
Semantic Communication Based Video Coding
Using Temporal Prediction of Deep Neural Network

Parameters
Prabhath Samarathunga

Department of Computer and
Information Sciences

University of Strathclyde
Glasgow, UK

prabhath.samarathunga@strath.ac.uk

Yasith Ganearachchi
Department of Computer and

Information Sciences
University of Strathclyde

Glasgow, UK
yasith.ganearachchi@strath.ac.uk

Thanuj Fernando
Department of Computer and

Information Sciences
University of Strathclyde

Glasgow, UK
thanuj.fernando.2023@uni.strath.ac.uk

Indika Alahapperuma
Department of Computer and

Information Sciences
University of Strathclyde

Glasgow, UK
indika.alahapperuma@strath.ac.uk

Anil Fernando
Department of Computer and

Information Sciences
University of Strathclyde

Glasgow, UK
anil.fernando@strath.ac.uk

Abstract—Video coding is a critical capability that underpins
gaming, entertainment and media ecosystems, enabling effective
use of video content in both conventional and non-conventional
formats. Semantic communications, where semantics alone can
be used to reconstruct media content provided that the context
of semantic extraction is known, can effectively implement video
coding, but techniques to exploit temporal correlations between
video frames to achieve better rate distortion performance
with them are just beginning to evolve. A novel approach for
this problem of predicting the semantic decoder parameters
using temporal correlation is proposed and tested using an
autoencoder-based semantic communication system, and the
performance is compared with the Neural Network Encoder-
Decoder (NNCodec). Experimental results show that it achieves
significantly better rate distortion performance compared to
NNCodec alone, with PSNR gains between 3 and 25 dB depending
on the complexity of the video and an average bitrate saving of
54%.

Index Terms—Autoencoders, Deep Neural Networks,
NNCodec, Semantic Communications, Video Transmission

I. INTRODUCTION

Video has now become an integral component of the gam-
ing, entertainment and media ecosystems and is available in a
wide range of formats which include conventional 2D videos
as well as a wide range of non-conventional formats, such
as computer generated imagery (CGI), screen content video
and 360° video [1], [2]. This widespread adaptation of video,
which is consumed in an even wider variety of devices, has
only been possible due to advancements in video compression
by exploiting the inherent statistical and perceptual redundan-
cies in video to reduce their huge file sizes to manageable
sizes so that they can be efficiently stored, transmitted, and

viewed within the constraints imposed by device and network
capabilities [3].

We propose a novel semantic communication based video
coding system using temporal prediction of deep neural net-
work (DNN) parameters to exploit the spatial and temporal
correlations in video, and test it using an autoencoder-based
implementation where we attempt to predict the receiver-side
decoder DNN parameters using key frames and displacement
vectors of the parameters. Although prediction of DNN pa-
rameters in the spatial domain (within a given topology) has
been explored [4], [5] and is used in NNC techniques to some
extent, this is a first attempt to exploit the inherent spatial and
temporal correlations in video to predict temporal relationships
in DNN parameters of a semantic communication based video
coding system.

The novel contributions from this work for semantic com-
munication based video coding are:

• Use of DNN based semantic communication system for
video coding and transmission

• Introducing a technique for temporal prediction of DNN
parameter in video applications

• Demonstrating the effective combination of DNN and
NNC for video coding and transmission

II. RELATED WORK

Video coding standards are used to standardize video com-
pression systems for wide interoperability and are convention-
ally based on digital signal processing (DSP). These systems
operate by exploiting the statistical and perceptual redundan-
cies of video in both spatial and temporal domains using
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Fig. 1. Proposed system for video coding using temporal prediction of deep neural network parameters

advanced digital signal processing techniques, with state-of-
the-art codecs such as Versatile Video Coding (VVC) imple-
menting advanced motion prediction and compensation tech-
niques which have evolved for over four decades. However,
the exponential growth of video content, especially in non-
conventional formats, along with the increase in resolution,
frame rate, and color depth, is becoming a challenge even for
state-of-the-art video coding systems [6]. In response, parallel
to improving the performance of conventional DSP-based
video coding standards, exploration of non-linear transform-
based video coding systems using DNN is being carried out
[7], although no widely accepted system has yet emerged.

