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Abstract
This paper develops efficient preconditioned iterative solvers for incompressible flow
problems discretised by an enriched Taylor–Hood mixed approximation, in which
the usual pressure space is augmented by a piecewise constant pressure to ensure
local mass conservation. This enrichment process causes over-specification of the
pressure when the pressure space is defined by the union of standard Taylor–Hood
basis functions and piecewise constant pressure basis functions, which complicates
the design and implementation of efficient solvers for the resulting linear systems. We
first describe the impact of this choice of pressure space specification on the matri-
ces involved. Next, we show how to recover effective solvers for Stokes problems,
with preconditioners based on the singular pressure mass matrix, and for Oseen sys-
tems arising from linearised Navier–Stokes equations, by using a two-stage pressure
convection–diffusion strategy. The codes used to generate the numerical results are
available online.

Mathematics Subject Classification 65F08 · 65F10 · 65N30 · 35Q30

1 Introduction

Reliable and efficient iterative solvers for models of steady incompressible flow
emerged in the early 1990s. Strategies based on block preconditioning of the underly-
ingmatrix operators using (algebraic or geometric) multigrid components have proved
to be the key to realising mesh independent convergence (and optimal complexity)
without the need for tuning parameters, particularly in the context of classical mixed
finite element approximation, see Elman et al. [8, chap. 9]. The focus of this contribu-
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tion is on efficient solver strategies in cases where (an inf–sup) stable Taylor–Hood
mixed approximation is augmented by a piecewise constant pressure in order to guar-
antee local conservation of mass. The augmentation leads to over-specification of the
pressure solution when the pressure space is defined in the natural way via the union of
Taylor–Hood pressure basis functions and basis functions for the piecewise constant
pressure space, requiring a redesign of the established solver technology.

The idea of adding a piecewise constant pressure to the standard rectangular
biquadratic velocity, bilinear pressure (Q2–Q1) approximation was originally sug-
gested during discussion around a blackboard at a conference on finite elements in
fluids held in Banff in 1980; see Gresho et al. [9]. The need for local mass conser-
vation was motivated by competition from finite volume methods (such as the MAC
scheme) in the design of effective strategies for modelling buoyancy-driven flow in
the atmosphere.

The extension of the augmentation idea to Taylor–Hood (P2–P1) triangular approx-
imation was proposed in a paper presented at a conference in Reading in 1982; see
Griffiths [10]. A proof of stability of the augmented P2–P∗

1 approximation on trian-
gular meshes was constructed by Thatcher and Silvester [24] in 1987. An extended
version of this manuscript included discussion of Q2–Q∗

1 hexahedral elements [23].
A rigorous assessment of the augmentation strategy was undertaken by Boffi et al.
two decades later [4]. The strategy of augmenting a continuous pressure approxima-
tion to give a locally mass-conserving strategy can also be generalised to higher-order
Qk–Qk−1 and Pk–Pk−1 Taylor–Hood approximations. Inf–sup stability is assured for
k ≥ 2 in two dimensions and for Pk–Pk−1 with k ≥ 3 in three dimensions; see [3,
p. 506].

A closely related, yet fundamentally different Stokes approximation strategy is
developed in [27]. Their idea is to stabilise the lowest-order P1–P0 approximation
space defined on triangles or tetrahedra by augmenting the continuous velocity approx-
imation by a piecewise constant approximation. The extended mixed approximation is
stable but nonconforming. A similar approach is taken in [6], but an alternative weak
form is used. Note that the design of linear solvers for the resulting discrete equations
is relatively straightforward. A special feature of the extended approximation is that
it can be augmented by postprocessing to give a pressure-robust approximation; see
[13].

More generally, such an extended Galerkin (EG) approximation can be viewed as
an intermediate between continuous Galerkin (CG) and discontinuous Galerkin (DG).
This interpretation of piecewise constant augmentation was originally put forward by
Sun and Liu [22] and is motivated by the fact that it gives local flux conservation
when modelling transport in porous media flow problems, but with fewer degrees of
freedom compared to vanilla DG.

The novel contribution in this work lies in the linear algebra aspects of two-field
pressure approximation. The immediate issue that needs to be dealt with is the fact
that, when the pressure space is specified by the frame formed by adding usual finite
element basis functions for the underlying Taylor–Hood space to basis functions for
the discontinuous pressure space, the mass matrix that determines the stability of
the resulting mixed approximation is singular. This aspect is noted in the context of
EG approximation in [15, Remark 4.1] and is discussed in Sect. 2. The main issue
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that has to be dealt with in practical flow simulation is the over-specification and
associated ill-conditioning of the discrete operators that arise in the preconditioning of
the linearisedNavier–Stokes operator. This is the focus of the discussion in Sect. 3. The
conclusion of this study is that optimal complexity convergence rates can be recovered
when using two-field pressure approximation, but only after a careful redesign of the
preconditioning components.

2 Two-field pressuremass matrix

In this section we consider the Stokes problem

−��u + ∇ p = �0 in �,

∇ · �u = 0 in �,

�u = �g on ∂�,

where �u and p are thefluid velocity andpressure, respectively, and� ⊂ Rd ,d ∈ {2, 3},
is a polygonal or polyhedral domain.

Throughout this section, we assume that V h ⊂ H1
0 (�)d and Qh ⊂ L2

0(�) :=
{q ∈ L2 : ∫

�
q = 0} are an inf–sup stable pair of finite element spaces. Then the

corresponding finite element approximation problem is to find (�uh, ph) ∈ V h × Qh

such that

a(�uh, �vh) + b(�vh, ph) = ( �f h, �vh) for all �vh ∈ V h, (1a)

b(�uh, qh) = (gh, qh) for all qh ∈ Qh, (1b)

where (·, ·) denotes the usual L2 inner product, right-hand side functions �f h and gh

are associated with the specified boundary velocity (gh is zero for enclosed flow), and

a(�u, �v) =
∫

�

∇ �u : ∇ �v, b(�u, p) = −
∫

�

p ∇ · �u.

