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ABSTRACT 

Carbon Dioxide (CO2) remains the dominant contributor to climate change in shipping with Heavy 

Fuel Oil (HFO) prevailing as the most significant fuel utilised in maritime transportation globally. 

Thus, while several technologies, including the consideration of renewable energies and alternative 

fuels, are being explored to contribute towards the Net Zero goal, the consumption of Fuel Oil (FO) 

continues to be of a substantial concern. Moreover, the optimal use of FO can lead to minimising 

CO2 emissions as well. This necessitates the development of more sophisticated tools to optimise 

onboard consumption, thereby facilitating the reduction of emissions and the associated operational 

costs. Accordingly, this paper analyses the use of an attention mechanism-based deep learning 

model for the prediction of FO consumption. A case study on a tanker vessel is conducted to assess 

the performance of this type of model, aiming to develop a decision-making tool for optimising ship 

FO consumption. 
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1. INTRODUCTION

Sea-based transportation accounts for 80% of international trade of goods while the shipping sector 

has experienced a 20% rise in GHG emissions over the last decade as of 2023 [1]. The COP28 

conference had set out the goal of net zero emissions by 2050. Additionally, the fourth IMO GHG 

study 2020 approximated that the GHG emissions from shipping in 2018 accounted for 2.89% of 

total global man-made GHG emissions [2]. There are several maritime emissions’ regulatory bodies 

worldwide such as the European Union Emissions’ Trading System (EU ETS), the International 

Maritime Organisation (IMO), etc. As a result, ship operators must comply with policies and 

regulations laid down on emissions depending on the regions of operation. Moreover, fuel costs 

account for 50-60% of operating costs of the vessels [3]. Hence, it is increasingly imperative to 

strive towards cost-effective solutions reducing emissions through various methods such as 

integrating carbon capture solutions, voyage planning, optimising ship speed and fuel consumption, 

etc. Thus, the focus of this paper will be on forecasting ship fuel consumption. 

In this respect, there have been various efforts to provide a review on forecasting ship fuel 

consumption [4]. The authors demarcated the models covered in these papers into two categories – 

statistical and machine learning methods. They found that machine learning methods performed 

better for high-dimensional datasets in comparison to the statistical techniques. However, the former 

suffered in terms of the interpretability of its predictions due to the complexity of the inner workings 

of the model. A lack of interpretability could indicate potential biases in these models. However, 

other researchers presented an interpretable machine learning model that addresses the trade-off 

between interpretability and predictive accuracy [5]. This paper is primarily focused on the predictive 

accuracy of the model which has been proposed. 

The paper has been organised into 5 sections. Section 2 covers related previous work; Section 3 

elucidates the methods used to design the deep learning model. Section 4 provides the application 

of the suggested methodology in the case of a tanker ship while Section 5 presents conclusions 

based on the discussed results in the previous section. 

2. LITERATURE REVIEW

Attention mechanism allows for dynamic assignment of weights of input features based on the 

outcome expected of the machine learning model. Abadi et al. had first introduced the transformer 

architecture which relies on self-attention mechanisms for use in Natural Language Processing 

(NLP) [6]. This approach overcomes the limitations of sequence-to-sequence models, such as 

Convolutional Neural Networks(CNNs) and Recurrent Neural Networks (RNNs), by effectively 

capturing long-range dependencies and improving training efficiency. 
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Deep learning models are greatly accessible today through several open-source packages and 

frameworks such as Tensorflow [7], PyTorch [8], and Keras [9]. However, they have a nominal 

presence in literature regarding their exploitation for the prediction of ship fuel consumption. Zhang 

et al. proposed a deep learning model combining a Bidirectional – Long Short-Term Memory (Bi-

LSTM) model with attention mechanism [10]. They obtained big data records from 8 international 

voyages from the Kamsarmax Bulk Carrier of Laskaridis Shipping Co. Ltd. They compared it with 

Decision Tree models with attention mechanism and found that the Bi-LSTM model performed well 

especially for high-frequency data. The leveraging of big data records will allow for an improvement 

in reduction of carbon emissions. Additionally, it provides a foundation for efficient fuel management 

for real operating conditions. 

