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Abstract—Multimedia traffic is expanding at an astonishing
rate and is finding its way into many new applications, including
wireless sensor networks and devices from the Internet of Things.
However, the bandwidth and energy requirements associated
with them are becoming increasingly prohibitive, challenging
the sustainability of many communication networks. Semantic
communications offer a novel approach to overcome bandwidth
limitations, but the complexity of encoders and decoders limits
their application in resources-constrained devices. We propose a
semantic communication-based complexity-scalable image trans-
mission system that uses asymmetric autoencoders to shift the
complexity of the system to the encoder or decoder without
compromising on human and machine perceived quality. Using a
test data set, we demonstrate that the complexity can be shifted
between the two without affecting the overall performance of the
semantic communication system. This concept will be significant
in the implementation of wireless sensor networks based on
semantic communication and Internet of Things applications,
while also providing a novel tool to further improve conventional
encoder simplification approaches, such as distributed coding.
Furthermore, the realization of energy efficient sensors by uti-
lizing semantic communications and complexity scalability will
have a direct impact on achieving sustainable development goals
related to energy usage and management in media communica-
tions.

Index Terms—Asymmetric Autoencoders, Image Communica-
tions, IoT, Semantic Communications, Wireless Sensor Networks

I. INTRODUCTION

Multimedia communication has become an essential part of
many applications ranging from entertainment, health, trans-
portation, agriculture, aquaculture, remote sensing, security,
and smart cities. However, the increasingly complex nature of
media and communication systems has led to an enormous

increase in its bandwidth and energy demands, becoming a
major concern for the sustainability of the entire ecosystem.
The widespread adaptation of sustainability concepts across
such systems and a significant overall reduction in the negative
impact of resource utilization and the environment are key
concerns as we move into the future.

Sustainable information communication technology, or
Green ICT [1], [2], covers the creation, use, management, and
disposal of devices and systems that minimize environmental
impact, as shown in Fig. 1. This has led to more investments
towards smart cities that contain smart transportation, open
data, smart buildings, smart manufacturing, and smart citizens
governed by smart governments. This growing dependence
on information communication technology in our daily lives
must be managed to reduce the dependency on environmental
resources, while minimizing the pollution caused by their
improper use.

Fig. 1. The Concept of Green ICT

Battery-operated meters, thermostats in smart home con-
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cepts, smart assets, pet tracking devices, smart crop sensors,
connected cellular smart meters, and even sensor networks
of electric mobile vehicles such as cars or scooters fall into
the category of low-power devices under IoT, as do common
appliances such as televisions, refrigerators, mobile communi-
cation devices, and even personal computers. The application
of reducing power consumption is often utilized to improve
energy usage. This will be due to the inability to power the
IoT gadgets, as well as the exclusive usage of the battery.
Selecting an appropriate IoT may lead to ensuring the stability
and high reliability of users and the future of a sustainable
environment [3].

Novel approaches for modeling resource, material, manu-
facturing, and power management are necessary to implement
this vision. The systemic nature of these systems means that
they are ideally placed to undergo a complete reformation in
their practices. A key requirement for this transformation is the
minimization of bandwidth and energy footprint of wireless
sensor networks (WSN) and the Internet of Things (IoT) as
5G and 6G systems under ever-increasing traffic load with
such surging multimedia traffic. These services and networks
are also supposed to support smart and adaptive operation
using complex control frameworks, even increasing resource
consumption.

A novel approach to the communication problem in such
networks can make use of semantic communications. First
described in [4], it suggests that, given the existence of
a shared context between a transmitter and a receiver, the
semantic or meaning of a message alone is sufficient to achieve
the desired effect of communication and even reconstruct
the original information. It is expected to reduce bandwidth
and complexity while increasing range and enabling longer
operational cycles in battery-powered devices for WSN and
IoT. However, these semantic communication systems suffer
from requiring significant computing resources to train and run
compared to conventional communication systems, limiting
their application in scenarios where either the encoder or
decoder is resource-constrained, mainly in terms of compu-
tational power and bandwidth.

We propose a system of image transmission based on
asymmetric autoencoder semantic communication scalable by
complexity. The optimization of the Deep Neural Network
used in the proposed system to achieve the performance bal-
ance between processing complexity and bandwidth utilization
for image transmission applications. The major impact of the
proposed research will be the application of the proposed
concept of semantic communication to collect and analyze
sensor outputs in a semantic context (as opposed to a physical
context, which is done now), enabling machines to identify the
context of the environment they sense and perform machine-
based decision making, which can greatly increase the value
of different types of state-of-the-art WSN and IoT-based solu-
tions. The proposed work may well be a major breakthrough
that enables the capabilities envisaged for 6G in future WSN
and IoT.