Solving the finite element problem (1) is then equivalent to solving the linear system

[
A BT

B 0

]

︸ ︷︷ ︸
A

[
u
p

]

=
[
f
g

]

, (2)

where A ∈ Rnu×nu is symmetric positive definite and B ∈ Rn p×nu [8, chap. 3]. The
matrix A is of well-known saddle point type, and solvers for this sort of system have
been extensively studied, see, e.g., Benzi et al. [1]. Since A is large and sparse, the
system is typically solved by an iterative method, with preconditioned MINRES [18]
a popular choice.
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An ideal preconditioner for A is [14, 17]

Pideal =
[
A

BA−1BT

]

,

since the eigenvalues of the preconditioned matrix are 0, 1, and (1± √
5)/2, with the

zero eigenvalue appearing only if the preconditioned matrix is singular. This precon-
ditioner is usually too costly to apply, and so efficient block diagonal preconditioners
forA are typically based on spectrally equivalent preconditioners for A and the nega-
tive Schur complement S = BA−1BT . For Stokes problems, the solve with A can be
replaced by, e.g., an algebraic or geometric multigrid solver, while for stable discreti-
sations S is spectrally equivalent to MQ , the pressure mass matrix [8, chap. 3], i.e.,
there exist constants γ and �, independent of h, such that

γ 2 ≤ qT BA−1BT q
qT MQq

≤ �2 (3)

for all vectors q except those corresponding to the function qh ≡ 1 on �. For certain
element pairs, MQ itself is easily inverted, e.g., for discontinuous P0 orQ0 pressures,
the mass matrix is diagonal. Otherwise, MQ can be replaced by its diagonal or by a
fixed number of steps of Chebyshev semi-iteration acceleration of a Jacobi iteration
when, as is common, diag(MQ)−1MQ has eigenvalues within a small interval and this
interval lies away from the origin [25, 26].

To summarise, for inf–sup stable finite element pairs, an effective preconditioner
for (2) is

P =
[
M

MS

]

, (4)

where M ∈ Rnu×nu is A or an approximation, and MS ∈ Rn p×n p is MQ or an approx-
imation. (See, e.g., Elman et al. [8, chap. 4] for results withQ2–Q1 approximation on
quadrilaterals.)

In this section, our aim is to determine effective preconditioners for the enriched
Taylor–Hood element. As we will see, although enriching the pressure space results
in better mass conservation properties, it can also present challenges for solving (2).

2.1 Augmented Taylor–Hood elements

We see from (1) that the mass conservation condition ∇ · �u = 0 is imposed only
in a weak sense, and if Taylor–Hood elements are employed we can only guarantee
that (1b) will hold. However, by augmenting the pressure space by piecewise constant
pressures it is possible to obtain local mass conservation, so that the average of the
divergence is zero on each individual element. The natural choice is to define this
space by a frame consisting of the union of the continuous Taylor–Hood pressure
basis functions and the discontinuous pressure basis functions. In this case, as we
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will discuss later in this section, constant pressures have multiple representations, and
this results in certain challenges for solving (2). Although it is certainly possible to
instead compute a basis for this augmented pressure space, we show that the linear
algebra challenges associated with using a frame can be overcome, which simplifies
the implementation of the method.

Let us now describe the enriched Taylor–Hood finite element spaces. We first intro-
duce a shape-regular family of simplicial, quadrilateral (in 2D) or hexahedral (in 3D)
decompositions of the domain �. We assume that any two elements have at most a
common face, edge, or vertex and denote by h the maximum diameter of any element.
The total number of elements in the resulting mesh is nel .

We denote the usual Taylor–Hood finite element space by V T H
h × QT H

h , so that
V T H

h × QT H
h = (Qk+1)

d × Qk or V T H
h × QT H

h = (Pk+1)
d × Pk with d ≥ 2. In the

latter case, we additionally assume that the polynomial degree, k, satisfies k ≥ d − 1.
The corresponding enriched Taylor–Hood space is V T H

h × Q�
h where

Q�
h =

{
q = qk + q0, qk ∈ QT H

h , q0 ∈ Q0
h

}
(5)

and Q0
h is the space of discontinuous pressures that are constant on each element. Thus,

we see that the velocity approximation space is identical to that of the corresponding
Taylor–Hoodelement,while Q�

h is QT H
h augmentedwith piecewise constant pressures.

It follows that functions in Q�
h may be discontinuous across inter-element boundaries.

We stress that the enriched Taylor–Hood space is well defined, and inf–sup stable.
From a linear algebra perspective, however, a critical point is the representation of Q�

h .
Ideally, we would like to represent functions in Q�

h as linear combinations of basis
functions. In this case the resulting linear system would be nonsingular, and it is likely
that the approaches described at the start of this section could be applied directly.
However, the most natural choice is define Q�

h by a frame, i.e., to let

Q�
h = span{φ1, . . . , φnk , φnk+1, . . . , φn p }, (6)

where {φk}nk
k=1 and {φk}n p

k=nk+1 are Lagrange bases of QT H
h and Q0

h (see (5)). This
approach to specifying the pressure space has been used in, e.g., [4, 20, 23].

Although this makes specification of the pressure straightforward, with this choice
any constant function on � can be represented by a function in QT H

h or a function in
Q0

h . This has profound consequences for the linear algebra: the pressure mass matrix
MQ that determines MS in (4) becomes singular, and the rank of the matrix BT is
reduced. In the rest of this section we first establish these properties, before showing
that it is still possible to solve (2) by preconditioned MINRES in this case.

Using (6), we can relate vectors p ∈ Rn p and functions p = pk + p0 ∈ Q�
h , where

pk ∈ QT H
h , p0 ∈ Q0

h . Specifically,

p =
n p∑

i=1

piφi , pk =
nk∑

i=1

piφi and p0 =
n p∑

i=nk+1

piφi . (7)
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Asmentioned above, any constant function hasmultiple representationswhen spec-
ified via (6). In particular, p = pk + p0 ≡ 0 with pk = α and p0 = −α, for any
α ∈ R. We see from (7) that this representation of the zero function corresponds to
the vector αk, where

k =
[
1nk

−1n0

]

(8)

and n0 = n p − nk . A direct consequence of the correspondence between k and the
zero function on � is that MQk = 0 and BT k = 0, as we now show.

