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Abstract. Blades leading edge erosion can significantly reduce annual energy production of
wind turbines. Accurate estimates of the resulting blade performance impairment are paramount
to predict the resulting energy losses and enable cost-informed decisions on optimal maintenance
and operational strategies, maximizing energy production and reducing maintenance costs.
Computational Fluid Dynamics (CFD) is a robust approach for predicting the performance
losses due to LEE. However, the impact of the damage on blade aerodynamics varies depending
on damage pattern, extent and location. Therefore, direct CFD simulation of a sufficiently
general set of damaged blades is computationally not viable in industrial applications, since the
energy loss assessment needs to be performed for hundreds of turbines at many times of the
wind farm operation. To address this issue, previous studies showed how CFD can be used
to train machine learning metamodels of the perfomance of damaged blade sections, enabling
the definition of multi-fidelity energy loss prediction systems. This study presents improved
metamodels, using validated CFD to generate training datasets that cover a more general and
wider range of erosion patterns, from low-amplitude roughness to severe grooves. In order to
provide the industry with additional erosion geometry-linked tools for estimating energy yield
losses, and foster further research and development in this area, the developed meta-models
have been made available online with unrestricted access.

1. Introduction
Airborne particles such as rain droplets, hail stones and sand grains can significantly alter
the external shape and roughness of wind turbine (WT) blades, yielding a significant loss of
annual energy production (AEP) of the wind farms. Recent studies estimated the AEP loss and
its uncertainty using probabilistic frameworks [1, 2], showing that an average AEP loss from
1.5% to 3% can occur, depending on the site (onshore or offshore), turbine model and operating
conditions. In those studies, the considered uncertainty was that associated with a particular LE
erosion (LEE) pattern along the blade. In general, the impact of LEE on blade aerodynamics abd
turbine performance depends on the shape of damage, its depth and distribution and location
along the radius [3, 4]. In [5], AEP losses were found to vary from 1% for LEE made of pits and
gauges to 6% for LEE due to extended loss of coating. In [6], a field recorded damage geometry
was used to define the CFD model for different possible damage severity states. The study
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shows that up to 1% of AEP can be lost when LEE trips the boundary layer (BL) laminar-to-
turbulent transition at the LE along a significant portion of the blade, whereas the presence
of severe damages can further spoil the blade performance, from 1 to 3.5%, depending on the
damage geometry and location.

All the aforementioned studies calculate the AEP loss making use of the blade element
momentum theory (BEMT) for rotor aerodynamics embedded in multi-disciplinary wind turbine
codes. A fundamental information required to generate a reliable BEMT model of the damaged
blade is the accurate estimate of its airfoils’ lift (cl) and drag (cd) coefficients for each LEE
damage considered. The effects of LEE on cl and cd have been extensively investigated through
wind tunnel tests [3, 7] and numerical simulation [8, 6], showing that both small-scale surface
roughness and large-scale surface alterations have a significant effect on the blade performance.

CFD offers a robust approach to predict the performance losses due to LEE, but the variety
of possible damage geometries makes this approach impractical for AEP loss estimates from an
O&M perspective. In [9], CFD was used to define a suitable dataset of damaged airfoil force
coefficients to train cl and cd metamodels to evaluate the aerodynamic force of each damaged
blade strip. In that preliminary work, the focus was on large grooves extending from the
pressure to the suction side. A similar approach to metamodel generation was used in [10],
which focused on uncertainty affecting the overall geometry of the blade sections, such as that
due to manufacturing errors.

In this study, we present extended and improved metamodels for predicting cl and cd of
damaged blade strips, based on more accurate CFD models and setups, and a broader variety of
LEE patterns, examining damages ranging from low-amplitude distributed roughness to severe
grooves.

The metamodels are feed-forward artificial neural networks (ANNs), trained with two
databases of cl and cd, each associated with two damage types. The database of the first
damage type covers the range of damage patterns corresponding to small-scale roughness, the
database of the second damage type is that associated woth large grooves over the LE. The
damage scale separation is accounted for in the definition of the CFD model. Similarly to [6],
a fully turbulent approach and damage resolving CFD mesh is used for airfoils with grooves,
assuming the BL laminar-to-turbulent transition to always occur at the LE. For small-amplitude
roughness, the BL transition location is crucial for accurately predicting the force coefficients;
hence, a transitional RANS model is used to simulate the nominal airfoil geometry with rough
wall. Small-amplitude roughness is accounted for by using a two-parameter model, the sand grain
roughness Ks for the rough-wall boundary conditions, and a measure of the actual roughness
height K for the rough-wall transition model.

