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Few-body bound topological and flat-band states in a Creutz ladder
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We investigate the properties of a few interacting bosons in a Creutz ladder, which has become a standard
model for topological systems, and which can be realized in experiments with cold atoms in optical lattices. At
the single-particle level, this system may exhibit a completely flat energy landscape with nontrivial topological
properties. In this scenario, we identify topological two-body edge states resulting from the bonding of single-
particle edge and flat-band states. We also explore the formation of two- and three-body bound states in the
strongly interacting limit, and we show how these quasiparticles can be engineered to replicate the flat-band and
topological features of the original single-particle model. Furthermore, we show that in this geometry perfect
Aharonov-Bohm caging of two-body bound states may occur for arbitrary interaction strengths, and we provide
numerical evidence that the main features of this effect are preserved in an interacting many-body scenario
resulting in many-body Aharonov-Bohm caging.
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I. INTRODUCTION

Over the last decades, the study of topological mate-
rials has emerged as a central topic in condensed matter
physics. At the single-particle level, topological band theory
provides a complete description of the properties of topolog-
ical systems via the calculation of global order parameters
[1–3]. However, while it is known that underlying topological
band structures are responsible for the appearance of striking
many-body phases such as fractional quantum Hall states
[4] or symmetry-protected topological phases [5], there are
still many open questions regarding the interplay between
topology and interactions. In an effort to build a bottom-up
understanding of interacting topological models, a number
of studies have focused on the properties of systems with a
small number of particles [6–27]. Such few-body states can
be prepared and probed in a number of experimental platforms
such as ultracold atoms [28] (which also allow for controllable
interaction strengths), photonic systems [29] or topolectrical
circuits [30].

Here we consider a small number of interacting bosonic
particles in a Creutz ladder [31], which has been shown to be
realizable with ultracold atoms [32–37]. For a single particle,
this model possesses nontrivial topological properties which
lead to the appearance of symmetry-protected edge states
[19]. Making use of analytical calculations and perturbation
theory, we identify several regimes in which these topological
signatures are carried over bound states of two [38] and three
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particles. Besides its general topological nature, the Creutz
ladder is interesting because for appropriate values of the
magnetic flux it exhibits a completely flat band structure
characterised by compact localized states (CLSs) arising from
quantum interference [39]. Due to the suppression of the
kinetic energy term, under the presence of even very weak
interactions flat-band structures give rise to a plethora of ex-
otic many-body phases [34,40–47], including pair superfluids
[37] or many-body localized states [48–50].

We begin here by investigating the limit in which the
single-particle spectrum is composed of flat bands, identifying
the existence of unusual two-body edge states formed by the
bonding of a single-particle topological edge state and a CLS
localized at the edge of the ladder. These states exist for all
values of the two-body interaction strength and are present
away from the strict flat-band limit. In the strongly interacting
limit, it is possible to derive an effective model for two-body
bound states consisting of the two particles occupying the
same site. These quasiparticles, commonly referred to as dou-
blons, are found to replicate the same physics as the original
Creutz ladder with renormalized parameters and contain topo-
logical and nontopological edge states in their spectrum. We
generalize the procedure used to derive the doublon model
to find an effective description for three-body bound states,
which we refer to as trions. Similarly to the two-body case,
we find that trions behave in an analogous way to the single
particles, and have a clearer distinction between topological
and nontopological edge states than doublons.

For a Creutz ladder in the absence of interactions, a flat
energy spectrum leads to Aharonov-Bohm caging [51–56],
which corresponds to the localization of wave packets during
the dynamics in a small region of the system determined
by the CLS. However, the presence of interactions generally
disrupts this effect and leads to leakage outside of the cage
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FIG. 1. The Creutz ladder geometry considered in this work,
with the unit cell composed of an a and a b site highlighted in
blue. The orange boxes depict the region of support for the Wannier
functions associated with the lowest (|W −〉) and highest (|W +〉) flat
bands that occur for θ = π/2.