Proposition 1 Let

MQ = [qi j ]n p
i, j=1, qi j =

∫

�

φiφ j ,

be the pressure mass matrix for the enriched Taylor–Hood pressure space Q�
h in (5),

specified by the frame (6). Then, null(MQ) = span{k}, where k is given in (8).

Proof Let p ∈ Rn p , p �= 0. Then, using (7), we find that

MQ p = 0 ⇔ pT MQ p = 0 ⇔
∫

�

( n p∑

i=1

piφi

)⎛

⎝
n p∑

j=1

p jφ j

⎞

⎠ = 0

⇔
∫

�

p2 = 0,

which implies that p ≡ 0 in � since p is continuous on each element. Since p ≡ 0
corresponds to vectors of the form αk, we find that span{k} ⊆ null(MQ).

We now show that there are no other vectors in the nullspace. Since p = pk + p0 ≡
0, pk ∈ QT H

h , p0 ∈ Q0
h , we must have pk = −p0 everywhere in �. But p0 is

piecewise constant, and pk is continuous on �. It follows that p0 ≡ α and pk ≡ −α

on � for some constant α ∈ R. Such functions correspond to vectors of the form αk,
which shows that null(MQ) = span{k}, as required. ��
Remark 2 A very similar argument shows that k ∈ null(BT ).

What do these results mean for the solution of (2) by preconditioned MINRES,
when the coefficient matrix is constructed using the frame in (6)? First, if BT k = 0
then it follows that A is always singular, with Aw = 0, where

w =
[
0nu

k

]

. (9)

If the linear system (2) is consistent then this does not pose a problem for pre-
conditioned MINRES. However, as we shall now see, the proposed block diagonal
preconditioner (4), with MS = MQ , is also singular, and so effective preconditioning
requires some care.
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Algorithm 3 Preconditioned MINRES algorithm for solvingAx = bwith symmetric
positive definite preconditioner P [8, Algorithm 4.1].
1: v(0) = 0, w(0) = 0, w(1) = 0, γ0 = 0
2: Choose x(0), compute v(1) = b − Ax(0)

3: Solve P z(1) = v(1), set γ1 = √〈z(1), v(1)〉
4: Set η = γ1, s0 = s1 = 0, c0 = c1 = 1
5: for j = 1 until convergence do
6: z( j) = z( j)/γ j

7: δ j = 〈Az( j), z( j)〉
8: v( j+1) = Az( j) − (δ j/γ j )v

( j) − (γ j/γ j−1)v
( j−1)

9: Solve P z( j+1) = v( j+1)

10: γ j+1 = √〈z( j+1), v( j+1)〉
11: α0 = c jδ j − c j−1s jγ j

12: α1 =
√

α2
0 + γ 2

j+1

13: α2 = s jδ j + c j−1c jγ j

14: α3 = s j−1γ j

15: c j+1 = α0/α1; s j+1 = γ j+1/α1
16: w( j+1) = (z( j) − α3w

( j−1) − α2w
( j))/α1

17: x( j) = x( j−1) + c j+1ηw
( j+1)

18: η = −s j+1η

19: <Test for convergence>
20: end for

2.2 Preconditioning considerations

Knowing that the enriched Taylor–Hood element is inf–sup stable implies that the
preconditioner (4) will be effective when solving (2). However, with the common
choice of frame (6), the matrix MQ , and hence the preconditioner P , are singular,
since Pw = 0, where w is given in (9). (Note that this implies that A and P have a
common nullspace.) Here, we will show that using a singular preconditioner causes no
difficulty for the preconditioned MINRES method in Algorithm 3 in exact arithmetic.
At the end of Sect. 2, we present numerical results with two different preconditioners
to demonstrate our approach.

We start by noting that at each iteration step we need to solve a linear system of
the form P z( j) = v( j). If this system is consistent there are infinitely many solutions,
which take the form z( j) = z( j) + ζ jw, with z( j) ⊥ w and ζ j ∈ R. Our next step is to
examine the effect of |ζ j | on the scalars and vectors in Algorithm 3. Observe that if
the linear systemAx = b is consistent then b ⊥ w and so v(1) ⊥ w. It then follows by
induction that v( j) ⊥ w, j = 1, 2, . . . , and that the systemsP z( j) = v( j) are all consis-

tent. Furthermore, γ j = 〈z( j), v( j)〉 1
2 = 〈z( j), v( j)〉 1

2 because of the orthogonality of
v( j) andw, so that ζ j does not affect γ j . Similarly, δ j = 〈Az( j), z( j)〉 = 〈Az( j), z( j)〉,
which shows that δ j is similarly unaffected by ζ j . Indeed, the only quantities that are
affected by the nullspace components ζ jw, j = 1, 2, . . . , are the vectorsw( j) and x( j).
In exact arithmetic, this is not a problem, since solutions of Ax = b may certainly
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contain a component in the direction of w. However, in unlucky cases, the size of the
nullspace component of x( j) may be so large as to dominate the approximate solution.
Alternatively, in finite precision v( j) and w may not be exactly orthogonal. Hence, it
may be wise to explicitly ensure that z ⊥ w. One option is to orthogonalise z against
w after each preconditioner solve, but if |ζ j | is large then the result may be inaccurate.
A more robust approach is to note that solutions of P z = r are minimisers of the
quadratic form

1

2
zTP z − zT r,

sinceP is positive semidefinite. Constraining z to be orthogonal tow is then equivalent
to the following optimisation problem:

min
z

1

2
zTP z − zT r s.t. wT z = 0.