Defining metamodels with K and Ks as separate inputs is an important aspect of novelty
associated with this study. Indeed, the determination of the correct combination of roughness
parameters associated with a given LEE damage is paramount for reducing the uncertainty of
AEP loss prediction, but this is still an outstanding research question. More specifically, the
estimate of K may be derived from the geometric characteristics of the measured roughness
profile, as reported in [11]. The Ks parameter, on the other hand, depends on how the
roughness profile interacts with the BL. Studies based on direct Navier-Stokes simulations [12],
and experimental studies [13, 14] show that the relationship between K and Ks can differ
significantly for the same measured value of K, depending on the detailed geometric features of
the roughness geometry, e.g. density, shape, and orientation with respect to the aerodynamic
flow of the roughness elements. In order to account for this uncertainty, the metamodels here
is are structured so as to provide cl and cd estimates for a fairly wide range of values and
combinations of K and Ks.

The paper structure is as follows. Section 2 presents the parametrization used to define
the LEE damage types and properties. Section 3 describes the CFD modelling used for the
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computation of damaged airfoils cl and cd. Section 4 describes the algorithm for defining
and generating the force coefficient databases used to train the machine learning metamodels
defined in Section 5. Finally, Section 6 presents the analysis of the databases and assesses the
performance of the new metamodels.

In order to provide the industry with additional erosion geometry-linked tools for estimating
energy yield losses, and foster further research and development in this area, the developed meta-
models have been made available online with unrestricted access at github.com/LANCASTER-
CFD/Leading-Edge-Erosion/tree/main/TORQUE-2024. The website will also publish new data
generated by follow-on work of the authors.

2. LEE damage parametrization
Two parametric models of LEE damages are defined: one for cases with small-amplitude
roughness, and a second one for cases with resolved severe damages approximated with constant
depth chordwise grooves. Figure 1 shows the parameters definition used to define the damages.
The first three sub-figures refer to the grooves, and next three to distributed roughness. The
parameters used to define the severe damage grooves are: su and sl which are the curvilinear
extension of the groove on the suction side and pressure side respectively, and d which is the
groove depth. For the case with surface roughness, the curvilinear extension of the rough wall
on the airfoil is defined by the same su and sl parameters, while the roughness is defined through
the roughness height K and the sand grain roughness Ks.

Both damages can be positioned on the suction side, on the pressure side, or on both sides
of the airfoil by a proper combination of positive or negative values of su and sl.

3. Computational aerodynamics model
The force coefficients (cl and cd) of the damaged airfoil are computed with 2D computational
fluid dynamics simulations. For all the simulations, the Reynolds Averaged Navier Stokes
(RANS) equations for incompressible and turbulent air flow are solved, coupled with the k − ω
Shear Stress Transport (SST) eddy viscosity model [15]. A fully turbulent approach is used
when a groove damage is resolved by the computational mesh. For nominal airfoil geometry
simulations, laminar-to-turbulent transition of the BLs is simulated by using the Langtry-Menter
four-equation γ–Reθ SST transition model [16, 17, 18]. The model couples two additional
equations to the SST model, one for the momentum thickness Reynolds number Reθ and the
other for the turbulence intermittency γ.

For cases where the damage pattern scales cannot be resolved by the computational grid, small
amplitude roughness is accounted for by using a two-parameter model. The model requires
defining the sand grain roughness Ks value for the rough-wall boundary conditions, and a
measure of the actual roughness height K for the rough-wall transition model. The sand grain
roughness is used in an the automatic wall treatment based on rough wall functions (details
in [19, 8, 20, 6]). The roughness height parameter K is used to define a modification term in the
γ–Reθ SST transition model. In particular, the Reθ field is modified to account for the increase
of the BL momentum thickness due to the unresolved roughness [19, 8, 6].