[57–60]. In a quest to overcome this hindrance, recent works
have identified a few instances in which Aharonov-Bohm
caging can persist in the presence of interactions. In Ref. [61],
it was shown for strongly interacting particles carrying orbital
angular momentum that it is possible to engineer Aharanov-
Bohm cages of different sizes by tuning the angles of a
zigzag shaped chain. Additionally, using detangling unitary
transformations it is possible to construct models featuring
Aharonov-Bohm caging in the nonlinear [62] and full quan-
tum [63] interacting regimes. Here we show that the Creutz
ladder can support perfect Aharonov-Bohm caging for ar-
bitrary interaction strengths for a specific type of two-body
bound states that could be implemented in an experiment.
Furthermore, we also observe the caging effect for strongly
interacting bound particles identified in Ref. [19]. Using ma-
trix product state calculations, we verify that this effect is
qualitatively retained for many-body states, offering potential
applications in the building of atomtronic circuits [64].

The rest of paper is organized as follows. In Sec. II, we
focus on the properties of two-body bound states, which we
generalize to three-body bound states in Sec. III. In Sec. IV,
we then address different types of many-body Aharonov-
Bohm caging that may occur in the system, and, finally, in
Sec. V we summarize the main conclusions of this paper.

II. TWO-BODY INTERACTING BOUND STATES

The Creutz ladder geometry that we consider is illustrated
in Fig. 1. Each unit cell is formed by two sites, denoted as
a and b, with horizontal and diagonal tunneling rate J , and a
total flux per plaquette 2θ . The lattice is loaded with bosons
with a two-body interaction strength U , and therefore the
many-body Hamiltonian of the system is given by

Ĥ = U

2

Nc∑
i=1

(â†
i â†

i âiâi + b̂†
i b̂†

i b̂ib̂i ) + J
Nc−1∑
i=1

[â†
i b̂i+1 + b̂†

i âi+1

+ eiθ â†
i âi+1 + e−iθ b̂†

i b̂i+1 + H.c.], (1)

where Nc is the total number of unit cells, and â†
i (b̂†

i ) creates
a particle on the a (b) site of the ith unit cell. For θ �= 0(mod
2π ), the single-particle band structure of this model is topo-
logically nontrivial, with each of the two bands having a
Zak’s phase Z = π [19]. According to the bulk-boundary
correspondence, in this topological phase a ladder with open

boundary conditions has edge states protected by the inversion
symmetry of the ladder.

A. Single-particle flat-band limit

The single-particle spectrum of the Creutz ladder becomes
particularly interesting for θ = π/2. In this case, the system
has two completely flat bands of energies E = ±2J and the
Wannier functions associated to each flat band are completely
localized in only two unit cells, as shown in Fig. 1. The
creation operators for the higher (lower) band states, Ŵ ±†

i , can
be expressed in terms of the operators for the a and b sites as

W +†
i = 1

2
â†

i + i

2
b̂†

i + i

2
â†

i+1 + 1

2
b̂†

i+1, (2)

W −†
i = 1

2
â†

i + i

2
b̂†

i − i

2
â†

i+1 − 1

2
b̂†

i+1. (3)

Additionally, for open boundary conditions the leftmost and
rightmost unit cells each host one edge state of E = 0. The
creation operators L̂† and R̂† of these states read

L̂† = 1√
2

â†
1 − i√

2
b̂†

1, (4)

R̂† = i√
2

â†
N − 1√

2
b̂†

N . (5)

The basis formed by the Wannier functions and the edge states
is particularly convenient for analyzing the bound states. In
this basis, the Hamiltonian of a Creutz ladder with open
boundary conditions is given by

Ĥ = Ĥbulk + Ĥedges, (6)

Ĥbulk = −2J
Nc−1∑
i=1

Ŵ −†
i Ŵ +

i + 2J
Nc−1∑
i=1

Ŵ +†
i Ŵ +

i

+ U

16

Nc−2∑
i=2

[(Ŵ †
i Ŵ †

i ŴiŴi + W̃ †
i W̃ †

i W̃iW̃i )

+ (4Ŵ †
i ŴiW̃

†
i+1W̃i+1 − Ŵ †

i Ŵ †
i W̃i+1W̃i+1 + H.c.)],

(7)

Ĥedges = U

4
(L̂†L̂†L̂L̂ + R̂†R̂†R̂R̂)

+ U

16
(Ŵ †

1 Ŵ †
1 Ŵ1Ŵ1 + W̃ †

Nc−1W̃
†

Nc−1W̃Nc−1W̃Nc−1)