Applying a Lagrange multiplier approach results in the augmented system

[ P w

wT 0

] [
z
λ

]

=
[
r
0

]

,

where λ is the Lagrange multiplier, and solving this augmented system gives a vector
z that is orthogonal to w. Moreover, since

[ P w

wT 0

]

=
⎡

⎣
M 0 0
0 MS k
0 kT 0

⎤

⎦

we see that only the solve with MS needs to be modified.

2.3 Approximating the two-level pressuremass matrix

Now let us consider approximations of the matrix MQ which, because of the two-level
pressure approximation, has 2 × 2 block structure:

MQ =
[

Qk RT

R Q0

]

,

where

Qk = [qk,i j ], i, j = 1, . . . , nk, qk,i j =
∫

�

φ j φi ,

R = [ri j ], i = nk + 1, . . . , n p, j = 1, . . . , nk, ri j =
∫

�

φ j φi ,

Q0 = [q0,i j ], i, j = nk + 1, . . . , n p, q0,i j =
∫

�

φ j φi .
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Note that Qk is the standard Taylor–Hood pressuremassmatrix, and Q0 is the standard
discontinuous pressuremassmatrix,while R represents cross terms between the spaces
QT H

h and Q0
h (see (5)).

Naively, one may wish to approximate Qk by its diagonal, but this results in slow
convergence rates; it can be shown, using the method described by Wathen [26],
that diag(Qk)

−1Qk has eigenvalues in an interval [0, μ] where, for example, for P1
elements on triangles μ = 3. Accordingly, applying a fixed number of iterations of a
Chebyshev semi-iteration based on a Jacobi iteration, as is standard for nonsingular
Galerkin mass matrices [25], leads to large iteration counts here. Replacing Qk or Q0
in MQ by their diagonals results in similarly poor performance.

However, it is possible to replace MQ by an approximation designed for symmetric
positive semidefinite matrices, see, e.g., [5, 7, 16] and the references therein. For
example, symmetric Gauss–Seidel is convergent for such matrices [7]. Here, we have
applied a fixed number of iterations of Chebyshev semi-iteration based on symmetric
Gauss–Seidel [5]. The results are still mesh-dependent, because the largest non-unit
eigenvalue of the underlying symmetric Gauss–Seidel iteration matrix approaches 1
as the mesh is refined but, for large problems, the cost per iteration is much lower than
applying MQ exactly.

2.4 Reliable computation of the discrete inf–sup constant

The inf–sup constant depends on the shape of the domain �. Thus the constant for a
step domainwith a long channel ismuch smaller than the constant for a square domain.
Estimation of the inf–sup constant dynamically provides useful information regarding
the connection between the velocity error and the pressure error. The inf–sup constant
also features in the norm equivalence between the residual norm of the saddle-point
system and the natural “energy” norm ‖∇u‖L2(�) + ‖p‖L2

0(�), as discussed in the
motivating paper [21].

A typical strategy to estimate the inf–sup constant for (1) is to find the largest γ that
satisfies (3), i.e., to find the smallest nonzero eigenvalue of the generalised eigenvalue
problem

BA−1BT v = λMQv, (10)

where A is prescribed by the velocity basis functions, MQ by the pressure functions,
and B by both the velocity and pressure functions.

Although the inf–sup constant is independent of the choice of these functions, in
practice, its computation may be affected. For example, with the common choice
to define Q�

h by the frame (6), Proposition 1 and Remark 2 show that k lies in the
nullspaces of both BT and MQ , which means that this generalised eigenvalue problem
is singular, i.e., any λ ∈ R satisfies (10) when v = k. It is known that generalised
eigenvalue problems with singular pencils are challenging to solve numerically [11],
and additional checks must be performed to ensure that an estimate of γ is not associ-
ated with the eigenvector k. In practice we find that standard methods for computing
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eigenvalues of sparse matrices may struggle to accurately compute these eigenvalues,
precisely because BA−1BT and MQ are singular.

An alternative is to define Q�
h by a basis instead of the commonly-used frame (6),

but it turns out that this is not necessary. The EST-MINRES approach proposed in
[21] is much more robust for this singular eigenvalue problem and gives consistently
reliable results for certain preconditioners. The intuition is that by ensuring that any
solves with MQ are orthogonal to k within the preconditioned MINRES method, (see
Sect. 2.2), we instead solve (10) for v ⊥ k.

We illustrate the EST-MINRES inf–sup constant estimates using two representa-
tive test problems that we describe below. All numerical results were obtained using
T-IFISS [2] (for triangular elements) and IFISS3D [19] (for cubic elements). The
stopping criterion for preconditioned MINRES is a reduction of the norm of the pre-
conditioned residual by eight orders of magnitude, i.e., ‖rk‖P−1/‖r0‖P−1 < 10−8.
We apply two different block diagonal preconditioners (4). The first is

P1 =
[
A

MQ

]

.

Although this preconditioner is expensive to apply, because it involves exact solves
with A, we have used it here to more clearly illustrate the key findings of this sec-
tion, namely, that (4) with MS = MQ is an effective preconditioner for augmented
Taylor–Hood problems, despite the singularity of MQ , and that EST-MINRES pro-
vides reliable approximations to γ , the discrete inf–sup constant in (3). However, we
note that it is possible to replace A by, e.g., an algebraic multigrid method such as
the HSL code MI20 [12]. With this AMG approximation, we are able to solve a 3D
problem with nearly 106 degrees of freedom in under 10 s on a quad-core, 62 GB
RAM, Intel i7-6700 CPU with 3.20GHz. Moreover, the effect on the inf–sup constant
is fairly small.

Our second, cheaper, preconditioner is

P2 =
[
AAMG

Mcheb

]

,

where AAMG is oneAMGV-cycle,with the default parameters inT-IFISS and IFISS3D
and Mcheb is 20 iterations of a Chebyshev semi-iteration method based on symmetric
Gauss–Seidel.