Lei et al made use of the LSTM model to forecast fuel consumption for data derived from inland 

watercrafts [11]. They obtained data from the Juhang 777 vessel over a period of 5 months. They 

found that the deep learning model performs better than the machine learning model, back 

propagation neural network, in terms of average relative error (in percentage). Wang et al. proposed 

two models: Physics-informed neural network (PI-NN), Mixed-Integer Quadratic Optimisation (MIO) 

[12]. The PI-NN model is cognizant of physics constraints which allows for the model to be highly 

explainable. However, as the number of constraints increase, the model becomes less flexible yet 

more accurate. The interpretability of the MIO-BF model is lower in comparison since the model 

alters the original values of the feature variables. 

Tran et al. proposed a combination of Monte Carlo simulations and Artificial Neural Networks (ANN) 

for predicting the fuel consumption [13]. The data has been collected from a bulk carrier over a 

period of 2 years. Additionally, the model has been run for each of the three loading conditions 

(65%, 85% and 100% MCR). The performance of this model was compared with other models 

incorporating Artificial Neural Networks with other regression models and concluded that ANNs 

performed better. They also mentioned that the accuracy of the model was higher for 65% and 85% 

MCR loading conditions, which are more commonly observed in real-world maritime transportation.  

Su et al. proposed an AI-based energy efficiency decision system using a prediction and 

optimisation technique [14]. They used a 2-stage method utilising the XGBoost model for prediction, 

which was chosen after comparison with 15 other machine learning models, followed by the 

employment of the Particle Swarm Optimisation technique to predict optimal ship speed to further 

improve the prediction of fuel consumption. They used a multi-source dataset including car and 

trucking data for the duration spanning the years 2012 to 2021. They emphasised the model’s ability 

to manage high-dimensional data, to make more accurate predictions and to account for a large 

number of irregularities. Further, they mention the improvement in fuel-usage efficiency upon the 

employment of an optimisation technique. 

Mekkaoui et al. proposed a data-driven solution based on deep learning sequence methods and 

historical ship voyage data to predict ship speed in real-time [15]. The data is obtained from ship 

trips in the area of St. Lawrence Seaway for a period of 2 years. The prediction of ship speed would 
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allow for a ship operator to design the voyage in advance, taking various factors into account such 

as ship trajectory planning and weather to consequently predict trends in ship fuel consumption. 

The study throws light on three sequence models – LSTM, Bi-LSTM and Transformer. LSTM model 

performed poorly in comparison to the other two models in terms of metrics such as mean absolute 

error (MAE) and mean squared error (MSE). On the other hand, Theodoropoulos et al. 2021 made 

use of ANN and RNN models to predict the ship’s propulsion power. The data used was collected 

over a period of nineteen months from a 165000-DWT tanker. 

Panapakidis et al. highlighted ship fuel consumption prediction for passenger vessels. They 

proposed the combination of LSTM – RNN and Elman NN models for the forecasting of fuel 

consumption [16]. The data was obtained from 322 voyage reports over a period of 10 months from 

the Ro/Pax vessel operating in the Adriatic route spanning between Greece and Italy. They 

mentioned the use of statistical techniques to precede the selection of the deep learning model 

based on the linearity of the relationship between the parameters under study. 

Wu et al. proposed a route optimisation method using a deep learning architecture consisting of 

CNN and the transformer architecture by the conversion of discrete weather data to a continuous 

format [17]. The weather observation and weather forecast data was obtained from the Integrated 

Marine Observing System (IMOS) and the European Centre for Medium-Range Weather Forecasts 

(ECMWF) for over a period of one year. Such a method allows for prior route planning which in turn 

helps ship operators plan and optimise fuel usage. A continuous prediction could allow for high-

resolution prediction of future fuel usage. Similarly, Bui Duy et al. performed optimal route selection 

for container ships using a deep ANN architecture in conjunction with the Asymmetric Travelling 

Salesman Problem (ATSP) algorithm [18]. 

Within the current paper, the authors propose a novel method to predict fuel oil consumption 

onboard ships using an attention mechanism–based deep learning model. The concerned data has 

been obtained from a cargo vessel consisting of system-monitored parameters from the main 

engine and diesel generators of the vessel. 