+ U

2
(Ŵ †

1 L̂†Ŵ1L̂ + W̃ †
Nc−1R̂†W̃Nc−1R̂)

+ U

8
(L̂†L̂†Ŵ1Ŵ1 + R̂†R̂†W̃Nc−1W̃Nc−1 + H.c.), (8)

where Ŵi = Ŵ +
i + Ŵ −

i and W̃i = Ŵ +
i − Ŵ −

i . Due to the on-
site interactions, the bulk Hamiltonian contains terms that
couple single-particle Wannier states localized in neighbor-
ing cells in different ways. In particular, the final two terms
describe the dynamics of two particles simultaneously hop-
ping from one plaquette to an adjacent one, breaking the
single-particle localization. Additionally, the term propor-
tional to Ŵ †

i ŴiW̃
†

i+1W̃i+1 yields an interaction energy between
particles occupying neighboring cells. Taking these cou-
pling terms into account, we can analyze the spectrum of
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two-boson bound states in an infinite ladder by consider-
ing two types of quasiparticles that do not mix with each
other [37]. The first type of composite particles is formed
by states in which the two bosons occupy single-particle
Wannier states localized in the same plaquette, i.e., two-boson

states created by the combinations of Wannier-state operators
{ 1√

2
Ŵ −†

i Ŵ −†
i , 1√

2
Ŵ +†

i Ŵ +†
i , Ŵ +†

i Ŵ −†
i }. The terms in Ĥbulk

that give rise to pair tunneling couple these three states, and
the momentum-space Hamiltonian of this subset of states
reads

H1(k) =

⎛
⎜⎝

−4J + U/4(1 − cos kd ) U/4(1 − cos kd ) iU
√

2/4 sin kd

U/4(1 − cos kd ) 4J + U/4(1 − cos kd ) iU
√

2/4 sin kd

−iU
√

2/4 sin kd −iU
√

2/4 sin kd U/2(1 − cos kd )

⎞
⎟⎠, (9)

where d is the separation between unit cells and we have
used the basis ordering mentioned above. The three bands
formed by these bound states are depicted with black lines in
Fig. 2. For U = 4J , the second and third bands form a Dirac
cone around kd = 0, where a gap closing occurs. For any
other value of U , the three bands remain gapped. The second
type of two-body bound states each consist of the two parti-
cles occupying Wannier states localized on nearest-neighbor
plaquettes, and are therefore created by combinations of the
operators {Ŵ −†

i Ŵ −†
i+1, Ŵ +†

i Ŵ +†
i+1, Ŵ +†

i Ŵ −†
i+1, Ŵ −†

i Ŵ +†
i+1}.

Since Ĥbulk does not contain any term describing single-
particle hopping, these bound states form a closed system at
each pair of plaquettes i, i + 1, giving rise to a k-independent
momentum space Hamiltonian:

H2(k) =

⎛
⎜⎜⎝

−4J + U/4 −U/4 U/4 −U/4
−U/4 4J + U/4 −U/4 U/4
U/4 −U/4 U/4 −U/4

−U/4 U/4 −U/4 U/4

⎞
⎟⎟⎠.

(10)

The four quasiparticle flat bands corresponding to this sub-
space are depicted as red lines in Fig. 2.

In a finite ladder with open boundary conditions, there are
additional bound states that result from the coupling between
the Wannier states created by the operators Ŵ ±†

1 and Ŵ ±†
Nc−1,

and the edge states created by L̂† and R̂†, as described by the

FIG. 2. Band structure of two-boson bound states in the Creutz
ladder for the case θ = π/2 for two-body interaction strengths
U/J = 2, 4, 6. The black lines are the energy bands resulting from
diagonalization of the Hamiltonian (9), while the red lines are the
energies corresponding to the eigenstates of the Hamiltonian (10).

edge Hamiltonian (8). Examining the different terms of Ĥedges,
we notice that on the left edge of the ladder the two-boson
states L̂†Ŵ −†

1 |0〉 and L̂†Ŵ +†
1 |0〉 are coupled between them-

selves but not to any other bound pairs, and the same occurs
for R̂†Ŵ −†

Nc−1|0〉 and R̂†W +†
Nc−1|0〉 at the right edge. Explicitly,

the only nonzero matrix elements between states of this kind
localized at the left edge are

〈0|L̂Ŵ −
1 Ĥ L̂†Ŵ −†

1 |0〉 = −2J + U

2
,

〈0|L̂Ŵ +
1 Ĥ L̂†Ŵ −†

1 |0〉 = 〈0|L̂Ŵ −
1 Ĥ L̂†Ŵ +†

1 |0〉 = U

2
,

〈0|L̂Ŵ +
1 Ĥ L̂†Ŵ +†

1 |0〉 = 2J + U

2
.