Test problem 1 (two-dimensional enclosed flow) Our first example is a classical
driven-cavity flow in the square domain D = [−1, 1]2. A Dirichlet no-flow condition
is imposed on the bottom and side boundaries, while on the lid the nonzero tangential
velocity is uy = 1− x4. The domain is subdivided uniformly into n2 bisected squares.
We use the standard P2–P1 Taylor–Hood mixed approximation and the augmented
P2–P∗

1 approximation. The two components of the pressure solution for the P2–P∗
1

approximation, computed for n = 32, are illustrated in Fig. 1. The centroid pressure
field is concentrated in the two corners where the pressure is singular, and the centroid
pressures are an order of magnitude smaller than the vertex pressure in all elements.
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Fig. 1 RepresentativeP2–P
∗
1 pressure field solution for the cavity flow in Example 1 computed on a uniform

meshwith 2048 right-angled triangles and 1089 vertices. Contours are equally spaced between themaximum
and minimum values in both plots

Consequently, the overall pressure field is visually identical to the P1 pressure field
shown in the left plot in Fig. 1.

Test problem 2 (three-dimensional enclosed flow) Our second problem is a three-
dimensional version of driven-cavity flow. The domain is now D = [−1, 1]3. As in
the previous example, the flow is enclosed, but now the nonzero tangential velocity
uy = (1− x4)(1− z4) is specified on the top of the cavity. The domain is subdivided
uniformly into n3 cubic elements, and we use Q2–Q1 and Q2–Q∗

1 approximations.

Table 1 shows preconditioned MINRES iteration counts and EST-MINRES dis-
crete inf–sup constant approximations for Example 1 with preconditioner P1. We first
note that for both the P2–P1 and P2–P∗

1 approximations the iteration counts are quite
similar and are mesh independent. In both cases the inf–sup constant approximations
also appear to be converging from above. The approximation for P2–P∗

1 elements
appears to rapidly converge to four digits, indicating that even a relatively coarse grid
is sufficient to obtain an approximation to the discrete inf–sup constant. However, the
approximation for P2–P1 elements appears to converge more slowly. We also note
that the two approaches give different inf–sup constant estimates, at least for the grids
shown here. This is not so surprising as the matrices in (3) depend on the choice of
finite element spaces.

When we replace the preconditioner by the cheaper P2, the situation is largely
unchanged for P2–P1 elements (see Table 2). However, for P2–P∗

1 elements, the pre-
conditioned MINRES convergence rate and inf–sup constant estimate degrade as the
mesh is refined. The effect on the convergence rate is caused by the largest non-unit
eigenvalue of the symmetric Gauss–Seidel iteration matrix approaching 1 as the mesh
is refined; this appears to also impact inf–sup constant approximation.

Figure 2 plots the inf–sup approximations at each iteration of preconditioned MIN-
RES for Example 1 for preconditioner P1. We see that a good approximation of the
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Table 1 Preconditioned MINRES iterations and discrete inf–sup constant approximations for Example 1
and preconditioner P1

Grid P2–P1 P2–P
∗
1

Velocity dof Pressure dof Iters γ 2 Velocity dof Pressure dof Iters γ 2

4 2178 289 37 0.1947 2178 801 42 0.1397

5 8450 1089 37 0.1926 8450 3137 42 0.1396

6 33,282 4225 39 0.1911 33,282 12417 40 0.1395

7 132,098 16,641 37 0.1898 132,098 49,409 40 0.1395

8 526,338 66,049 37 0.1888 526,338 197,121 40 0.1395

Table 2 Preconditioned MINRES iterations and discrete inf–sup constant approximations for Example 1
and preconditioner P2

Grid P2–P1 P2–P
∗
1

Velocity dof Pressure dof Iters γ 2 Velocity dof Pressure dof Iters γ 2

4 2178 289 42 0.1961 2178 801 59 0.1404

5 8450 1089 42 0.1940 8450 3137 59 0.1443

6 33,282 4225 44 0.1925 33,282 12,417 117 0.0467

7 132,098 16,641 45 0.1917 132,098 49,409 152 0.0259

8 526,338 66,049 45 0.1912 526,338 197,121 197 0.0064

Fig. 2 EST-MINRES estimates of the discrete inf–sup constant γ 2 at each iteration for Example 1 and
preconditioner P1 with P2–P1 (left) and P2–P

∗
1 (right) elements for the grids specified in Table 1

inf–sup constant is obtained after 20–25 iterations. It is again clear that for the enriched
Taylor–Hood approximations we obtain very similar approximations for all grids.

The results for Example 2 are given in Tables 3 and 4 and Fig. 3. Preconditioned
MINRES iteration counts for P1 are again mesh independent and, for all but the
coarsest mesh, are almost identical for the two element pairs. The discrete inf–sup
constant approximations again appear to converge from above. Now, at least for the
grids presented here, the estimates of γ 2 for Taylor–Hood elements seem to “track”
the augmented Taylor–Hood estimates, i.e., the Taylor–Hood approximation on grid
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Table 3 Preconditioned MINRES iterations and discrete inf–sup constant approximations for Example 2
and preconditioner P1

Q2–Q1 Q2–Q
∗
1

Grid Velocity dof Pressure dof Iters γ 2 Velocity dof Pressure dof Iters γ 2

3 2187 125 45 0.1128 2187 189 48 0.1122

4 14,739 729 51 0.1122 14,739 1241 52 0.1115

5 107,811 4913 51 0.1116 107,811 9009 52 0.1110

Table 4 Preconditioned MINRES iterations and discrete inf–sup constant approximations for Example 2
and preconditioner P2

Q2–Q1 Q2–Q
∗
1

Grid Velocity dof Pressure dof Iters γ 2 Velocity dof Pressure dof Iters γ 2

3 2187 125 50 0.1132 2187 189 53 0.1126

4 14,739 729 54 0.1128 14,739 1241 59 0.1124

5 107,811 4913 56 0.1123 107,811 9009 69 0.1094

Fig. 3 EST-MINRES estimates of the discrete inf–sup constant γ 2 at each iteration for Example 2 and
preconditioner P1 with Q2–Q1 (left) and Q2–Q

∗
1 (right) elements for the grids specified in Table 3

j is almost the same as the augmented Taylor–Hood estimate on grid j − 1. Table
4 shows that using the cheaper P2 also results in mesh-independent convergence for
Q2–Q1 elements. Additionally, the inf–sup constant approximations seem to “track”
the Taylor–Hood estimates in Table 3. Now, however, there is more modest growth in
the iteration counts when this approximate preconditioner is used forQ2–Q∗

1 elements
and the inf–sup approximations are much closer to those in Table 3.

