans-
fer through the topological edge states of a one-dimensional
model, the Su-Schrieffer-Heeger (SSH) model. The SSH
model was first introduced as a model of polyacetylene [51]
and has topological edge states with a corresponding nontriv-
ial Zak’s phase [52]. This model has been realized in ultracold
atoms [53], the energy levels of a Rydberg atom [54], pho-
tonic lattices [55–57], and acoustic waveguides [58]. There
has been particular interest in studying topologically protected
state transfer in the SSH model and the optimization of such
a transfer, including removing the requirement for adiabatic
evolution [37–45]. Recently, edge-to-edge state transfer was
experimentally demonstrated using a synthetic lattice of up to
10 sites constructed from the momentum states of ultracold
atoms [59].

The SSH model has no onsite potential and has nearest-
neighbor tunneling which alternates in strength, meaning we
can write the Hamiltonian as

H (λ) = J
L−1∑

x=x0+1

[[1 − λ(−1)x )]b†
xbx+1 + H.c.], (22)

with 2λ being the difference in strength between the alter-
nating tunneling and J the tunneling strength which will set
the units of energy. Note that time will therefore be given in
units of J−1. We will consider a commensurate finite system,
i.e., φ±(L) = φ±(x0). For the commensurate lattice, we can
perform a state transfer between the two edges of the system
by initializing the system on the x0 + 1 edge with a large λ0

then driving the system towards −λ0. If the sweep through λ

is performed adiabatically, the final result will be the perfect
transfer of the state to the L − 1 edge. This state transfer
protocol is illustrated in Fig. 1, including examples of the edge
state for different λ.

Using the approach outlined in Sec. III, the spectrum

Es,α = (−1)s

√(
1 + α2

α

)2

− λ2

(
α2 − 1

α

)2

, (23)

with s = 0, 1 labeling the two bands, and Bloch functions

φ+(x) =
(

1
(1+α2 )−λ(1−α2 )

Es,αα

)
, (24)

can be found, which is represented in the standard form of a
two-component vector with each component corresponding to
that for each of the two sites in the unit cell. To obtain φ−(x)
we implement the transformation α → 1/α to Eq. (24). Note
that as would be expected, Es,α ≡ Es,1/α .

The spectrum for a commensurate system with φ±(L) =
φ±(x0), i.e., for the SSH model L − x0 = 2m with m ∈ Z, as a

FIG. 1. Spectrum and edge states of the SSH model given by
Hamiltonian (22) using the analytical energy and states for a system
of 101 sites. (a) The spectrum of all states for each individual λ/J as
given by Eq. (23) with the states in the bulk having α = eik with a
quasimomentum k = πn/102, with n ∈ Z starting at one and mono-
tonically increasing for each state, and the in-gap edge state being
described by an α obtained by solving the Schrödinger equation at
the first site. We show the probability density for (b) the in-gap state
at λ/J = 0.999 with α = 0.0224eiπ/2 and occupation on only even
sites, (c) the in-gap state at λ/J = 10−3 with α = 0.999eiπ/2, and
(d) the in-gap state at λ/J = −0.999 with α = 0.0224eiπ/2.

function of λ is shown in Fig. 1(a) for x0 = −1 and L = 101.
We already know all the solutions in the two bulk bands, as the
quantization condition for commensurate systems enforces
k = πn/(L − x0). For finite λ there are two bands, as there are
two sites in the unit cell. This means we only need to solve for
the missing state which is in the band gap, this can be done
by solving the local Schrödinger equation of Eq. (9) for α.
Note, this will give us all of the bulk solutions as well, but the
problem can be simplified as we know the quasimomentum
must be that of the missing state k = π/2 [36]. This means
we can take α = aeiπ/2 where a ∈ R and solve Eq. (9) for
a, giving us a single solution, that of the in-gap edge state.
Note, at λ = 0 we return to a single-band model and a = 1.
With positive λ the edge state will be bound to the x0 site
boundary and for negative λ to the L site boundary, with
examples shown in Figs. 1(b) and 1(d). Therefore, if we follow
the in-gap state adiabatically from positive to negative λ in a
dynamical protocol, we will transfer a particle from one edge
to the other.