Similarly, the nonzero matrix elements between states local-
ized at the right edge read

〈0|R̂Ŵ −
Nc−1Ĥ R̂†Ŵ −†

Nc−1|0〉 = −2J + U

2
,

〈0|R̂Ŵ +
Nc−1Ĥ R̂†Ŵ −†

Nc−1|0〉 = 〈0|L̂Ŵ −
1 Ĥ L̂†Ŵ +†

1 |0〉 = −U

2
,

〈0|R̂Ŵ +
Nc−1Ĥ R̂†Ŵ +†

Nc−1|0〉 = 2J + U

2
.

Writing these two systems of equations in matrix form and
diagonalizing them, we find that the eigenstates at both edges
have energies

E± = 1
2 (U ±

√
U 2 + 16J2). (11)

These states are strictly localized on the unit cells 1 and 2
(or Nc − 1 and Nc), as they are composed of two-body states
in which one particle occupies an edge state and the other
an adjacent flat-band state. This can be observed in the right
plot of Fig. 3(a), where we show the density distribution of
the lower and higher energy edge states of an open Creutz
ladder formed by Nc = 20 unit cells and with hopping phase
θ = π/2, for an interaction strength U/J = 2. Even though
we plot only one edge state at either end of the ladder, we
note that both edges host both kinds of edge states |E−〉 and
|E−〉. Due to interference effects between the bound states that
form the edge states, the |E−〉 state tends to have its population
more spread across unit cells 1 and 2 (or Nc − 1 and Nc),
while the |E+〉 state tends to have it more concentrated on the
unit cell 1 (or Nc). In the left plot of Fig. 3(a), we show the
two-boson energy spectrum of the same ladder as a function of
the interaction strength U . The lines colored in red correspond
to the two-boson edge states formed by the bonding of a
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(a)

(b)

FIG. 3. Left plots: Two-boson energy spectrum of an open
Creutz ladder formed by Nc = 20 unit cells as a function of
the interaction strength U for a hopping phase (a) θ = π/2 and
(b) θ = 0.48π . Right plots: Density distribution of the lower and
higher energy edge states for U = 2J and a hopping phase (a) θ =
π/2 and (b) θ = 0.48π . The sites are labeled as a1, a2, a3 =
1, 3, 5, . . . ; b1, b2, b3 = 2, 4, 6, . . ., i.e., odd numbers are assigned to
a-type sites and even numbers to b-type sites.

single-particle edge state with a flat-band state. As predicted
by the analytical values (11) of the edge-state energies, the
higher-energy two-boson edge states become degenerate with
the bulk for U/J � 3, but they remain localized at the edges
of the ladder.

Although the exact expressions for two-boson edge states
formed by the bonding of a single-particle edge state and a
flat-band state can only be found for θ = π/2, these states are
also present away from the single-particle flat band limit. In
the left plot of Fig. 3(b), we show the two-boson spectrum
of an open Creutz ladder formed by Nc = 20 unit cells with
hopping phase θ = 0.48π as a function of U . While the bulk
spectrum differs from the θ = π/2 case depicted in Fig. 3(a),
the energies of the two-boson edge states (colored in red)
still have the dependence on the interaction strength given by
Eq. (11). In the right plot of Fig. 3(b), we show the density
distribution of the lower and higher energy edge states for
the same ladder as in the left plot and U/J = 2. Although the
states are still largely localized on the two leftmost (rightmost)
unit cells, the density profile decays exponentially into the
bulk. For larger deviations from the flat-band limit, the edge
localization becomes weaker.