II. RELATED WORK

The general communication system for electronic trans-
mission of information was first introduced along with 11
fundamental theorems for understanding it [5] . The last of
these theorems states that for a channel with capacity C and a
discrete information source with entropy per second H there
is no encoding method that gives an equivocation less than
H − C. This effectively imposes a maximum rate of error-
free transmission on a channel subject to electronic noise as
shown in (1), where C is the channel capacity, B is the channel
bandwidth, and S

N is the signal-power-to-noise-power ratio of
the signal.

C = B log2

(
1 +

S

N

)
(1)

Although digital communication has evolved exponentially
since [5], this bound still governs the maximum data rate that
can be reached on any channel.

Semantic communication has recently reemerged as a way
to circumvent this limit. It was first discussed in suggesting
the existence of three problems in communication systems:
technical (“How accurately can the symbols of communication
be transmitted?”), semantic (“How precisely do the transmitted
symbols convey the desired meaning?”), and effectiveness
(“How effectively does the received meaning affect conduct
in the desired way?”) [4]. Conventionally, resolution of effec-
tiveness and semantic problems can only be achieved if the
technical problem is successfully resolved, that is, commu-
nication symbols are transmitted accurately. This is typically
ensured by using source and channel coding, which improves
the resilience of a signal against errors induced by channel
noise.

Recent advances in artificial intelligence/machine learning
that enable efficient and effective implementation of deep
neural networks have made it possible to reliably extract the
semantic of a message, which can be thought of as a highly
compressed version of the original message. If a transmitter
and a receiver share the context of how the semantics was
extracted, the receiver can use it to reconstruct the original
message with a high degree of precision simply by sharing
the semantic between them [6], [7]. This concept has been
successfully demonstrated for use in text transmission [8],
image transmission [9] and video transmission [10] using a
range of deep neural networks such as convolutional neural
networks (CNN), generative adversarial networks (GAN) and
autoencoders (AE). Currently attracting wide research interest,
semantic communications have been identified as one of the
key enablers for the next generation of mobile communication
system (6G) with applications in the Metaverse [11], IoT [12]
and even for infrastructure capabilities such as mobile edge
computing (MEC) [13].

Only requiring a very small amount of data while providing
significantly better resilience to channel noise compared to
conventional encoding methods, as demonstrated in [14] by
comparing the bits-per-pixel (bpp) requirement of a semantic
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communication based image transmission system and the
Joint Photographic Experts Group (JPEG) codec, semantic
communication based media transmission is ideal for use in
low bandwidth applications such as WSN and IoT devices.
However, a major restriction of its practical implementation in
such applications is the computational complexity introduced
by deep neural networks used for semantic extraction (by
deriving a latent vector from the message) at the transmitter
and reconstruction of the message (from the received latent
vector) at the receiver, as demonstrated by the complexity
of the encoders used by [8]–[10]. This prohibits its use in
WSN applications, where the transmitters are usually resource
constrained in terms of bandwidth, energy, and processing
power, and in IoT applications, where both the transmitter and
receiver can be resource constrained over the same attributes.
This will directly affect the sustainability of any solution de-
veloped using semantic communication-based media transfer.

A similar challenge exists in conventional media encoding
systems, and various techniques have been investigated to
shift computational complexity from the transmitter or encoder
side to the receiver or decoder side. They are more common
in medical imaging, as discussed in [15] and [16], and in
industrial and aerospace applications such as [17]. For media
content, investigations have been carried out on distributed
coding, as described in [18], where the complexity of the
encoding could be moved from the transmitter to the receiver,
reducing the cost of the transmitter, as demonstrated in [19].

However, since semantic communication-based media trans-
mission systems are still in their infancy, no similar attempts
have been reported in the literature. This is an initial attempt
to use the features offered by deep neural networks, such
as asymmetric autoencoders, to asymmetrically distribute the
complexity of the end-to-end semantic communication system
so that the end-to-end reference system can be reconfigured
to have complex encoders and simple decoders or simple
encoders and complex decoders, as shown in Fig. 2, according
to the application scenario.

III. PROPOSED SYSTEM

Semantic communication-based systems for media commu-
nication are usually implemented using symmetric deep neural
networks, such as the undercomplete autoencoder shown in
Fig. 3a to encode and decode images after being trained using
a suitable data set, where the encoder layers are used at the
transmitter and the decoder layers are used at the receiver.
The latent vector created in the network bottleneck represents
the semantic of the input image, and the hyperparameters of
the encoder and decoder layers constitute the shared context
between the transmitter and the receiver. We propose the use of
an asymmetric autoencoder network, which can be configured
as the simple encoder and complex decoder setup shown in
Fig. 3b, or as the complex encoder and simple decoder setup
shown in Fig. 3c. This would enable adapting the semantic
communication system to resource-constrained transmitting
devices and to receiving devices, as simple encoder and
simple decoder configurations implemented with asymmetric

(a)

(b)

(c)

Fig. 2. Complexity Scalable Semantic Image Communication System Using
Asymmetric Autoencoders. (a) Reference Model, (b) Simplified Encoder
Model, (c) Simplified Decoder Model.

autoencoders require significantly less computational complex-
ity compared to the use of symmetric autoencoders.