Provided the inherent spatial and temporal redundancies
contained in video frames, especially within a scene, an
alternative approach is to train the encoder and decoder at
the transmitter on a Group of Pictures (GoP) basis, which
will intentionally overfit DNN parameters to a given scene,
minimizing the reconstruction loss, and then update the de-
coder in the receiver for each GoP. This approach also requires
a method to compress and transmit the decoder layers to
the receiver, which diminishes any gain achieved through the
DNN or semantic communication based compression even
when using an NNC technique, as a significant overhead will
need to be transferred in the form of the compressed DNN
layers for each GoP or scene. An alternative is to make

use of key frames of a GoP, which form the context when
implementing a semantic communication based video coding
system, to remotely train the receiver-side decoder which will
be initialized using the same initializer and seed as a similar
decoder implemented in the transmitter-side solely for the
purpose of remote training. When augmented by a suitable
residual coding system, this setup should theoretically be able
to perform on par with state-of-the-art video coding systems
but requires creating additional system complexity.

Semantic communications [8], which operate on the concept
that only the semantics of a message is sufficient to reconstruct
the original in a receiver provided the context used to extract
the semantic in shared between the transmitter and receiver,
has received recent attention as a method to implement effec-
tive image [9], [10] and video [11], [12] compression systems.
Practical implementation of semantic communications is only
possible due to advances made in artificial intelligence and
machine learning (AI/ML), and DNN architectures, such as
autoencoders (AE), convolutional neural networks (CNN),
and transformers, have been widely used in developing such
systems.

A key challenge in implementing DNN and semantic com-
munication based video coding systems is that the decoder
has to be trained along with the encoder at the transmitter,
which then has to be taken to the receiver to decode the



compressed bit stream. A common approach is to initially train
the DNN with a large training data set so that the decoder
is compatible with any video and then use a neural network
compression (NNC) [13] technique to store and transport it
to the receiver, but generalization of the DNN parameters
results in low rate distortion performance compared to the
original video. This can provide satisfactory performance for
applications which are not meant for human perception, but are
not be able to achieve equivalent rate distortion performance
compared with state-of-the-art DSP based video coding stan-
dards. In scenarios where trained DNN models must traverse
the network, the need for a larger bandwidth emerges as
a major constraint. This challenge escalates when network
transmissions become frequent due to changing conditions,
which will lead to a change in the DNN model. To address this
issue, both academia and industry have proposed the concept
of NNC [13]. This approach involves the utilization of vari-
ous techniques to compress neural networks, which are then
transmitted over network channels [14]–[16]. On the receiving
end, the compressed neural network is decompressed, making
it ready for use in inference tasks.

An innovative approach to improve the fidelity of the recon-
structed video from a semantic communication based video
can be sought by seeking inspiration from DSP based video
coding, where the temporal redundancies between frames are
identified and used to predict the next frame at the decoder.
However, instead of attempting to predict the motion of pixel
groups based on temporal correlation, a DNN such as an
autoencoder, can be trained at the transmitter using each frame
of the video, and the changes of the DNN parameters between
frames can be extracted and used at the receiver to predict
the parameters that can produce an excellent estimation of
the parameters for the decoder layers. If the transmitter-side
encoder is trained to intentionally overfit each frame and
reconstruct it with minimal reconstruction loss, transmitting
the latent vector from the bottleneck and displacement vector
of the DNN parameters are sufficient to reconstruct a very
high-fidelity video at the receiver with much less complexity
than the approaches discussed up to now.

III. PROPOSED SYSTEM

The proposed system comprises four main functional com-
ponents: context encoder/decoder pair, semantic encoder/
decoder pair, temporal prediction and residual estimation
network, and a residual network compression/decompression
system, as shown in Fig. 1. The video is converted using 4:2:0
chroma subsampling (YUV420) before processing and is read
into an input frame buffer.

The context encoder/decoder pair provides the context used
to extract the semantics at the transmitter and reconstruct the
video from the semantics at the receiver. This is implemented
by extracting the first frame, or key frame, of each scene
of the video, with which subsequent frames have a strong
temporal correlation. The key frame, which still contains
spatial redundancies, is compressed using High Efficiency
Image Format (HEIF).

(a) Weights when trained with frame one (b) Biases when trained with frame one

(c) Weights when trained with frame two (d) Biases when trained with frame two

(e) Difference of weight between frames (f) Difference of bias between frames

Fig. 2. Distribution of values of parameters (weights and biases) of the
decoder layer when trained with two consecutive frames of a video. Note:
the vertical axes of (e) and (f) are of higher resolution.