3. METHODOLOGY

By having explored the main contributions of this conference paper, the proposed methodology is 

graphically represented in Fig.3.1. Special attention is being given to the data pre-processing stage 

to guarantee that data possesses the necessary quality to be further processed, adheres to the 

required format, and aligns with the specific requisites of the data-driven task to be performed. 

Consequently, a total of seven data pre-processing stages are initially performed. The second 

phase relates to the development and training of the model to be analysed in this study which is an 

4

Analysis of attention mechanisms for the prediction of ship fuel oil consumption



attention-based neural network. Finally, to analyse the performance of the developed model, an 

evaluation stage is introduced to ensure an adequate analysis of the obtained results. 

Figure 2.1. Graphical representation of the proposed methodology. 

3.1. Data Pre-processing 

As stated precedingly, a total of seven data pre-processing stages are applied to guarantee the 

adequate pre-processing of raw data. 

To deal with potential missing values within the raw dataset, forward filling and backward filling is 

selected as the data imputation models. These two models are subject of analysis in this study, as 

they have been widely applied within the maritime domain when dealing with missing values [19], 

and univariate data imputation methods have presented promising results when dealing with short-

term sensor data and Missing Completely at Random (MCAR) contexts [20]. Forward filling is 

applied when missing values are imputed with the preceding data point, whereas backward filling, 

by contrast, is considered when missing values are imputed with the subsequent data point. 

To avert the utilisation of either irrelevant or redundant features available in the raw dataset when 

training the model, feature selection is performed. Consequently, correlation analysis is performed 

to select suitable features based on the task to be performed based on the relationship between 

features. To evaluate the linear relationship between features, the Pearson’s correlation coefficient 

is determined, which satisfies the equation hereunder. 
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where 𝒙𝒊, 𝒚𝒊 are individual data points, 𝒙̅, 𝒚̅ are the mean of the respective features being analysed, 

and 𝒔𝒙, 𝒔𝒚 relate to the standard deviation of the features. Additionally, to assess any potential non-

linear relationship between features, the Spearman’s rank correlation coefficient is also estimated. 

This coefficient analyses the potential relationship between features based on the rank of the data. 

Both coefficients always lie between -1 and +1. A resulting coefficient of either -1 or +1 indicates the 

features are perfectly correlated. By contrast, a coefficient of 0 establishes that no relationship 

exists between the analysed features. Thus, the strength of the relationship is obtained from the 

analysis of the magnitude obtained. 

Feature standardisation is performed to guarantee that features contribute equally to the training of 

the model. When applying standardisation, all features are centred by subtracting the mean from all 

values. Results are then scaled by dividing their respective standard deviation. Thus, equation 3.1.3 

is considered for standardising the features: 

𝑧 =
𝑥 − 𝑥̅

𝑠
(3.1.2) 

The resulting standardised features will present a mean of zero and a standard deviation of one. 

Dimensionality reduction is implemented to reduce the number of features to be considered for the 

training of the model while attempting to preserve as much information as possible that is presented 

within the dataset. Of all potential methods that can be applied for performing dimensionality 

reduction, the most common approach is the Principal Component Analysis (PCA), which is the 

method implemented in this study. This is an unsupervised learning technique that is 

mathematically defined as an orthogonal linear transformation. The main aim of this approach is to 

transform the data into a new coordinate system forming a new set of uncorrelated variables, which 

are named principal components.  
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To determine these principal components, a total of five phases are implemented. The first phase 

relates to the estimation of the covariance matrix to capture the fluctuations of a variable concerning 

the other features within the dataset. Then, the second phase is applied, which refer to the 

computation of both the eigenvectors and eigenvalues of the covariance matrix to identify the 

direction in which the data varies the most and the magnitude of such variations. The eigenvectors 

are then sorted based on the eigenvalues in ascending order to obtain the principal components, 

thus starting from the direction of maximum variance to minimum. The fourth phase select the 

number of principal components to be considered for the training of the model based on the 

resulting variance. For this study, the number of components will be selected when the 

accumulative variance of the retained principal components reaches 95%. The fifth and last step 

refer to the creation of a new matrix where lie the selected principal components based on their 

accumulative variance. 