Figure 1: LEE damages and parameters.
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Figure 2: Computational mesh. Left: geometry with positive su/c and sl/c groove. Right: mesh
of the nominal airfoil geometry

Figure 2a shows the LE mesh for a case with groove damage of positive curvilinear extension
on both suction side and pressure side. Figure 2b show the computational mesh for all the cases
with surface roughness. In the latter case, 350 elements are used to discretize the LE region
covering the span where roughness is applied. The rest of airfoil line is divided in 350 elements
on both the suction side and pressure side, with 2.5×10−6 used as minimum wall distance to
assure y+ < 1 on all no-slip wall boundary. The number of elements normal to the airfoil and
from the TE to the outlet of the domain are 150 and 110 respectively. The mesh for the resolved
groove case is different only in the LE zone, where an additional structured block of mesh is used
for the flow inside the constant depth groove. A grid sensitivity study was performed to find
the optimal density of cells per unit length to set in the discretization of the groove curvilinear
extension.

Both steady and time-dependent solvers are used in the generation of the cl and cd
computations. As in previous works [20, 21], the constant a1 in the expression of the SST
eddy viscosity is changed from 0.31 to 0.29 to improve the agreement with measured force
coefficients of the nominal and clean NACA643-618 airfoil.

This CFD modelling has been validated against experiments for a NACA633418 airfoil in
two cases: distributed roughness on the leading edge (LE) in a wind tunnel experiment at
Re=3×106 [3], and a constant groove depth of 0.3% of the chord at Re=5×106 [4]. Figure 3
shows the comparison of CFD and measurements for the drag polar as reported also in [6, 21].

All the simulations are performed with Ansys FLUENT v.21 R2 on the Lancaster University
HEC cluster [22].

4. Databases of force coefficients
Table 1 lists the value of the parameters defining the two damaged airfoil CFD databases used
for training the force coefficient metamodels, with the selected airfoil being the NACA643-618,
which covers the outer 30% of the reference blade. In all cases, CFD simulations are performed
at angles of attack (AoAs) from -10◦ to 16◦ with a 1◦ step.

The database generation is automatic and scripted. The automatic framework builds the
geometry of the airfoil (with or without a groove), generates the CFD mesh and writes the
simulation journal file listing all the settings for the aerodynamics modelling and boundary
conditions for the 2D simulations. An automatic control on the damage curvilinear extension is
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Figure 3: Comparison of CFD vs. experiments for a NACA633418 with distributed roughness
of Ks = 101 µm (left) and 3 mm LE groove (right).

Table 1: Database definition and bounds.

Parameter Database 1 Database 2

su/c×100 -2 : 0.3∆ : 4 -2 : 0.6∆ : 4
sl/c×100 -2 : 0.3∆ : 4 -2 : 0.6∆ : 4
d/c×100 0.05 : 0.1∆ : 0.75 -
K/c×106 - (50, 100, 150, 200, 300)
Ks/K - (0.5, 1, 2, 5, 10)

applied in the automatic generation of the groove geometries and rough distribution, to avoid
combinations such that su/c+sl/c < 0.003. This condition avoid negative curvilinear extensions
(which are not possible), but it also avoid cases where the curvilinear extension of the damage
is too small to produce significant effects on the alteration of the aerodynamic force coefficients.

Automated convergence tests are defined and implemented to assess convergence of residual
and force coefficient in the scripted database generation. The scripted system starts with steady
state simulations, and automatically switches to time-dependent simulations for non-converging
solutions, running until time-averaged convergence of the aerodynamic force coefficients is
achieved.

The steady RANS simulation run for a maximum of 2500 iterations, while 3,000 time-steps
is the limit of the time-dependent simulations. The time dependent simulation starts from the
final steady RANS solution. Each time-step is solved by performing 25 sub-iterations, and the
time-step is obtained dividing by 35 the time the air flow takes to cover one chord length. A
Reynolds number of 9×106 is imposed for all the simulations. The far field TI and turbulent
length scale are set to 0.1% and 0.2 chords, respectively.

5. Metamodels of force coefficients
All the metamodels use a multi-layer perception feed-forward Artificial Neural Networks (ANNs)
with one hidden layer of 80 neurons. The number of neurons is chosen to give a good trade-off
of fitting and computational cost. Three ANNs are generated for each database, one for cl
and one for cd. The learning process consists of a gradient-based optimization problem, solved
with the Levenberg–Marquardt (LM) method. The dataset splitting is 80% for training 15% for
validation and 5% for testing.