However, there is an issue in realizing this adiabatic pro-
tocol, the gap closes at λ = 0 as can be seen in Fig. 1(a) and
from the fact that a = 1 at this point, i.e., the solution is that
of a bulk state in a band. To be adiabatic one would need to
drive slowly through this region, with a rate of change of the
parameter being inversely proportional to the gap between the
state we desire to remain in and the nearest other eigenstate.
As we approach λ = 0, the edge state begins to stretch further
into the system, as is shown for λ/J = 10−3 in Fig. 1(c). In
this example, we will use the approaches outlined in Sec. IV
to study the diabatic terms that arise from the closing of this

245421-5



CALLUM W. DUNCAN PHYSICAL REVIEW B 109, 245421 (2024)

gap and what is needed to implement perfect state transfer in
arbitrary time.

For the SSH model, we can confirm the gap goes to zero
for large L (and fixed x0) and obtain its scaling. As we are
working with a commensurate system φ±(L) = φ±(x0), we
know the quasimomenta for all of the bulk states and we
know that the edge state has k = π/τ . Using the fact that
the edge state will have zero energy and that the spectrum is
symmetric, we can calculate the gap simply by looking at the
energy of the previous state which will have quantum num-
ber n = (L − 1)/2 for the commensurate case and therefore
k = π (L − 1)/2(L − x0). Fixing x0 = −1 we find the gap is
given by

�E (λ) =
√

2

√
1 + λ2 + (1 − λ2) cos

(
(L − 1)π

L + 1

)
, (25)

which has limL→∞ �E (λ) = 2λ, as limL→∞ L−1
L+1 = 1.

A protocol of edge-to-edge transfer can also be realized
for the incommensurate case of φ±(L) �= φ±(x0), which is
only true for L − x0 = 2m + 1 with m ∈ Z. This is the case
for which the bulk-boundary correspondence [31] can be
applied and there is a topological phase transition at λ = 0
characterized by Zak’s phase [52], with two degenerate edge
states for λ > 0 and no edge states for λ � 0. The protocol to
implement the edge-to-edge transfer in the incommensurate
case relies on the degeneracy of the edge states and does not
cross the topological phase transition where the gap closes
[60]. In this sense, the protocol for the commensurate case is
more interesting from a counterdiabatic driving perspective,
with the requirement that the gap-closing point is traversed.
Note that the gap closing for the commensurate case is not a
topological phase transition, with one edge state present in the
spectrum on either side of this point.

B. Counterdiabatic driving

In constructing the CD terms, we know that the derivatives
of the Bloch functions with respect to the varying parameter
play a vital role. For the SSH model, we can find these by
differentiating Eq. (24) and obtain

∂λφ+(x) = 1

Es,α

(
0

1−α4−4λα∂λα
(λ−1)α3−(1+λ)α

)
(26)

and

∂λφ−(x) = 1

Es,α

(
0

1−α4−4λα∂λα
(1+λ)α3−(1−λ)α

)
. (27)

By differentiating the local Schrödinger equation of Eq. (9)
for this example, we can also obtain for the in-gap states that

∂λα = −α
1 + 2α2 + α4 + λ3 − 2α2λ3 + α4λ3

λ(α4 − 1)(λ − 1)(1 + λ)2 . (28)

Note, the bulk states of a commensurate lattice have ∂λα = 0
as discussed in Sec. IV.

1. All states

First, we will consider the normal form of CD, which
includes the corrections for all instantaneous eigenstates. The

form of CD for all states for noninteracting lattice models is
given in Eq. (18), and is fully characterized for each potential
hopping term between x and x′ by

�(x, x′) =
∑

α

θα (x, x′). (29)

We will consider the state transfer protocol in the SSH model
by initializing a system at λ0 = 0.9 in the in-gap state then lin-
early driving λ to λ f = −0.9 thus transferring the state from
the left to the right edge of the system as is shown in Fig. 1.
Imposing the evolution of the system under H + HCD, with
HCD given in Eq. (18), we obtain unit fidelity state transfer
across the lattice for all total driving times and system sizes.