When analysing operational states of marine machinery, fluctuations may occur due to either 

environmental conditions or variations in the operating conditions. Accordingly, to only consider 

steady-state operational conditions, these fluctuations need to be adequately identified and 

discarded. In this study, Hierarchical Density-Based Spatial Clustering of Applications with Noise 

(HDBSCAN) is considered, as this approach require less parameters to be determined for 

adequately implementing the model if compared to DBSCAN. In fact, the only parameter that need 

to be estimated is the parameter MinPts. HDBSCAN is often regarded as an enhanced version of 

the DBSCAN, which facilitates a clustering hierarchy from which a tree of relevant clusters is 

constructed. These constructions are then utilised to derive a “flat” clustering based on cluster 

stability. 

Once non-operational states have been removed from the data, sequences are generated through 

the application of the time series sliding window algorithm. This algorithm aims to section the overall 

time series into sequential and overlapping segments, a.k.a. windows, of a fixed size. Finally, the 

resulting sequences are split into a training set and a testing set in order to evaluate the model with 

unseen data (test set) that has not been used for training the model (training set). 
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3.2. Attention-based Neural Network Training 

The primary contribution of this paper lies in the analysis of an attention-based neural network, 

which is introduced in this section. A neural network is commonly defined as an artificial intelligence 

model designed to emulate the human brain in a simplified manner. Accordingly, various types of 

neural networks have been developed to capture specific functionalities within the human brain. Of 

all these types, special attention is given in this study to those types of neural networks that 

consider temporal dependencies, as these are crucial for time series forecasting. Specifically, 

attention mechanisms are considered, as they can capture sequential dependencies and focus on 

relevant parts of the input sequences. Attention mechanisms have recently been subject of study 

due to their ability of focusing on specific segments of the sequence, thus identifying which parts of 

the input sequences are more relevant for the task being implemented. This is achieved by 

assigning weights to each part of the sequences, where higher weights indicate increased attention 

to that segment.  

When integrated into the architecture of a neural network, attention mechanisms dynamically adjust 

their focus based on the information provided in the input sequence in order to generate the output. 

Thus, by incorporating attention mechanisms within the architecture of the neural network, an 

enhancement in the precision of the predictions is expected through the provision of special 

attention to specific segments of the input sequences. Even though several variants of the attention 

mechanism can be considered, the one introduced in this study is the scaled dot-product attention, 

which is comprised of the following sections: 

• Query, key, and value vectors. As the name suggests, a total of three vectors are initially

considered. The query vector (Q) represents the current input, the key vector (K) relates to 

the vector that emphasises the segments that require higher focus, and, finally, the value 

vector (V) indicates the values associated with each segment of the input sequence. 

• Weighted scores calculation. A measure of similarity is introduced to assess how

analogous the Q and K vectors are for each element in the sequence. The dot product is 

usually applied to assess this similarity. The result of this operation will indicate the 

relevance of each element in the sequence by a given query. 

• Softmax activation. Once the weighted scores have been calculated, these are passed

through a softmax activation function so that the resulting scores can be transformed into 

attention weights. As softmax is implemented, the sum of all weights equals 1, which 

enables its interpretation as probabilities. The resulting weights indicate whether an element 

of the input sequence require higher or lower focus, thus prioritising the identified relevant 

segments within the input sequences. 
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• Output. The value vector and the resulting attention weights are combined through the

computation of a weighted sum to facilitate the output of the attention layer. 

A diagram of the scaled dot-product attention is given in Figure 3.2.1. 

Figure 3.2.1. Graphical representation of the Scaled Dot-Product Attention. 

Once considered the scaled dot-product attention, it is integrated to a Long Short-Term Memory 

(LSTM) neural network. LSTM has been selected for this study due to its capability to capture 

temporal dependencies. The main component of these networks is the memory cell. This consists of 

a cell state vector and gating units. The gating units are utilised to regulate the information flow into 

and out of the memory to maintain the state over time. A graphical representation of the developed 

architecture of the neural network is presented in Figure 3.2.2. As perceived, the neural network is 

comprised of blocks of LSTM with Attention Mechanism. The final part of the developed neural 

network is comprised by fully connected layers. 
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Figure 3.2.2. Graphical representation of the architecture of the developed neural network. 