The proposed system is tested using the Modified National
Institute of Standards and Technology (MNIST) dataset [20],
which is a large database of handwritten digits commonly used
to train various image processing systems. The MNIST dataset
comprises 28×28 pixel grayscale images of handwritten digits
from 0 to 9. For the purpose of this study, a subset of
the MNIST dataset was used, comprising 20,000 images for
training and 10,000 images for testing. This selection of sub-
sets was designed to evaluate the effectiveness of asymmetric
autoencoders in a controlled environment.

The autoencoder network used for testing consists of
multiple layers, each using a Leaky Rectified Linear Unit
(LeakyReLU) with an alpha parameter set to 0.01 for the
activation function, while the final layer employs a sigmoid
activation function to ensure that the output values are nor-
malized between 0 and 1, conducive to binary image recon-
struction. The AE is trained using the Adam optimization
algorithm with a learning rate of 0.001. The loss function
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used during the training process is the mean squared error
(MSE). Training is carried out over 50 epochs in batches of
128 images each, which was determined to be sufficient for
convergence without overfitting given the size and complexity
of the MNIST dataset. The network bottleneck was set at 32
bytes, which is the latent vector representing the extracted
semantic of the input images.

(a)

(b)

(c)

Fig. 3. Autoencoder Architectures Used for Testing the Complexity Scalable
Semantic Encoder. (a) Reference system, (b) Simplified Encoder System, (c)
Simplified Decoder System.

Evaluation of the practical utility of the reconstructed im-
ages is done using an independently trained convolutional
neural network specifically designed for digit classification
and previously validated using the MNIST dataset to serve
as a benchmark for validation accuracy. After the autoencoder
training process, the reconstructed test images were fed into
the CNN model to determine the classification accuracy.

The architecture constitutes a sequentially configured con-
volutional neural network for the classification of the 28×28
pixel images from the MNIST dataset. It begins with a
convolutional layer consisting of 32 filters of size 3×3, using
the ReLU activation function, which is immediately followed
by a max pooling layer with a 2×2 window to reduce dimen-
sionality. A second convolutional layer with 64 filters, also

followed by a 2×2 max pooling layer, continues the feature
extraction process. Subsequently, the network transitions from
convolutional operations to fully connected layers, facilitated
by a flattening layer, converting the 2D feature maps into a
1D feature vector. This vector feeds into a dense layer of
128 neurons, followed by a second dense layer comprising 64
neurons, both employing the ReLU activation function for non-
linear transformations. The final layer is a densely connected
layer with 10 neurons, each corresponding to one of the ten
possible digit classes in the MNIST dataset, utilizing a sigmoid
activation function well suited for binary classification tasks,
as it ensures that the output is between 0 and 1, which can
be interpreted as the probability that the input is a particular
digit. The classification network, with its two convolutional
and max pooling layers followed by three densely connected
layers, is designed to capture hierarchical patterns within the
digit images, enabling effective learning and classification. It
has a total of 232,650 trainable parameters and is compiled
with the Adam optimizer and binary cross-entropy loss func-
tion, indicative of its applicability to multilabel classification
scenarios. The training process is structured to run over 10
epochs with a batch size of 32.

To provide a comprehensive evaluation of the performance
of the proposed system, we used a multifaceted approach
using several image quality assessment metrics, namely the
Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error
(RMSE), Universal Quality Index (UQI), and Mean Squared
Error (MSE).

IV. RESULTS AND DISCUSSION

To demonstrate the concept, we transmitted the same image
data sets over the three autoencoder configurations shown in
Fig. 3. The simple encoder (Fig. 3b) and the simple decoder
(Fig. 3b) are considered such that the number of floating point
operations between all codecs is as close as possible. Table I
summarizes the number of floating point operations in the
three cases.

TABLE I
COMPLEXITY OF ENCODER AND DECODER NETWORKS FOR THE THREE

CONFIGURATIONS BASED ON NUMBER OF TUNABLE PARAMETERS
(FLOATING POINT OPERATIONS)

Configuration Encoder Decoder Total
Reference 391,052 391,804 782,856

Simple Encoder 25,120 757,720 782,840
Simple Decoder 756,968 25,872 782,840

Fig. 4 shows the complexity of the three models and how
it is distributed between the encoder and the decoder. The
reference model, with a balanced distribution of parameters be-
tween the encoder and the decoder (Fig. 4a) has a complexity
of O(391, 052) at the encoder and O(391, 804) at the decoder.
The simple encoder-complex decoder configuration (Fig. 4b),
shifts most of the complexity to the decoder and has a com-
plexity of O(25, 120) at the encoder and O(757, 720) at the
decoder. The complex encoder-simple decoder configuration
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(a) (b) (c)