We also see from Fig. 2, which plots the inf–sup approximations at each iteration
of preconditioned MINRES, for preconditioner P1, that the discrete inf–sup constant
is already reasonably well approximated after 25 iterations.
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3 Two-field pressure preconditioning strategies for Oseen flow

In this section we consider the Oseen problem

−ν��u + �w · ∇ �u + ∇ p = �0 in �,

∇ · �u = 0 in �,

�u = �g on ∂�,

that arises from applying fixed point iteration to the Navier–Stokes equations mod-
elling steady flow in a channel domain� ⊂ R2 with viscosity parameter ν. The Oseen
problem is a linear elliptic system of PDEs and assuming a divergence-free convection
field �w and a smooth (e.g., polygonal) domain �, has a unique weak solution for all
positive values of the viscosity parameter.1 The inf–sup stability of our two-fieldmixed
approximation is a sufficient condition for convergence of the mixed approximation
to the weak solution of the Oseen problem as h → 0.

Our focus will be on the associated discrete matrix system,

[
F BT

B 0

] [
u
p

]

=
[
f
g

]

, (11)

where the unknown coefficient vector involves the discrete velocity vector u ∈ Rnu

and the two-field pressure vector p ∈ Rn p . The right-hand side vectors f and g are
associatedwith the specified boundary velocity (as in the Stokes flowcase). References
to the “residual norm” throughout this section will refer to the standard Euclidean
norm for finite dimensional vectors. Thus, for the system (11) the convergence of our
iterative solver strategies is assessed by monitoring

‖z‖ :=
∥
∥
∥
∥

[
f − Fu − BTp
g − Bu

]∥
∥
∥
∥

�2

. (12)

The nonsymmetry of the matrix F means that the iterative solver of choice is
GMRES (see [8, Sect. 9.1]) together with a block preconditioning operator of the
form

M =
[
M BT

0 −MS

]

, (13)

where M is an optimal complexity (multigrid) operator effecting the action of the
inverse of the matrix F and MS is an optimal complexity approximation of the Schur
complement matrix BF−1BT . We will discuss results for two representative flow
problems herein.

1 Uniquely defined solutions to the underlying steady-state Navier–Stokes problem are only guaranteed
when the viscosity parameter is sufficiently large; see [8, Sect. 8.2.1].
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Fig. 4 Representative P2–P
∗
1 pressure field solution for flow over a step (R = 100) computed on a uniform

mesh with 5632 right-angled triangles and 2945 vertices

Test problem 3 (flow over a step) We consider an inflow–outflow problem defined
on the domain D = [−1, 0) × [0, 1] ∪ [0, 5] × [−1, 1] with the viscosity parame-
ter ν set to 1/50 and a parabolic velocity ux = 4y(1 − y) specified on the inflow
boundary x = −1. The construction of the standard weak formulation (see [8, p. 127])
gives rise to a natural boundary condition that fixes the hydrostatic pressure level by
weakly enforcing a zero mean pressure at the outflow boundary x = 5. (The other
boundary conditions are associated with fixed walls.) We consider the discrete system
(11) that results after 5 fixed-point iterations of the discretised Navier–Stokes system
starting from the corresponding Stokes flow solution. We generate solutions using
Q2–Q∗

1 orP2–P∗
1 augmented Taylor–Hoodmixed approximation with the domain sub-

divided uniformly into (bisected) squares. The resulting system (11) is singular with
the one-dimensional pressure nullspace described in Sect. 2. The two components
of the pressure solution computed on a representative P2–P∗

1 mesh are illustrated in
Fig. 4. The centroid pressure values are an order of magnitude smaller than the vertex
pressure in all the elements—they provide the “corrections” to the vertex pressures
that are needed to ensure local (elementwise) conservation of mass.

Test problem 4 (two-dimensional enclosed flow) We consider the classical driven-
cavity enclosed flow problem defined on the domain D = [−1, 1]2 with the viscosity
parameter ν set to 1/100 and a nonzero tangential velocity uy = 1−x4 specified on the
top of the cavity. We take P2–P∗

1 augmented Taylor–Hood mixed approximation with
the domain subdivided uniformly into n2 bisected squares. We consider the discrete
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Fig. 5 Comparison of divergence error and P2–P
∗
1 centroid pressure solution for cavity flow (R = 200)

computed on a uniform mesh with 2048 right-angled triangles and 1089 vertices

system (11) that arises after 5 fixed-point iterations starting from the corresponding
Stokes flow solution. The discrete system is singular with a two-dimensional pressure
nullspace, corresponding to a constant vertex pressure and a constant centroid pressure.
The contour plot on the left in Fig. 5 shows the element divergence errors ‖∇· �uh‖L2(�)

computed on a coarse mesh (n = 32). The associated centroid “correction” pressure
field contours shown on the plot in the right can be seen to provide a good indication
of the regions where the divergence error is concentrated. As in Fig. 4 the centroid
pressure values are an order of magnitude smaller than the vertex pressure in all
elements, so the overall pressure field is visually identical to the P1 pressure field (not
shown here).

3.1 Pressure convection-diffusion preconditioning for Oseen flow

There are two alternative ways of approximating the key matrix BF−1BT in the case
that BT is generated by a two-field pressure approximation so that BT = [BT

1 , BT
0 ].