We show the strength of the tunneling terms between all
x and x′ in the upper triangles of Fig. 2, the operator is
Hermitian so symmetric up to a local phase around x = x′.
Two examples are shown for a small and large lattice with
11 and 101 sites, respectively, and we find that the form of the
CD term is very similar through various commensurate system
sizes. We find that as we approach the gap-closing point, the
tunneling terms required to enforce CD become longer in
range, reflecting the more delocalized nature of the state at this
point [see Fig. 1(c)]. We repeat here that implementation of
the full modified Hamiltonian H + HCD with the form of HCD

given by the upper triangles of Fig. 2 results in unit fidelity
state transfer in arbitrary time.

2. Targeted state

We now consider the case of CD for only a single state as
described by Eq. (21), which is particularly useful in this state
preparation scenario where we desire to remain in a single
instantaneous eigenstate of the system. We can characterize
the strength of the tunneling simply with θα (x, x′) with α

corresponding to the state of interest, in this case the in-gap
state. Imposing the evolution of the system under H + Hα

CD,
with Hα

CD given in Eq. (21), we again obtain unit fidelity state
transfer across the lattice for all total driving times and system
sizes.

We show the strength of the tunneling terms in order to
enforce CD for the in-gap state in the lower triangles of
Fig. 2, for systems of size 11 and 101. Again, the operator
is Hermitian so symmetric up to a local phase around x = x′.
A number of differences to the full CD terms are immediately
observed. First, at large |λ| the CD terms to correct for diabatic
excitations away from the in-gap state only require tuning the
tunneling coefficients near the edge that is populated. While
this may be easier to realize in a given physical setup, as it
does not require tuning all tunneling coefficients at all ranges,
it creates an overall aperiodic Hamiltonian. This should not
be a surprise to us, as the in-gap edge states are inherently
asymmetric, as they are bound to a particular edge. When |λ|
is decreased, we observe again that longer-range tunnelings
come into play. However, this does not become as uniform as
in the case of the full CD with the longest tunneling terms
dominating as we approach λ = 0.

3. Properties and dynamics

We first note here that the difference between the large-λ
CD terms of Fig. 2(a) and the small-λ CD terms of Fig. 2(d)
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FIG. 2. Examples of the form of the CD terms through plots of the absolute value in each element of the matrix of the CD term for the
same driving as considered in Fig. 5. The CD terms are Hermitian and each image shows the form of the full CD term HCD in the upper triangle
and the targeted CD term Hα

CD using only the in-gap state in the lower triangle. Note that diagonal terms are trivially zero for CD and we
have separated the triangles with a white line. We consider two different system sizes (a)–(d) 11 and (e)–(h) 101 sites as well as a number of
different points along the driving with (a), (e) λ/J = 0.9, (b), (f) λ/J = 0.36, (c), (g) λ/J = 4.6 × 10−2, and (d), (h) λ/J = 10−3.

give an example of the discussion in Sec. IV C of the physical
implications that can be seen from the analytical equations,
i.e., when an edge state is present the CD terms will have
a contribution from a term linear in x, this is shown in
Fig. 2(a), as the CD terms are stronger on one side of the
lattice than on the other. Whereas, for the case of weak λ,
where the influence of the edge state will be minor, we can
observe that the CD terms are symmetric around the cen-
ter of the lattice and it is the term linear in x is playing a
minor role.

It is known that the norm of a CD term can be sensitive
to points where energy gaps close [14,27,61,62]; this is a
particular issue if there is only one gap present in the system.
We plot the Euclidean norm of the CD terms for both the full
CD and targeted CD in Fig. 3(a) for 101 sites and confirm that
it does diverge around the gap-closing point. Note that in any
finite system, this divergence will appear finite as we will have
a small but finite gap between the states.