The semantic encoder and decoder are implemented using
an autoencoder, which is trained over multiple epochs with
the frames from the video to intentionally overfit it to a given
frame. The autoencoder is initialized using the Glorot uniform
initializer [27] and a fixed seed value which is shared with
the decoder. To enable temporal prediction, the autoencoder
is first trained using the key frame (using a context decoded
version to match it with the receiver) until the peak signal-
to-noise ratio (PSNR) between the input and output reach
infinity such that they are identical. Then the latent vector of
the autoencoder is read to a latent vector buffer and transmitted
to the receiver, and the parameters (weights and biases) of the
decoder network are read to a parameter buffer. The next frame
of the scene is trained starting with the same parameters until
the PSNR reaches infinity and the latent vector is extracted.
This process is repeated for each frame in the scene and is
restarted when a new scene is identified using an appropriate
scene transition detection algorithm [28].

At the receiver, an identical autoencoder (initialized with
the Glorot uniform initializer using the same seed value as
on the transmitter side) is trained using the received key
frame until the PSNR reaches infinity. For subsequent frames,
the parameters of the decoder layers are updated using the
displacement vectors received from the temporal parameter
prediction and residual estimation network and the quantized
residual received from the residual network compression/
decompression system. The updated decoder layers are used
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Fig. 3. Video Clips used for Experiments: (a) Video 1 [17], (b) Video 2 [18], (c) Video 3 [19], (d) Video 4 [20], (e) Video 5 [21], (f) Video 6 [22], (g) Video
7 [23], (h) Video 8 [24], (i) Video 9 [25], (j) Video 10 [26].

to predict the next frame based on the received latent vector,
and the reconstructed frame is collected in a frame combiner
buffer, where the video is reconstructed.

The major innovation proposed is the temporal prediction
and residual estimation used to update the parameters of the
semantic decoder in the receiver. This exploits the temporal
correlation between each frame of a scene in a video, which
corresponds to a temporal correlation between each frame of
a video. An example is shown in Fig. 2, which shows that the
weights and biases of subsequent frames within a scene are
nearly identical, with very small differences between the two.

Furthermore, since motion between two frames only occurs
in specific parts of the frame rather than the frames changing
altogether, the parameter values corresponding to pixel loca-
tions of the second frame can be observed to have moved
in its location within the parameter vector when compared
with the first frame. This can be used to calculate a parameter
displacement vector (vk) for the parameters corresponding to
a predefined block of pixels in the frame by searching the pa-
rameters of the previous frame so that the mean squared error
(MSE) between the predicted and actual blocks is minimized,
as shown in (1) where p is the block size, n is the current
frame, k is the block number.

MSEk =
1

p

p∑
i=1

(wn(tk+i)− wn−1(tk+i))
2 (1)

vk is then derived by minimizing MSEk within a range
defined by j within an arbitrary limit ±a, as shown in (2).

vk = min(MSEk.j), j ∈ (−a : a) (2)

In the proposed system, the parameter displacement vectors
are calculated by comparing the current parameters of the
decoder layers with the previous parameters of the decoder
layers of the parameter buffer. These are then written into a
parameter displacement vector buffer and sent to the receiver
to estimate the decoder parameters of each frame.

Parameter displacement vectors are used to estimate the de-
coder parameters in the transmitter, and a residual is extracted
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Fig. 4. Structural Information (SI) and Temporal Information (TI) in Test
Videos

by comparing it with the current parameters. This residual,
which is a vector of neural network parameters, is compressed
using NNCodec to reduce the size of the residual and is then
added to the update of the decoder parameters at the receiver.
The level of quantization in NNCodec [29] can be varied using
a quantization parameter (QP) to change the quality of the
reconstructed video.

IV. RESULTS AND DISCUSSION

The proposed system is tested using ten videos (Fig. 3) of
spatial resolution 320×180 with varying structural information
(SI) and temporal information (TI) content.

Fig. 4 shows the TI and SI content of each video, where
videos 3, 4 and 5 are considered as low complexity videos
(low TI and low SI), videos 1, 7, and 8 are considered as
medium complexity videos (medium TI and medium SI), and
videos 2, 6, 9 and 10 are considered as high complexity videos
(high TI and/or high SI).



Fig. 5. Network model used for simulation: sequential 120 represents the
encoder layers and sequential 121 represents the decoder layers of the
autoencoder.

The semantic encoder is implemented using an autoencoder
network with the network structure shown in 5, which creates a
latent vector of dimension 1×1, which is a simplified version
to evaluate performance. The system is investigated over a
range of quantization levels in the residual compression net-
work using NNCodec, and the residual neural network without
using temporal prediction is compressed using NNCodec and
sent to the receiver to set a benchmark for comparison of the
performance.