B. Strongly interacting limit

Although the exact analytical study of the properties of
two-boson bound states is only possible for the single-particle
flat-band case, for sufficiently strong interactions U � J it is
possible to derive an effective model for high-energy bound
states, commonly referred to as doublons. In this limit, the
formation of bound states occurs for any value of the ladder
parameters and is caused by the fact that, due to the finite
bandwidth of the single-particle spectrum, states with doubly
occupied sites have a much higher energy than those with
single site occupation, and therefore the two types of states
do not mix. Taking profit of the energy separation between
the doublon bands and the rest of the spectrum, it is possible
to perform a Schrieffer-Wolff (SW) transformation to find
an effective Hamiltonian restricted to the doublon subspace,
as we discuss in detail in Appendix. As we show in the
Appendixes and in Sec. III, this procedure can be generalized
to obtain effective models for bound states formed by more
than two particles. Defining the doublon annihilation oper-
ators Âi ≡ 1√

2
âiâi, B̂i ≡ 1√

2
b̂ib̂i, we can write the effective

Doublon model (DM) Hamiltonian as

ĤN=2
eff = 2J2

U

Nc−1∑
i=1

(Â†
i B̂i+1 + B̂†

i Âi+1

+ e2iθ Â†
i Âi+1 + e−2iθ B̂†

i B̂i+1 + H.c.)

+
(

U + 8J2

U

) Nc∑
i=1

(Â†
i Âi + B̂†

i B̂i )

− 4J2

U
(Â†

1Â1 + B̂†
1B̂1 + Â†

Nc
ÂNc + B̂†

Nc
B̂Nc ). (12)

The first two terms describe an effective Creutz ladder with
renormalized tunneling rate J → 2J2

U and with a renormalized
complex hopping phase θ → 2θ . The third term is an overall
energy shift, coming from second-order processes in which
a doublon splits and then recombines in the same site. Fi-
nally, the last term, which only appears for open boundary
conditions, is an effective energy shift on the four edge sites
stemming from the fact that they have different coordination
numbers than the bulk sites.

For U � J , we expect the effective DM (12) to repro-
duce well the high-energy sector of the spectrum obtained by
full exact diagonalization (ED) of a Creutz ladder with two
bosons. As we show in Fig. 4, where we plot the doublon
energies computed with full ED and the effective model in an
open ladder formed by Nc = 20 unit cells for θ = π/4, 3π/4
(a), θ = π/2 (b), and different values of U , the convergence
between the two methods is better for higher interaction
strengths. By analogy with the solution of a single-particle in
the Creutz ladder, for θ = π

4 , 3π
4 we expect the bulk doublon

spectrum to be formed by two flat bands, as can be observed
in Fig. 4(a). In a ladder with open boundary conditions, since
the edge sites have an energy shift of −4J2/U relative to the
the bulk sites, we expect to observe isolated edge states in the
doublon spectrum originated by this energy shift. However,
since this shift is only two times larger than the effective hop-
ping (2J2/U ), these states will also have some admixture from
the closest cells to the edges. Besides these nontopological
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(a) (b)

FIG. 4. Doublon spectra obtained through ED and the effective
DM Hamiltonian (12) for different values of U in a Creutz ladder
with open boundary conditions formed by Nc = 20 unit cells. The
hopping phase is θ = π/4, 3π/4 in plot (a) and θ = π/2 in plot (b).
Following Eq. (12), the energies plotted in the y axis are centered at
Ē = U + 8J2/U and rescaled by a factor � = 2J2/U .

edge states, by analogy with the single-particle solution we
also expect to observe topological doublon edge states with
an energy laying in the gap between the bulk bands. Since the
edge sites are shifted in energy, these edge states will tend to
be displaced to the unit cells number 2 and Nc − 1, but will
still partially hybridize with the nontopological edge states.