Fig. 4. Complexity Metrics of the Proposed Systems: (a) Reference (Symmetric) System (Model sequential 12 corresponds to the encoder and model
sequential 13 corresponds to the receiver), (b) Simplified Encoder (Model sequential 114 corresponds to the encoder and model sequential 115 corresponds
to the receiver), (c) Simplified Decoder (Model sequential 132 corresponds to the encoder and model sequential 133 corresponds to the receiver)

(Fig. 4c) shifts most of the complexity to the encoder and has
a complexity of O(756, 968) at the encoder and O(25, 872) at
the decoder. Fig. 5 shows the model loss performance of the
three systems and demonstrates that the simple encoder and
simple decoder configurations with asymmetric autoencoders
converge in a manner similar to the reference configuration
with a symmetric autoencoder.

Table II summarizes the key quality parameters that com-
pare transmitted and received images between different con-
figurations. It should be noted that the comparatively low
PSNR values are the result of the model being optimized
for the identification of handwritten digits rather than for full
reconstruction of the input image. The test accuracy of the
three configurations is nearly equivalent, as are the four quality
parameters. It was also observed that the results from the
simple encoder configuration are better than those from the
simple decoder or even the reference configurations. This is
due to the hyperparameters of the decoder network having
more influence in providing a more precise and accurate
representation of the data, as discussed in [21].

Our findings suggest that the asymmetric autoencoder ar-
chitectures used in simple encoder-complex decoder and com-

TABLE II
QUALITY OF RECONSTRUCTED IMAGES FOR THE THREE

CONFIGURATIONS

Configuration Accuracy PSNR RMSE UQI MSE
Reference 97.72% 21.39 dB 0.0852 0.6182 0.0073

Simple Encoder 98.08% 22.33 dB 0.0765 0.6267 0.0059
Simple Decoder 97.50% 21.08 dB 0.0883 0.6054 0.0078

plex encoder-simple decoder configurations can achieve high
performance in both reconstruction quality and classification
accuracy. The simple encoder-complex decoder configuration
exhibits superior performance in most metrics, particularly
in classification accuracy and PSNR, indicating its potential
for applications where model efficiency and high-quality re-
construction are desired. These insights could pave the way
for the development of more efficient deep neural network
architectures that maintain high performance while being
computationally less demanding, which is of particular interest
for deployment in resource-constrained environments.

In summary, these models (simplified encoder and decoder
models) roughly use only 3% of the computational cost of the

(a) (b) (c)

Fig. 5. Model Loss Observations for Proposed Systems: (a) Reference (Symmetric) Model, (b) Simplified Encoder Model, (c) Simplified Decoder Model.
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corresponding reference model, giving away 97% of energy
savings in the encoder or decoder. In other words, if the pro-
posed concept is embedded in a WSN or IoT, the battery life
of the device can be increased approximately 33 times, which
positively contributes to the sustainability of ICT and energy
management, as maintenance of these resource constrained
devices is very costly financially and environmentally.

The current work is limited to semantic communication
based systems implemented using autoencoders and for the
specific task of classification of handwritten digits. Further
investigation is needed to determine the applicability of this
concept to general image processing tasks using autoencoders,
as well as on higher resolution images. Exploring the possi-
bility of extending complexity scalability to other common
types of deep neural networks used for image related tasks,
such as convolutional neural networks and recurrent neural
networks, is another area for future research. Deep neural
network based video compression, including those based on
semantic communications, can also benefit from complexity
scalability, especially in simplifying video acquisition on re-
source constrained devices, such as IoT sensors. Therefore,
there is potential for this concept to be applied in a wide
range of image and video related applications.

V. CONCLUSIONS

We proposed a system based on semantic communication
with scalable complexity for image transmission, where the
computational complexity of the end-to-end system can be
seamlessly shifted to the transmitter (encoder) or the receiver
(decoder). Using the MNIST dataset, we demonstrate that
this can be done without affecting the overall performance
of the communication system. Simulation results suggest that
significant energy savings can be made either at the encoder
or at the decoder, which will help to prolong battery power
up to 33 times, which will be vital in implementing seman-
tic communication-based solutions for resource constrained
devices where computationally complex image encoders and
decoders are not practically feasible.

These results can be further validated by testing with a larger
dataset and can also be extended to video communication
systems, allowing for the general adaptation of the proposed
asymmetric configurations of semantic communication sys-
tems as a sustainable means to address the growing demand
for multimedia content. Furthermore, the proposed concept
also opens up a novel approach to encoder simplification in
media applications attempted by distributed coding, which, in
turn, will enable sustainable implementation of video coding
systems with high resolution content for multiple applications.
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