When comparing the PSNR achieved for each quantization
level, as shown in Fig. 6, it is evident that the proposed
temporal prediction of the DNN parameters can achieve a
better rate distortion performance compared to NNCodec in
all ten videos tested. The performance for the high complexity
video (Video 2) shows a marked improvement over NNCodec
which does not exploit the temporal correlations between the
parameters. When considering low complexity videos, such as
in Videos 3 and 4, the proposed system still provides better
compression, but with a smaller gain in PSNR. However, when
high complexity videos are considered (such as Video 2),
the PSNR gain of the proposed system at lower bit rates is
significantly high, reaching 20 dB. For medium complexity
videos, the PSNR gain can be observed to reach 30 dB in
some cases (such as Video 8). This is due to both systems
exploiting the spatial correlations between the parameters and
NNCodec using a higher bitrate to achieve a better quality
reconstruction of the neural network.

The proposed system adds additional complexity to the
system, compared to just using NNCodec since the DNN
parameter prediction has to be performed, but has significant
rate distortion performance gains. The added complexity and
the complexity-performance trade-off of the propsed system
need to be quantified and evaluated in future research.

However, the compressed bit rates achieved by both
NNCodec and the proposed system are significantly higher
than those achievable by conventional video coding systems
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Fig. 6. Comparison of rate distortion performance of proposed system
compared with using NNCodec alone.

such as VVC, AOMedia Video 1 (AV1), High Efficiency Video
Coding (HEVC), or Advanced Video Coding (AVC), as well
as hybrids of these systems with DNN [12]. This is due to
the work presented being a very basic implementation of the
concept and requiring significant further refinement before
it can be practically implemented to achieve performance



on par or better than conventional video coding systems.
Enhancing the temporal prediction framework and optimizing
displacement vector calculation, so that displacements along a
larger number of axes can be predicted, and further improving
the compression rates achievable for residual compression
using optimized versions of NNCodec or an alternative method
are key future research areas which need to be explored.

Despite these, the proposed system is an important mile-
stone in implementing semantic communication based media
transmission systems, including video coding systems, as
practical implementation of semantic communications depends
on DNN and effective methods to transmit, predict or remotely
train DNN parameters to minimize reconstruction losses be-
tween the transmitter and receiver is a critical capability for
such systems to achieve performances on par or exceeding
conventional media compression systems.

V. CONCLUSIONS

An innovative approach for solving the problem of addi-
tional overhead being required for transmitting trained de-
coder parameters in semantic communication based video
coding systems is proposed using temporal prediction of DNN
parameters to exploit the interframe correlations of video.
Experimental results show rate distortion performance gains
compared to using NNCodec alone, and although additional
complexity is added to NNCodec by the prediction of the
DNN parameters, it is compensated for by the significant gains
achieved. However, performance needs further improvement
to achieve rate distortion performance on par or exceeding
conventional video compression standards.

REFERENCES

[1] J. Adhuran, G. Kulupana, C. Galkandage, and A. Fernando, “Multiple
Quantization Parameter Optimization in Versatile Video Coding for 360◦
Videos,” IEEE Transactions on Consumer Electronics, vol. 66, no. 3, pp.
213–222, 8 2020.

[2] J. Adhuran, G. Kulupana, S. Blasi, and A. Fernando, “Parameter-Based
Affine Intra Prediction of Screen Content in Versatile Video Coding,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 31, no. 9, pp. 3590–3602, 9 2021.

[3] Y.-Q. Shi and H. Sun, Image and Video Compresssion for Multimedia
Engineering. Boca Raton, FL: CRC Press, 2019.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015.

[5] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in neural information
processing systems, vol. 29, 2016.

[6] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang, “Devel-
opments in international video coding standardization after avc, with an
overview of versatile video coding (vvc),” Proceedings of the IEEE, vol.
109, no. 9, pp. 1463–1493, 2021.

[7] D. Ding, Z. Ma, D. Chen, Q. Chen, Z. Liu, and F. Zhu, “Advances
in video compression system using deep neural network: A review and
case studies,” Proceedings of the IEEE, vol. 109, no. 9, pp. 1494–1520,
2021.

[8] X. Luo, H.-H. Chen, and Q. Guo, “Semantic Communications:
Overview, Open Issues, and Future Research Directions,” IEEE Wireless
Communications, vol. 29, no. 1, pp. 210–219, 2022.