The effectiveness of ANNs can significantly increase by augmenting the input set, especially
when used for regression tasks. In a standard ANN used for regression, the input layer receives
the raw features X = {x1, x2, ..., xd} (where d is the number of the original inputs). These are
processed through one or more hidden layers that apply weights (w) and biases (b), followed by
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activation functions like ReLU or sigmoid. The output layer then produces the continuous value
ŷ. The learning process involves adjusting w and b to minimize the difference between ŷ and the
actual output y, often using a mean squared error (MSE) loss function: MSE = 1

N

∑N
i=1(yi−ŷi)

2

(where N is the number of samples).
Augmenting input features in ANNs for regression means adding new inputs derived from the

original set. The input augmentation can have different benefits. Augmented features allow the
ANN to model complex relationships without needing additional layers or neurons, which can
be computationally more efficient. By including interactions and nonlinearities explicitly, the
model can often achieve higher accuracy in regression tasks. In some cases, augmented features
can lead to a simpler model that generalises better, reducing the risk of overfitting. Although
ANNs are often seen as black boxes, augmented features derived from known interactions can
offer some interpretability regarding how certain variables influence the output.

In this preliminary attempt to use the augmented input approach, quadratic and simple
interactions (such as x12 = x1 × x2) terms have been used. The results look promising, but
future work and tests will be needed to understand the effect of the augmented inputs and then
optimise the set.

6. Results and discussion
Figure 4 shows the ranges of force coefficients (filled areas) spanned by the damage cases in the
two databases, as well as the force coefficients of the nominal clean NACA643-618 airfoil (black
curves). Figure 4a presents the values of cl, cd, and cl/cd versus AoA for Database 1, which
includes LEE grooves. This type of damage significantly affects both lift and drag, reducing
lift at high AoA and increasing drag across the entire AoA range. Figure 4b refers to Database
2 of LEE cases with small amplitude roughness. Here, the span of the filled area is narrower
than in the erosion grooves case, and it approaches the nominal clean case for scenarios with
the smallest roughness height and extent.

Merging the plots from Figures 4a and 4b would demonstrate that the combination of the
two databases covers a continuous spectrum from the clean and nominal case to the most severe
groove damage case. There is an overlapping area of conditions where roughness and groove
damage cause similar performance impairments.

Figures 5 and 6 illustrate the isolate effects of individual damage parameters on the output
of force coefficients for Databases 1 and 2, respectively. Figure 5 show how the cl and cd
curves vary with changes in su/c (as shown in Figure 5a) or d/c (as shown in Figure 5b),
when other parameters are held constant at a reference point of (su/c, sl/c, d/c) = (0.022,
0.022, 0.0025). Increasing the damage depth d consistently leads to a monotonic decrease in
performance, evidenced by a reduction in cl at positive AoAs and an increase in cd across all
AoAs. Conversely, the impact of varying the suction side curvilinear extension su/c is not
monotonic for both cl and cd. The set of cases in Figure 5a indicates that the worst performance
occurs with an intermediate value of su/c. This suggests that positioning the forward-facing
step farther from the LE can mitigate the impact on the cl and cd of the damaged airfoil.

Figure 6 shows the change of cl and cd curves for a damage case defined by (su/c, sl/c, K/c,
Ks/K) = (0.022, 0.022, 150×10−6, 2), analyzing the variation of su/c (as shown in Figure 6a) or
Ks/K (as shown in Figure 6b). In this scenario, the effects of both parameters on cl and cd are
monotonic. Indeed, the primary influence comes from the roughness effects, particularly in terms
of its interaction with the BL transition and shear friction. As the extent of the roughness over
the airfoil line increases, so does its impact on airfoil performance. Specifically, an increase in
su/c leads to a decrease in cl at high AoAs, and alters the AoA at which the BL transition occurs
at the LE of the airfoil, which is reflected in a discontinuity in the cd vs. AoA curve. Figure 6b
shows that an increase in Ks/K produces a qualitatively similar effect. This result demonstrate
that even with a reliable measurement of K, the performance of the damaged airfoil can vary
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(a) Database 1

(b) Database 2

Figure 4: Databases of cl and cd.

significantly depending on the assumed equivalent sand grain roughness Ks. This underscores
the importance of accurately estimating Ks/K to reliably assess the impact of roughness on
blade performance.