As a result of this interplay between the two different types
of edge states, in Fig. 4(a) we observe two different pairs of
edge states, each of which appears at both edges of the ladder.
The first type of edge state, which we denote |E−〉 and lays at
a lower energy than the first doublon bulk band, has a higher
admixture of nontopological edge states, and its density is
therefore more concentrated on unit cell 1 (or Nc), as shown
in Fig. 5 for state |E−〉 localized at the left edge of the ladder.
The second type of edge state, which we denote |E+〉 and lays
in the gap between the two doublon bulk bands, has a higher
admixture of the topological edge states, and is therefore more
localized on unit cell 2 (or Nc), as shown in Fig. 5 for state
|E+〉 localized at the right edge of the ladder. As shown in

FIG. 5. Density profiles of the lower energy and higher en-
ergy doublon edge state obtained with ED and the effective DM
Hamiltonian (12) for U = 20J in a Creutz ladder with open boundary
conditions formed by Nc = 20 unit cells and with hopping phase
θ = π/4, 3π/4.

Fig. 4(b), for θ = π/2 the doublon bulk spectrum is gapless
and the energy of the edge states falls inside the bulk band.
This case corresponds precisely to the single-particle flat-band
limit studied in the previous section. Therefore, the two edge
states merged with the lower bulk band that can be observed in
the plot can be interpreted as the bonding of a single-particle
edge state and a flat-band state, as discussed previously.

III. THREE-BODY BOUND STATES

We now consider a Creutz ladder filled with three interact-
ing bosons. In the strongly interacting limit U � J , we can
apply the Schrieffer-Wolff transformation described in Ap-
pendix to derive an effective model for interacting three-body
bound states. Defining the three-body annihilation operators
Ai ≡ 1√

6
aiaiai, Bi ≡ 1√

6
bibibi, we can write the effective trion

model (TM) Hamiltonian as

ĤN=3
eff = 3J3

2U 2

Nc−1∑
i=1

(Â†
i B̂i+1 + B̂†

i Âi+1

+ e3iθ Â†
i Âi+1 + e−3iθ B̂†

i B̂i+1 + h.c.)

+
(

3U + 6J2

U

) Nc∑
i=1

Â†
i Âi + B̂†

i B̂i

−
(

3J2

U

)
(Â†

1Â1 + B̂†
1B̂1 + Â†

Nc
ÂNc + B̂†

Nc
B̂Nc ). (13)

The interpretation of the effective TM Hamiltonian (13) is
similar to the one of the effective doublon model given by
Eq. (12). The first two terms describe an effective noninteract-
ing Creutz ladder with renormalized tunneling rate J → 6J3

4U 2

and a renormalized complex hopping phase θ → 3θ . The third
term is an overall energy shift due to the interaction energy
between three bosons, 3U , and second-order processes in
which a trion is split and recombined on the same site. Finally,
the last term is a relative energy shift on the four edge sites due
to their reduced coordination numbers with respect to the bulk
sites, and only appears for open boundaries.

As we discussed in the case of doublons, this relative en-
ergy shift gives rise to nontopological edge states and causes
a displacement by one unit cell of the topological ones. By
analogy with the solution of a single particle in the Creutz
ladder, we expect to find trion flat bands for θ = π

6 , 5π
6 and π

2 .
We note that the latter value of the hopping phase coincides
with the one for which the single-particle spectrum is also
formed by flat bands, so we expect the ED results for θ = π

2

to differ slightly from the ones corresponding to θ = π
6 , 5π

6 ,
even though the effective TM Hamiltonian (13) is equivalent
for all three values of θ . This is confirmed in Fig. 6, where we
plot a comparison between the trion energies computed with
ED and the effective TM on an open Creutz ladder formed
by Nc = 20 unit cells for different values of U , and hopping
phase θ = π

6 , 5π
6 (a) and θ = π

2 (b). Due to the underlying
single-particle flat-band spectrum, for θ = π

2 the three-body
bound states form completely flat bands for lower values of U
than in the case θ = π

6 , 5π
6 , for which the strongly interacting

condition U � J must be fulfilled for the flat bands predicted
by the effective model to emerge.
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(a) (b)

FIG. 6. Trion spectra obtained through ED and the effective
TM Hamiltonian (13) for different values of U in a Creutz ladder
with open boundary conditions formed by Nc = 20 unit cells. The
hopping phase is θ = π/3, 5π/6 in (a) and θ = π/2 in (b). Fol-
lowing Eq. (13), the energies plotted in the y axis are centered at
Ē = 3U + 6J2/U and rescaled by a factor � = 3J3/2U 2.