From the forms of the CD given in Fig. 2, it is clear
that a key feature is that as we decrease λ towards zero, we
populate the diagonals further away from the central diag-
onal of θα (x, x′) or �(x, x′) with nonzero entries. In other
words, long-range tunnelings become increasingly important.
In Figs. 3(b)–3(d), we plot the ratio of the norm of the CD
terms including up to d diagonals below the central diagonal,
with all other values set to zero, and the norm of the CD term
for three different λ values. The ratio of norms for the case of
large |λ| is shown in Fig. 3(b) with both the full and targeted
CD described by only a few diagonals as would be expected
from the local nature of the CD tunneling shown in Fig. 2(e).
When |λ| is decreased, as is shown in Figs. 3(c) and 3(d), the
CD terms become more nonlocal in nature and begin to be
dominated by terms that are longer in range.

The impact of the highly nonlocal CD terms in the final
achieved state transfer fidelity is shown for both the targeted

and full CD approaches in Fig. 4. Across both approaches,
it is clear in Fig. 4 that the nonlocal terms are crucial to
the transfer of the state, as would be expected, as the gap
closing at λ = 0 will have a significant impact on the diabatic
transitions during the protocol.

FIG. 3. The norm of the CD terms in the SSH model for the same
example as shown in Fig. 2 for 101 sites. Protocol is from λ/J = 0.9
to −0.9 in a total time of τJ = 1. We show the case of all CD terms
given by HCD as dashed-dotted (orange) lines and the targeted CD
terms given by Hα

CD using only the in-gap state as a solid (blue) line.
(a) Shows the Euclidean norm of the CD terms as a function of λ/J ,
showing a clear increase in the “strength” of the CD terms around
the gap-closing point of λ/J = 0. (b)–(d) Show the percentage of the
Euclidean norm that is accounted for when including d diagonals of
the matrix at (b) λ/J = 0.9, (c) λ/J = 0.046, and (d) λ/J = 10−3,
with all of HCD being accounted for at 100 diagonals.
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FIG. 4. The state transfer fidelity after implementing CD includ-
ing up to d diagonals of the CD Hamiltonian for the same protocol
as in Fig. 3. (a), (b) Show the case of 11 sites and (c), (d) 101 sites
with (a) and (c) being the implementation of all CD terms given by
HCD and (b) and (d) the targeted CD terms given by Hα

CD using only
the in-gap state. The state transfer fidelity after implementation of the
bare protocol with no CD is F = 10−10 for 11 sites and F < 10−14

for 101 sites.

C. Spectra of the modified counterdiabatic Hamiltonian

Given that we have obtained the full analytical CD terms,
we can also consider the spectra of the modified Hamilto-
nians under which we evolve when we add CD, given by
H (λ) + HCD(λ). We plot these in Fig. 5 for the case of 11
and 101 sites and the driving protocol considered so far. We
solve for both the full and targeted CD using the analytical
approach outlined in Sec. IV but numerically solve for the
instantaneous eigenstates corresponding to H (λ) + HCD(λ),
as the modified Hamiltonian can be aperiodic and nonsparse,
due to the asymmetric form of the CD Hamiltonian, as is
shown in Fig. 2. The analytical approach can still be applied in
this regime but is rather inefficient in this scenario as it will re-
quire τ = L − x0 nonlocal coupled Schrödinger equations to
be solved, especially around the gap-closing point.

The impact of the inclusion of CD terms targeted at a
particular state is clear for the case of 11 sites in Fig. 5(b)
as the result is that an increased minimal gap has been opened
between the state at energy zero and the neighboring states,
with this gap being �E/J = 0.261 before the addition of the
CD term for the in-gap state and �E/J = 1 with the CD term.
Note that we can calculate the minimal gap without the CD
term from Eq. (25). When we go to a larger system of 101
sites [Figs. 5(e) and 5(f)], it does not immediately look like
the minimal gap has been made larger as, of course, all of the
eigenstates are far closer. However, in this case, we again see
that the gap has been increased from �E/J = 0.031 without
CD to �E/J = 0.124 with the inclusion of CD terms for the
in-gap state. Note, in order to open this gap in each case the
CD terms impose a penalty in energy (away from zero) for
some states, resulting in states being pushed out the top and
bottom of the bands around λ/J = 0. For larger systems, this
penalty appears more severe, and it is this that we observe as