3.3. Evaluation 

An evaluation phase is required to evaluate the results obtained from the training of the developed 

neural network that is analysed in this study. Consequently, the following metrics have been 

estimated: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Median Absolute Error 

(MedAE), and Max Error. MSE is estimated as it is probably the most utilised loss function for 

regression. It is computed by determining the mean of the sum of the squared errors. If the squared 

root of MSE if estimated, the RMSE is obtained. This is a scale-dependent error. MedAE is 

computed by determining the median of all absolute differences between the observed and the 

predicted occurrences. Finally, the max error is determined by considering the worst-case error. 

4. CASE STUDY AND RESULTS

To analyse the performance of the attention mechanism-based neural network, the case study of a 

diesel generator of a tanker vessel is considered in order to predict its fuel consumption. In total, 26 
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ship machinery and weather condition parameters are considered.. The parameters considered in 

this study as well as their respective descriptive statistics are presented in Table A.1. More than 

40,000 instances are analysed, collected in a 1-minute frequency basis. Additionally, missing values 

can be perceived, as the number of values per column differ from parameter to parameter. Thus, 

the firs stage of the data pre-processing phase needs to be implemented, which is the data 

imputation phase. Firstly, the percentage of missing values per feature has been estimated to 

assess their respective missingness criticality. A total of four parameters with high criticality have 

been identified, the percentage of missing values of which exceeds the 20%. The identified 

parameters are the following: DG1 Turbocharger Exhaust Gas Inlet Temperature (22.4%), Stern 

Tube Aft Bearing Temperature (41.9%), Stern Tube Fore Bearing Temperature (41.3%), and Water 

Depth (53.7%). Thus, as this is a preliminary study and the data imputation method considered for 

this analysis is not adequate when the percentage of missing values is large, the identified four 

parameters with high criticality are discarded from the analysis. However, more sophisticated data 

imputation methos should be considered to include relevant information from the discarded 

parameters in future studies. The remaining parameters present a low criticality, where the 

percentage of missing values is lower than 1.5%, except for the parameter to be predicted, which is 

the Fuel Oil Consumption (FOC) parameter, that presents a percentage of missing values of 

approximately 9%. Consequently, the forward filling data imputation method is implemented to 

impute the missing values. In those cases where forward filling could not be implemented backward 

filling was implemented instead. The resulting dataset after the implementation of missing values is 

a dataset with 22 parameters with no missing values. 

The second step to be performed within the data pre-processing step is the Feature Selection & 

Engineering. Accordingly, to determine the relevant features subject to study in this analysis, both 

the Pearson’s correlation coefficient and Spearman’s rank correlation coefficient are computed. As 

analogous results are presented in both resulting matrices, the discussion of the correlation analysis 

results is provided altogether. Thus, to provide a better understanding of the results and 

relationships identified, the Pearson’s correlation matrix is graphically represented in  igure  .1. 

Overall, the dependent variable (FOC parameter) is highly correlated with the diesel generator 

parameters, such as the exhaust gas outlet temperature of each of the six cylinders (Pearson’s 

correlation coefficient of 0.96) and the diesel generator power (Pearson’s correlation coefficient of 

0.99). By contrast, the dependent variable is not correlated with weather conditions parameters, 

such as the speed over ground (Pearson’s correlation coefficient of 0.12) and wind speed 

(Pearson’s correlation coefficient of -0.04). In fact, an initial study has been conducted where 

weather conditions non-correlated parameters were included in the analysis. However, results 

outlined that including such conditions may lead to a decrease in the precision of the model. For this 

reason, those parameters that present a Pearson’s correlation coefficient lower than 0.8 were 

discarded from the analysis. Thus, even though weather conditions may be critical for the adequate 

prediction of FOC, it was decided in this study to remove them due to interference with the 

prediction. Accordingly, a total of 15 parameters remains. 
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If these 15 parameters are further analysed, it can be observed that mainly all of them are 

correlated with the remaining parameters. Thus, if these correlations are not addressed, it can yield 

multicollinearity challenges, model instability, and redundancy addition. Accordingly, these 

parameters need to be processed to obtain uncorrelated predictors. For this reason, Principal 

Component Analysis is performed in the dimensionality reduction phase, having performed feature 

standardisation prior to its implementation. If the cumulative variance presented in Figure 4.2. is 

then analysed, it can be observed that the adequate number of components is two. Accordingly, a 

total of two principal components are obtained, which are represented in Figure 4.3. 