In Fig. 6, we also observe that the gap between the lower
energy edge states and the lower flat and increases with U .
This is due to the fact that the energy shift of the edge sites is
∼J2/U , while the effective trion hoppings are ∼J3/U 2. Due
to the large energy difference between the edge site shift and
the effective coupling, the admixture effect between topolog-
ical and nontopological edge states that occurs in the doublon
case is highly suppressed for trions. The consequences of this
can be observed in Fig. 7, where we plot, for an open Creutz
ladder formed by Nc = 20 unit cells with hopping phase
θ = π/2 and U = 10J , the density profiles of the left |E−〉
and right |E+〉 edge states, computed with ED and the
effective TM. The lower-energy states |E−〉, which are non-
topological and due to the on-site shift on the edge sites, are
highly localized on the edge sites of the ladder, while the
higher-energy states |E+〉, which are of topological origin and
lay in the gap between the two flat bands, are highly localized
on the unit cell number 2 (or Nc − 1).

FIG. 7. Density profiles of the lower energy and higher energy
trion edge states obtained with ED and the effective TM Hamiltonian
(13) for U = 10J in a Creutz ladder with open boundary conditions
formed by Nc = 20 unit cells and with hopping phase θ = π/2.

IV. AHARONOV-BOHM CAGING

A. Two-body Aharonov-Bohm caging

Aharonov-Bohm caging is a phenomenon consisting of the
confinement of wave packets to a small region of the lattice
[51]. At the single-particle level, this effect can be explained
as a consequence of the suppression of the kinetic energy in
flat-band systems. In previous works, it has been shown that
interactions tend to hinder Aharonov-Bohm caging and cause
the delocalization of particles in flat-band systems [57–60].
However, as we explain below, the Creutz ladder can host
different types of two-body Aharonov-Bohm cages. On the
one hand, for θ = π/2 it is possible to identify a particular
set of initial states which exhibit perfect caging for arbitrary
interactions strengths. On the other hand, as already pointed
out in Ref. [19], for θ = π/4, 3π/4 and in the strongly in-
teracting limit, the dynamics of doublons are governed by a
Hamiltonian analogous to that of single particles, and thus ex-
hibit Aharonov-Bohm caging. Both types of Aharonov-Bohm
cages could find applications in the design of atomtronic cir-
cuits [64].

1. θ = π/2

For θ = π/2, the existence of the two-boson bound flat-
band states in which each of the two particles occupies
neighboring compact localized Wannier states [i.e., the eigen-
states of the Hamiltonian (10)] can be probed through the
Aharonov-Bohm caging effect by preparing an experimentally
accessible initial state and observing its dynamics. In particu-
lar, the doublon superposition state |�i〉 = 1

2 (â†
i â†

i + b̂†
i b̂†

i )|0〉
can be expressed in terms of the Wannier basis as

|�i〉 = i

2
(Ŵ −†

i−1Ŵ
−†

i + Ŵ −†
i−1Ŵ

+†
i − Ŵ +†

i−1Ŵ
−†

i − Ŵ +†
i−1Ŵ

+†
i )|0〉

= 1

2i
W̃ †

i−1Ŵ
†

i |0〉. (14)

Therefore, if one initializes two bosons in |�i〉, the time evo-
lution will consist of oscillations between the different bound
states, forming a closed system in the plaquettes i − 1 and
i, and the atomic density will remain confined to the sites
forming these two plaquettes. As illustrated in Fig. 8(a), where
we plot the time evolution of the atomic density in the tenth
cell of a Creutz ladder with θ = π/2 formed by a total of 20
cells after preparing two bosons in the state |�10〉, this caging
effect occurs for any value of the interaction strength U .

2. θ = π/4, 3π/4, strongly interacting limit

As we discussed previously, in the strongly interacting
limit the two highest energy doublon bands become flat when
the hopping phase is θ = π/4, 3π/4. Therefore, in this situa-
tion we expect to find two-boson Aharonov-Bohm caging for
any initial state, in the same way as it occurs for noninteracting
states in the single-particle flat-band limit. Since the flat-band
maximally localized states extend over two unit cells, an ini-
tial state prepared in unit cell i is confined to oscillate between
cells i − 1, i and i + 1. In Fig. 8(b), we plot the time evolution
of the atomic density in the tenth cell of a Creutz ladder with
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FIG. 8. Time evolution of the population of the tenth unit cell on
an open Creutz ladder formed by Nc = 20 unit cells. The two bosons
are initialized on the state |�10〉 as defined on the main text. The
hopping phases are θ = π/2 (a) and θ = π/4, 3π/4 (b).