[9] D. Huang, F. Gao, X. Tao, Q. Du, and J. Lu, “Toward Semantic
Communications: Deep Learning-Based Image Semantic Coding,” IEEE
Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 55–71,
2023.

[10] M. U. Lokumarambage, V. S. S. Gowrisetty, H. Rezaei, T. Sivalingam,
N. Rajatheva, and A. Fernando, “Wireless end-to-end image transmission
system using semantic communications,” IEEE Access, vol. 11, pp.
37 149–37 163, 2023.

[11] P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Wireless Semantic Commu-
nications for Video Conferencing,” IEEE Journal on Selected Areas in
Communications, vol. 41, no. 1, pp. 230–244, 2023.

[12] P. Samarathunga, Y. Ganearachchi, and A. Fernando, “Video Compres-
sion by Chroma Prediction Using Semantic Communications,” in Digest
of Technical Papers - IEEE International Conference on Consumer
Electronics, 2024.

[13] H. Kirchhoffer, P. Haase, W. Samek, K. Müller, H. Rezazadegan-
Tavakoli, F. Cricri, E. B. Aksu, M. M. Hannuksela, W. Jiang, W. Wang
et al., “Overview of the neural network compression and representation
(nnr) standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 32, no. 5, pp. 3203–3216, 2021.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[15] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 9194–9203.

[16] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning
based on connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[17] P. Midtrack. People enjoying the day in a beach.
www.pexels.com. Accessed: Feb. 12, 2024. [Online].
Available: https://www.pexels.com/video/people-enjoying-the-day-in-a-
beach-3150419/

[18] T. Miroshnichenko. People playing soccer. www.pexels.com.
Accessed: Feb. 12, 2024. [Online]. Available:
https://www.pexels.com/video/people-playing-soccer-6077718/

[19] C. of Couple. A bowl of avocados and vegetables.
www.pexels.com. Accessed: Feb. 12, 2024. [Online]. Avail-
able: https://www.pexels.com/video/a-bowl-of-avocados-and-vegetables-
7656166/

[20] Pixabay. Blue sky video. www.pexels.com. Accessed: Feb. 12,
2024. [Online]. Available: https://www.pexels.com/video/blue-sky-
video-855005/

[21] T. Elliot. A couple walking towards the launching area of the hot air
balloons festival. www.pexels.com. Accessed: Feb. 12, 2024. [Online].
Available: https://www.pexels.com/video/a-couple-walking-towards-the-
launching-area-of-the-hot-air-balloons-festival-3064025/

[22] D. C. Paduret. Culturing a chamomile flower plant.
www.pexels.com. Accessed: Feb. 12, 2024. [Online].
Available: https://www.pexels.com/video/culturing-a-chamomile-flower-
plant-3011973/

[23] S. Garenko. A girl running across a bridge. www.pexels.com. Accessed:
Feb. 12, 2024. [Online]. Available: https://www.pexels.com/video/a-
girl-running-across-a-bridge-19805236/

[24] V. Singh. Rangdum village in zanskar valley.
www.pexels.com. Accessed: Feb. 12, 2024. [Online]. Avail-
able: https://www.pexels.com/video/rangdum-village-in-zanskar-valley-
19022224/

[25] M. Kilinc. Nemrut - bitlis. www.pexels.com. Accessed: Feb. 12,
2024. [Online]. Available: https://www.pexels.com/video/nemrut-bitlis-
18856748/

[26] M. T. Kirkgoz. Cold snow sea dawn. www.pexels.com. Accessed:
Feb. 12, 2024. [Online]. Available: https://www.pexels.com/video/cold-
snow-sea-dawn-18051870/

[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
ser. Proceedings of Machine Learning Research, Y. W. Teh and
M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia,
Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online]. Available:
https://proceedings.mlr.press/v9/glorot10a.html

[28] W. Fernando, C. Canagarajah, and D. Bull, “A unified approach to
scene change detection in uncompressed and compressed video,” IEEE
Transactions on Consumer Electronics, vol. 46, no. 3, pp. 769–779,
2000.

[29] D. Becking, P. Haase, H. Kirchhoffer, K. Müller, W. Samek, and
D. Marpe, “Nncodec: An open source software implementation of the
neural network coding iso/iec standard,” in ICML 2023 Workshop Neural
Compression: From Information Theory to Applications, 2023.