From the analysis of the resulting principal components, it can be observed that there are distinct 

transient and idle states that need to be adequately identified and discarded. To do so, the fifth 

stage of the data pre-processing phase, which is the operational state identification, is implemented. 

Accordingly, HDBSCAN technique is applied. After heuristic evaluation, the hyperparameter minPts 

is se to 5. If Figure 4.4. is observed, it can be determined that the shape of the three main clusters 

is well identified. However, this identification will not avert including potential transient states that lie 

within these three clusters. For this reason, domain knowledge is also required in this task to 

discard the transient states that the method could not detect, thus enabling a semi-automatic 

operational state identification framework. Firstly, based on domain knowledge, the two left clusters 

were discarded from the analysis, as these related to either idle or transient states. Regarding the 

third and final cluster, visual inspections were performed to discard any potential transient state that 

was undetected by the HDBSCAN algorithm. 

Once all the identified idle and transient states were discarded, sequences could be generated for 

the training of the attention mechanism-based neural network. In total, 9000 sequences were 

generated. These resulting sequences were split into two sets so that the generalisation capabilities 

of the neural network could be assessed. The 70% of all sequences refer to the training set, 

whereas the remaining 30% relate to the test set. 
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Figure 4.1. Pearson’s correlation coefficient matrix. 
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Figure 4.2. Number of components and their respective cumulative variance. 

Figure 4.3. Graphical representation of the first and second principal component. 

Figure 4.4. (a) Scatter plot of principal component 1 and 2 prior to the application of HDBSCAN (b) Scatter plot of 
principal component 1 and 2 subsequent to the application of HDBSCAN. 
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By splitting the dataset into two sets, the data pre-processing stage is finalised, and the developed 

neural network can then be trained. To do so, first the architecture of the neural network and the 

optimisation of the hyperparameters need to be determined. Consequently, hyperband optimisation 

was applied. Of all the analysed configurations, the one indicated in Table 4.1. was the one selected 

for the prediction of FOC. 

Table 4.1. Configuration of the developed neural network. 

Layer Type Output Shape 

Input (None, 240, 2) 

LSTM (None, 240, 104) 

Attention (None, 240, 104) 

LSTM (None, 24) 

Attention (None, 120) 

Dense (None, 104) 

Dense (None, 104) 

Dense (None, 1) 

The main results after the estimation of the evaluation metrics are presented in 4.2. As observed, 

promising results are obtained if, for instance, the RMSE is consider, as the models achieves a 

RMSE of 0.14 t/hr. However, a max error of 1.28 t/hr could be perceived. If this max error is 

comprehensively analysed, it can be observed that the instance relates to an anomaly in the sort-

term context. Thus, this methodology could also be analysed for the detection of anomalies in short-

term context in future work. 

Table 4.2. Configuration of the developed neural network. 

Evaluation Metric Attention-based Neural Network Result 

MSE 0.02 

RMSE 0.14 

MAE 0.07 

Max. Error 1.28 

It should be noted that these are initial results and further analysis needs to be conducted including 

a comparative study to adequately evaluate the results obtained. Moreover, self-attention has been 

considered through the implementation of scaled dot product attention. However, other attention 

mechanisms should also be considered, such as multi-head attention. Finally, include specific ship 

trips should be considered to have a more accurate evaluation of the predictive capabilities of the 

suggested model. 
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5. CONCLUSIONS

This paper presented an attention-based neural network to analyse the potential of attention 

mechanisms for the prediction of fuel oil consumption. Specifically, attention mechanisms were 

implemented subsequent to the implementation of long short-term memory layer in an attempt to 

capture relevant temporal dependencies that will facilitate the adequate prediction of fuel oil 

consumption. To assess the precision of the developed network, a case study on a total of 26 

marine machinery and weather condition parameters is introduced. Results highlight the potential 

that this type of neural networks have when predicting fuel oil consumption. Nevertheless, further 

analysis needs to be performed to advance this area of knowledge through the application of 

artificial intelligence. Accordingly, the analysis of other attention mechanisms and the performance 

of a thorough case study is expected to be performed as part of the future work. 
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7. APPENDIX A. DESCRIPTIVE STATISTIC OF THE MONITORED PARAMETERS