The focus will be on pressure convection-diffusion (PCD) preconditioning in this
section. Both of the Schur complement approximations can be motivated by starting
with the Oseen matrix operator (11) and observing that the diagonal blocks of F are
discrete representations of the convection–diffusion operator

L = −ν∇2 + �wh · ∇, (14)

defined on the velocity space. In practical calculations ν > 0 is proportional to the
inverse of the flow Reynolds number and �wh is the discrete approximation to the flow
velocity computed at the most recent nonlinear iteration. The PCD approximation
supposes that there is an analogous operator to (14), namely

Lp = (−ν∇2 + �wh · ∇)p (15)
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defined on the two components of the augmented pressure space.
To this end, defining {φ j }n1

j=1 to be the basis for the C0 pressure discretisation, we
construct matrices Q1 and F1 so that

Q1 = [q1,i j ], q1,i j =
∫

�

φ j φi

F1 = [ f1,i j ], f1,i j = ν

∫

�

∇φ j · ∇φi +
∫

�

( �wh · ∇φ j ) φi .

We then note that if the commutator with the divergence operator

E = ∇ · (−ν∇2 + �wh · ∇) − (−ν∇2 + �wh · ∇)p ∇·

is small then we have the approximation

0 ≈ (Q−1
1 B1) (M−1F) − (Q−1

1 F1) (Q−1
1 B1) (16)

where M is the diagonal of the mass matrix associated with the basis representation of
the velocity space.2 Rearranging (16) gives the first Schur complement approximation

B1 F−1BT ≈ Q1F−1
1 (B1 M−1BT ). (17)

A discrete version of Lp for the piecewise constant pressure space can be gen-
erated by considering the jumps in pressure across inter-element boundaries; see [8,
pp. 268–370]. To this end, defining {ϕ j }n0

j=1 to be the (indicator function) basis for the
discontinuous pressure, we construct matrices Q0 and F0 via

Q0 = [q0,i j ], q0,i j =
∫

�

ϕ j ϕi =
{

|Ti | if i = j,

0 otherwise,

F0 = [ f0,i j ], f0,i j = ν
∑

T ∈Th

∫

T
∇ϕ j · ∇ϕi +

∑

T ∈Th

∫

T
( �wh · ∇ϕ j ) ϕi

and note that if the commutator with the divergence operator is small then we have

0 ≈ (Q−1
0 B0) (M−1F) − (Q−1

0 F0) (Q−1
0 B0), (18)

suggesting the second Schur complement approximation

B0 F−1BT ≈ Q0F−1
0 (B0 M−1BT ). (19)

2 The inverse of themassmatrix is a densematrix. The diagonal of themassmatrix is a spectrally equivalent
matrix operator with a sparse (diagonal) inverse.
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Fig. 6 Absolute residual reduction for test problem 3 when computing P2–P
∗
1 solutions using precondi-

tioners M1 (x) orM2 (o) on two nested meshes

Combining (17) with (19) then gives a two-field PCD approximation

BF−1BT ≈ MS :=
[

Q1 0
0 Q0

] [
F−1
1 0
0 F−1

0

]

BM−1BT . (20)

Two features of the PCD approximation (20) are worth noting. The first point is
that the coupling between the pressure components is represented by the 2 × 2 block
matrix BM−1BT rather than by the pressure mass matrix MQ . The second key point
is that the matrices MS and BF−1BT have the same nullspace, independent of the
nature of underlying flow problem that is being solved.

The PCD approximation in (20) is imperfect in practice. To illustrate this, repre-
sentative convergence histories that arise in solving the inflow-outflow problem using
P2–P∗

1 approximation (shown in Fig. 4) are presented in Fig. 6. Taking the solution
from the previous Picard iteration as the initial guess, we note that the initial resid-
ual norm of the target matrix system (11) is close to 10−4 independent of the spatial
discretisation. Convergence plots are presented for two preconditioning strategies,
namely

M1 =
[
F BT

0 − 1
ν

MQ

]

, M2 =
[
F BT

0 −MS

]

, (21)

with MS defined in (20). Thefirst strategy is the block triangular extension of the Stokes
preconditioning strategy discussed in Sect. 2. We note that the resulting convergence
is very slow—around 50 iterations are required to reduce the residual norm by an
order of magnitude—but is independent of the discretisation level. In contrast we
see that the PCD preconditioning strategy has two distinctive phases of convergence
behaviour. An initial phase of relatively fast convergence is followed by a secondary
phase where GMRES stagnates. We hypothesise that this stagnation is a consequence
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Fig. 7 Absolute residual reduction for test problem 3 when computing Q2–Q
∗
1 solutions using using pre-

conditionersM1 (x) or two-stage PCD (Step I: o; Step II: o) on two nested meshes

of the ill-conditioning of the eigenvectors of the matrix operator MS . A notable feature
is that the onset of the stagnation is delayed when solving the same problem on a finer
grid. The two-phase convergence behaviour is ubiquitous—the same pattern is seen
using rectangular elements and the stagnation does not go away when the viscosity
parameter is increased from 1/50 to 1/5. An alternative strategy is clearly needed!

One way of designing a more robust PCD preconditioning strategy for a two-field
pressure approximation is to exploit the fast convergence of the PCDapproximation for
the unaugmented Taylor-Hood approximation. The starting point for such a strategy
is to rewrite the system (11) in the form

⎡

⎣
F BT

1 BT
0

B1 0 0
B0 0 0

⎤

⎦

⎡

⎣
u
p1
p0

⎤

⎦ =
⎡

⎣
f
0
0

⎤

⎦ . (22)

The proposed solution algorithm is then a two-stage process.

• Input: residual reduction tolerance η and reduced system residual factor c

Step I Generate a PCD solution to the reduced system

[
F BT

1
B1 0

] [
u1
q1

]

=
[
f
0

]

(23)

using the Schur complement approximation (16), stopping the GMRES iteration when
the residual is reduced by a factor of cη.
Step II Generate a solution to the target system (22) with residual tolerance η using
preconditioning strategy M1 in (21) with the refined initial guess [u∗

1,q
∗
1, 0].