FIG. 5. Examples of the spectrum of the full Hamiltonian with
CD for both (a), (c), (d) the full CD term so the Hamiltonian is
H (λ) + HCD(λ) and (b), (e), (f) the targeted CD term for the in-gap
state so the Hamiltonian is H (λ) + Hα

CD(λ). Examples are shown for
a total drive time of τJ = 1 for systems of size (a), (b) 11 sites and
(c)–(f) 101 sites. The plots in (d) and (f) are zoomed-in portions
of (c) and (e), respectively, to see the spectrum around the central
E/J = 0 state. The CD terms are found using the analytical approach
outlined in Sec. IV and the eigenvalue problem is solved numerically.

a divergence in the norm of the CD terms at the gap-closing
point in Fig. 3(a).

In Fig. 6 we consider the scaling of the gap for a small
finite λ/J = 1.8 × 10−3 for both the original Hamiltonian
and the Hamiltonian with targeted CD. We observe that the

FIG. 6. Scaling of the gap near the topological transition λ/J =
1.8 × 10−3. (a) The scaling of the energy gap between the zero-
energy topological edge state and the nearest state in energy. The
analytical energy gap, given by Eq. (25), is shown by a solid (black)
line which is in agreement with the numerical gap for the SSH
model with Hamiltonian (22) by circles (gray). The gap for the CD
Hamiltonian of the targeted approach, shown in Figs. 5(b) and 5(f),
is given by squares (red). We also plot the limit limL→∞ �E (λ) = 2λ

by a dotted (red) line. (b) The ratio of the gap of the CD Hamiltonian
targeting the edge state �ECD to the analytical energy gap �E0 of the
SSH model.
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gap obtained from numerical diagonalization for the original
Hamiltonian H (λ) is in agreement with the analytical form
derived earlier [see Eq. (25)], and that it converges to the
infinite-size limit of 2λ. We observe that the energy gap for the
Hamiltonian with targeted CD, H (λ) + Hα

CD(λ), is a factor of
2 larger than the energy gap in the nonmodified Hamiltonian,
before eventually also converging to the infinite-size limit
value of 2λ.

The spectra for the modified Hamiltonian for the full CD
term are shown in Figs. 5(a) for 11 sites and 5(c) and 5(d) for
101 sites. There are similarities between these and the spectra
of the targeted CD terms, mainly states being pushed out to
energies far from zero, resulting in a similar behavior of the
norm. It is clear though that the spectrum of this modified
Hamiltonian is far more complex and it is difficult to build
an understanding of how this modified Hamiltonian imposes
the adiabatic approximation in arbitrary time from its spectra
alone. It is clear that the full CD term is not opening a gap for
the edge state. We know this is not necessary as the eigenstates
of the modified Hamiltonian are not required to be equivalent
to or bear any resemblance with the eigenstates of the bare
Hamiltonian with no CD. Further study of the connection
between the eigenstates of the CD and bare Hamiltonians
could provide insight into the key requirements for developing
fast protocols for more complex settings.

VI. CONCLUSION AND OUTLOOK

In this work, we have extended the set of known examples
where the exact analytical form of CD can be found to include
the general Hamiltonian of noninteracting particles, which can
be either bosons or fermions, in 1D lattices. We built upon
previous work [36] that outlined the analytical states for both
bulk and edge states to construct the CD terms exactly. We
outlined how this approach can be applied to general problems
in this family of Hamiltonians and derived expressions for
terms that appear in the CD. We also discussed a targeted
approach for countering transitions out of a particular state.