Table A.1. Descriptive statistics of the monitored parameters 

DG1 
CFW In 
Press. 
(bar) 

DG1 Cooling 
Air Temp. 
(ºC) 

DG1 Cyl1 
Exh. Gas 
Out. Temp. 
(ºC) 

DG1 Cyl2 
Exh. Gas 
Out. 
Temp. 
(ºC) 

DG1 
Cyl3 
Exh. 
Gas 
Out. 
Temp. 
(ºC) 

DG1 Cyl4 
Exh. Gas 
Out. 
Temp. (ºC) 

DG1 Cyl5 
Exh. Gas 
Out. 
Temp. (ºC) 

DG1 Cyl6 
Exh. Gas 
Out. 
Temp. 
(ºC) 

DG1 Fuel Oil 
Consumption 
(t/hr) 

count 41750 41443 41439 41439 41439 41439 41439 41440 37982 

mean 2.81 37.66 196.82 210.56 210.52 210.90 191.10 203.07 0.90 

std 1.18 6.68 140.84 154.30 154.66 156.43 142.15 150.04 1.02 

min 1.50 25.50 55.40 57.00 57.20 58.10 47.60 49.20 0.00 

25% 1.70 32.50 67.30 67.30 67.00 65.70 57.90 64.30 0.00 

50% 1.80 37.70 73.70 76.00 76.90 76.00 70.70 76.00 0.00 

75% 4.10 43.10 348.30 375.70 375.10 378.90 343.50 360.60 1.85 

max 4.50 52.60 411.70 448.50 442.30 451.30 421.10 438.70 5.82 

DG1 
kWh 

DG1 
Lubrication 
Oil Inlet 
Press (bar) 

DG1 
Lubrication 
Oil Inlet 
Temp (ºC) 

DG1 
Power 
(kW) 

Inlet 
Temp. 
(ºC) 

DG1 
Winding 
Temp R 
Phase (ºC) 

DG1 
Winding 
Temp S 
Phase (ºC) 

DG1 
Winding 
Temp T 
Phase 
(ºC) 

Speed Over 
Ground (m/s) 

count 41487 41706 41382 41487 32387 41443 41443 41442 41336 

mean 2.07 2.27 56.40 124.47 294.18 42.38 43.89 42.85 6.32 

std 2.42 1.82 7.02 145.07 174.50 8.60 8.84 8.33 5.96 

min 0.00 0.30 40.60 0.00 45.10 25.50 26.70 26.60 0.00 

25% 0.00 0.60 50.20 0.00 82.40 36.00 37.30 36.80 0.02 

50% 0.00 0.80 60.90 0.00 413.30 43.60 45.00 43.70 6.98 

75% 4.16 4.20 62.10 249.87 439.60 48.70 50.30 48.90 12.51 

max 9.27 5.00 68.20 555.93 510.10 67.60 68.50 67.30 15.32 

Stern 
Tube 
Aft Brg 
Temp 
(ºC) 

Stern Tube 
Fore Brg 
Temp (ºC) 

True Course 
Over Ground 
(º) 

True Ship 
Heading 
(º) 

Water 
Depth 

Wind 
Beaufort 

Wind 
Direction 
(º) 

Wind 
Speed 
(m/s) 

count 24258 24524 41335 41258 19344 41162 41334 41334 

mean 28.55 28.99 165.10 147.72 39.51 3.61 189.16 6.80 

std 4.96 4.97 88.84 72.81 90.55 2.42 120.69 5.64 

min 20.00 20.00 0.00 0.00 1.70 0.00 0.00 0.00 

25% 24.50 24.80 100.70 110.12 4.10 2.00 72.00 2.06 

50% 27.40 28.10 164.80 148.12 9.70 4.00 218.00 6.17 

75% 33.30 33.60 242.00 172.89 48.20 5.00 300.00 9.77 

max 37.60 37.90 359.90 359.97 830.60 10.00 359.00 27.27 
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