• Output: refined solution [u∗,p∗
1,p

∗
0]
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Fig. 8 Absolute residual reduction for test problem 4 when computing P2–P
∗
1 solutions using using pre-

conditionersM1 (x) or two-stage PCD (Step I: o; Step II: o) on two nested meshes

Sample results generated using this strategy with tolerance η set to 10−4 and c set
to 10 are presented in Fig. 7. Sample results for the cavity test problem are presented
in Fig. 8. The results in Figs. 7 and 8 are representative of the two-stage convergence
profiles that are generatedwhen solving these test problems at otherReynolds numbers.
Our experience is that the level of residual reduction is perfectly robust with regards
to the spatial discretisation—typically giving smaller iteration counts when the mesh
resolution is increased (a known feature of PCD preconditioning). The convergence
rates of both stages of the algorithm deteriorate slowly when the Reynolds number is
increased. Our strategy for terminating the first stage of the iteration is motivated by
the following result.

Proposition 4 The residual error ‖z∗‖ associated with the intermediate solution
[u∗

1,q
∗
1, 0] to the discrete system (22) satisfies the bound

‖z∗‖2 ≤ c2η2 ‖f‖2 + ‖B0u∗
1‖2, (24)

where ‖f‖ is the initial residual error associated with a zero initial vector.

Proof The vector z∗ associated with the intermediate solution is the three-component
vector

⎡

⎣
r∗
r∗
1
r∗
0

⎤

⎦ =
⎡

⎣
f
0
0

⎤

⎦ −
⎡

⎣
F BT

1 BT
0

B1 0 0
B0 0 0

⎤

⎦

⎡

⎣
u∗
1

q∗
1

0

⎤

⎦ . (25)

The stopping test for solving the reduced system ensures that

‖r∗‖2 + ‖r∗
1‖2 ≤ c2η2 ‖f‖2. (26)
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Thus we have

‖z∗‖2 = ‖r∗‖2 + ‖r∗
1‖2 + ‖r∗

0‖2 ≤ c2η2 ‖f‖2 + ‖B0u∗
1‖2. (27)

��
The bound (24) has two terms on the right-hand side. While the first term can be

controlled by reducingη and/or c, the second termmeasures the local incompressibility
of the intermediate Taylor–Hood solution ‖B0u∗

1‖2 = ∑
j

( ∫
Tj

∇ · �u ∗
h

)2, where �u ∗
h is

the expansion of the coefficient vector u∗
1 in the basis of the velocity approximation

space. Setting η = 10−4 and c = 10 we see that the second term saturates the residual
error and the residual error jumps up when the switch is made from the first to the
second step of the algorithm. This “transition” jump in the residual norm is clearly
evident in the convergence plots. The convergence in the second step is rapid initially
but eventuallymirrors the rate observed forM1 approximationwith a standard starting
guess.

3.2 Least square commutator approximation for Oseen flow

A second way of approximating the key matrix BF−1BT in the case that BT is gener-
ated by a two-field pressure approximation is given by the least-squares commutator
(LSC) preconditioner

BF−1BT ≈ MS = (BH−1BT ) (BM−1FH−1BT )−1 (BM−1BT ). (28)

The attractive feature of LSC is that the construction of MS is completely algebraic.
The only technical issue is the need to make adjustments on rows and columns asso-
ciated with tangential velocity degree of freedom adjacent to inflow and fixed wall
boundaries. These adjustments are associated with a diagonal scaling matrix D so that
H = D−1/2MD−1/2. Full details can be found in [8, pp. 376–379]).

The LSC approximation (28) is also far from perfect when using triangular ele-
ments.3 To illustrate this, representative convergence histories that arise in solving the
inflow-outflow problem using P2–P∗

1 approximation are presented in Fig. 9. Conver-
gence plots are presented for two preconditioning strategies, namely the refined PCD
from the previous section and

M3 =
[
F BT

0 −MS

]

, (29)

with MS defined in (28).
The PCD histories in Fig. 9 display mesh independent convergence and are com-

parable with those observed using square elements in Fig. 7. The associated cpu times
for the solution on the intermediate grid with 2 × 11264 elements were 13s for the

3 The strategy is designed for tensor-product approximation spaces. It gives good results in the case of
Q2–Q

∗
1.
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Fig. 9 Absolute residual reduction for test problem 3 when computing P2–P
∗
1 solutions using using refined

PCD (left) or preconditionerM3 (right) on three nested meshes

first step (28 iterations) and 26s for the second step (53 iterations). The LSC precondi-
tioning strategy is not robust—the convergence rate deteriorates with increasing grid
refinement. The cpu time for generating the LSC solution on the intermediate grid was
over 100s (61 iterations).

4 Conclusions

Two-level pressure approximation for incompressible flowproblems offer the prospect
of accurate approximation with minimal computational overhead. Derived quantities
of practical importance such as the mean wall shear stress are likely to be computed
muchmore precisely if incompressibility is enforced locally.4 However, the augmented
pressure space causes some challenges for the linear algebra when the pressure space
is defined by combining the usual Taylor–Hood pressure basis functions with basis
functions for the piecewise continuous pressure space. This is because constant func-
tions can be expressed using either the usual (continuous) Taylor–Hood pressure space,
or the augmented piecewise constant pressure space. Specifically, with this common
choice for specifying the pressure space, the pressure mass matrix becomes singular,
and care should be taken to carefully construct and apply preconditioners that involve
this matrix. Care should also be exercised when approximating the discrete inf–sup
constant, and we find that naive approaches are not always reliable. On the other
hand, the approximation implemented in EST-MINRES is robust. Our computational
experimentation indicates that our two-stage PCD strategy could be the best way of
iteratively solving two-level pressure discrete linear algebra systems in the sense of
algorithmic reliability and computational efficiency.

4 See https://personalpages.manchester.ac.uk/staff/david.silvester/lecture1.18.mp4 for a comparison of
alternative strategies for computing the average shear stress for flow over a step at Reynolds number
200.
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