The accuracy of the metamodels is verified on two separate sets of data that were not used
for training. One set (on-grid) is defined by extracting 128 cases from the database detailed
in Table 1. The second set of data for testing (off-grid) is created by running additional CFD
simulations for a set of parameter values that fall within the bounds but do not correspond
exactly to any of the grid points defined in Table 1. In constructing the off-grid test cases, CFD
simulations were performed over a finer range of AoA, from -10◦ to 16◦ in steps of 0.5◦. Figure 7
provides an overview of the performance of the ANNs for Database 1. The left sub-plots show
a histogram collecting the results of the tests, which involve comparing the ANN cl predictions
to the CFD results for the same damaged geometry. The metric employed to verify prediction
accuracy is the Root Mean Squared error (RMSe) of the difference between ANN and CFD
results across the entire range of AoAs. The distributions indicate that the total cl RMSe is
below 0.02 for the on-grid cases (Figure 7a), and below 0.01 for the off-grid cases (Figure 7b),
with averages of 0.0045 and 0.0046, respectively. A similar pattern is observed for the cd ANN
test, where the average RMSe for on-grid cases is 0.00071 and for off-grid cases is 0.00068. The
middle and right sub-plots in Figure 7 present the CFD and ANN cl and cd curves for the tested
geometry with RMSe closest to the modal value of the error distribution in the left sub-plot. For
most geometries, the ANNs accurately predict cl and cd, both in conditions of a fully attached
BL and near the maximum cl

Figure 8 employs the same visualization approach to present an overview of the performance
of the ANNs for Database 2. For on-grid cases (Figure 8a), the average RMSe is 0.0029 for cl
and 0.0002 for cd. For off-grid cases (Figure 8b), the average RMSe is 0.0087 for cl and 0.001 for
cd. From the right plots in Figure 8, it is apparent how the metamodels handle the discontinuity
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Figure 5: cl and cd vs. AoA for cases of Database 2 with sl/c = 0.022. Top: cases with fixed
d/c = 0.0025 and variable su/c; bottom: cases with fixed su/c = 0.022 and variable d/c.
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Figure 6: cl and cd vs. AoA for cases of Database 2 with sl/c = 0.022. Top: cases with fixed
Ks/K = 2 and variable su/c; bottom: cases with fixed su/c = 0.022 and variable Ks/K.
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(a) On-grid tests

(b) Off-grid tests

Figure 7: ANNs tests for Database 1. Left: histogram of RMSe in cl prediction. Center and
right plots shows prediction in the case closest to the median RMSe for the cl ANNs.

in the cd curve, which is due to the onset of BL transition at the LE of the airfoil. In cases where
the prediction is requested for an AoA that is included in the training dataset, the prediction
perfectly matches. However, when the resolution in terms of AoA is increased, the ANN is
unable to capture the discontinuity and provides an interpolated value for the points that are
off-grid with respect to the AoA.

7. Conclusions
This article presented new metamodels, based on ANNs, for the rapid estimate of the
aerodynamic performance of the NACA643-618 airfoil subjected to LEE. Compared to previous
studies, the metamodels are designed to cover a wider and more comprehensive range of damage
cases, ranging from small-amplitude distributed roughness to cases with significant material
removal from the LE. Two databases were generated using 2D RANS simulations for the training
of the ANNs. The first database is generated with fully turbulent simulations of geometrically
resolved erosion groove, whereas the second database is generated using a transitional laminar-
to-turbulent RANS model combined with a two-parameter roughness modelling applied to the
nominal geometry. This latter case represents a novel aspect enabling the ANNs to cover different
type of roughness profiles of the blade surface. The new metamodels demonstrated very good
accuracy compared with CFD results of eroded geometries not included in the training dataset.

Making the developed metamodels openly available at github.com/LANCASTER-
CFD/Leading-Edge-Erosion/tree/main/TORQUE-2024, will provide new support to wind farm
operators and wind energy researchers, contributing to further advances in cost analyses and
blade predictive maintenance. The website will also publish new data generated by follow-on
work of the authors.
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(a) On-grid tests

(b) Off-grid tests

Figure 8: ANNs tests for Database 2 . Left: histogram of RMSe in cl prediction. Center and
right plots shows prediction in the case closest to the median RMSe for the cl ANNs.
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