As an example, we considered the CD terms, both for all
states and targeted at a particular state, for state transfer in the
topological SSH model. The approach developed enabled us
to study the properties of the CD terms for large systems with
no penalty due to the size of the system. Note that while the
Hilbert space is only increasing linearly with system size, the
analytical approach outlined can still outperform numerically
obtaining the eigenstates, especially for the commensurate
case. We restricted the shown results to a lattice of 101 sites as

this allowed for the behavior of large systems to be observed
clearly in the plots, and the CD terms can be obtained analyt-
ically for arbitrarily large system sizes.

The approach outlined in this work could also be extended
to higher-dimensional systems with open boundaries that can
be reduced to one-dimensional models, e.g., crystalline mod-
els in cylindrical geometries. It could also be extended to
study few-body systems where the wave functions can be
written as combinations of the noninteracting states, or the
CD terms obtained here could be used as starting points for
control functions in many-body systems for variational CD
approaches [18,21].

The requirement to control terms over arbitrarily long dis-
tances will be a common feature of CD terms in lattices,
as the CD operator is generated by a term proportional to
|∂λψn(λ)〉〈ψn(λ)|. We observed this in the noninteracting case
for the tunneling terms in the SSH model, especially as we
approached the point where the band gap closed. For the
many-body case, it is highly likely that exact CD will re-
quire the full extended Hubbard [63] or Bose-Hubbard model
[64] to be controlled, i.e., long-range tunneling, interaction,
pair tunneling, and density-dependent tunneling terms. It is
possible to engineer the terms of the extended Bose-Hubbard
model, including long-range tunneling, through placing ultra-
cold atoms in optical lattices in a cavity [65–67]. While it is
possible that such an approach could in principle realize the
CD terms of this work, it is unlikely that the structure of the
exact CD terms discussed here could be easily engineered.

However, knowledge of the exact CD terms provides us
with additional information about the dynamics of a quantum
system outside of the adiabatic approximation. For example,
the adiabatic gauge potential, which for a choice of gauge
is equivalent to the CD Hamiltonian up to a global phase,
has been utilized as a numerically efficient cost function for
optimal control protocols [21], to define and probe the prop-
erties of chaotic behavior [61,68], to probe the presence of
quantum phase transitions [27,62], and, in general, to study
nonequilibrium behavior [20].

The data for this manuscript is available in open access at
[69].
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B. A. Malomed, T. Sowiński, and J. Zakrzewski, Non-standard
Hubbard models in optical lattices: a review, Rep. Prog. Phys.
78, 066001 (2015).

[65] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold
atoms in cavity-generated dynamical optical potentials, Rev.
Mod. Phys. 85, 553 (2013).

[66] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T.
Donner, and T. Esslinger, Quantum phases from competing
short-and long-range interactions in an optical lattice, Nature
(London) 532, 476 (2016).

[67] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and
J. I. Cirac, Analogue quantum chemistry simulation, Nature
(London) 574, 215 (2019).

[68] C. Lim, K. Matirko, A. Polkovnikov, and M. O. Flynn, Defining
classical and quantum chaos through adiabatic transformations,
arXiv:2401.01927.

[69] C. Duncan, Data for: “Exact counterdiabatic driving in fi-
nite topological lattice models”, University of Strathclyde,
(12 June 2024), https://doi.org/10.15129/e78ec94b-967f-4df5-
b488-b5a6482e8b91.

245421-11

https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1038/s41467-022-28550-y
https://doi.org/10.1364/OL.34.001633
https://doi.org/10.1038/s41566-017-0006-2
https://doi.org/10.1364/OME.417392
https://doi.org/10.1103/PhysRevB.103.224309
https://doi.org/10.1103/PhysRevResearch.5.L032005
https://doi.org/10.1038/s41534-017-0047-x
https://doi.org/10.1103/PhysRevX.10.041017
https://doi.org/10.1103/PhysRevA.103.012220
https://doi.org/10.1103/PhysRevB.96.245406
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1038/nature17409
https://doi.org/10.1038/s41586-019-1614-4
https://arxiv.org/abs/2401.01927
https://doi.org/10.15129/e78ec94b-967f-4df5-b488-b5a6482e8b91