θ = π/4, 3π/4 formed by a total of 20 cells after preparing
two bosons in state |�10〉. We observe that as the interaction
strength U is increased, a higher fraction of the population
remains confined in the cage. We also note that the frequency
of the oscillations decreases with U due to the fact that the gap
between the two flat bands, given by 16J2/U in the effective
doublon model, becomes smaller.

B. Many-body Aharonov-Bohm caging

Moving beyond the two-particle limit, another interest-
ing question to examine is to which extent Aharonov-Bohm
caging is preserved in an interacting many-body scenario. To
investigate this, in this section we use matrix product state
methods to compute the dynamics of different initial states in a
Creutz ladder formed by Nc = 25 unit cells and up to N = 50
atoms for hopping phases θ = 0 and θ = π/4. To maximize
the contributions from doublons and minimize the correc-
tions arising from trions, we work in the regime of strong
attractive interactions U < 0, |U | � J . In this limit, strong
three-body losses occurring in experimental realizations of
ultracold atoms in optical lattices [65–67] lead to an effective
quantum Zeno-type suppression of many-body states with
more than two particles per site [68–71], and we can therefore
introduce an upper bound of 2 in the single-site occupation
of our model [72–79]. This effectively puts an upper bound
on the local dimension of the numerical algorithm and gives
us a potential experimental way of probing the effect of the
unique features of doublons in this model on the many-body
dynamics.

We have considered initial many-body states |ψ〉 con-
structed by loading the doublon superposition states given
by Eq. (14) in alternating unit cells with different densities,
and computed the expectation value of the pairing correlation
operator

Cj (t ) = 〈ψ (t )|â†
Nc/2â†

Nc/2â j â j |ψ (t )〉, (15)

as a function of the rung position j and time t . The results are
shown in Fig. 9, where in all cases the interaction strength
is U = −20J , so we are in a regime where the lowest en-
ergy two-body band is effectively flat in the case θ = π/4.

FIG. 9. Space-time evolution of two-body pair correlations
[Eq. (15)] in a Creutz ladder loaded with different densities of the
two-boson states |�i〉 defined by Eq. (14) for hopping phases θ = 0
and θ = π/4. The initial state is constructed by loading the doublon
superposition states (14) every three unit cells (a), every other unit
cell (b), or in all unit cells (c). In all cases, we have considered an
attractive interaction strength U = −20J and Nc = 25 unit cells.

Note that in all cases conventional single particle correlations,
〈â†

Nc/2â j〉, remain exponentially suppressed for the timescales
considered. In Fig. 9(a), the initial state is constructed by load-
ing two bosons into the doublon superposition state |�i〉 every
three unit cells. In a scenario with perfect Aharonov-Bohm
caging, each doublon superposition state would be confined to
a cage formed by the cell in which it is prepared and the two
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adjacent ones, and therefore the correlations would not spread
beyond these three unit cells. In practice, for a hopping phase
θ = π/4, for which we have a flat band in the two-body band
structure, the two-body pair correlations spread further in the
lattice due to the finite population leaking outside of the cage,
but this spreading remains largely suppressed compared to the
case with hopping phase θ = 0, for which there is significant
single doublon dispersion.

In Fig. 9(b), we consider an initial state in which the
doublon superposition state is prepared in every other unit
cell. Even though in this case the ideal Aharonov-Bohm cages
are overlapping, the correlation spreading for θ = π/4 re-
mains limited and clearly inferior to that observed for θ = 0.
Finally, in Fig. 9(c), we show the results corresponding to
an initial state in which all unit cells are prepared in the
doublon superposition state. Even though in this case the
correlations start to spread further for θ = π/4, they still
remain more confined than for θ = 0 with the same initial
state, and also even more than for θ = 0 with the initial
state of Figs. 9(a) and 9(b). This analysis indicates that the
Aharonov-Bohm caging features of doublons in this model
can be used to create (approximate) many-body cages, with
potential uses and applications in atomtronic devices and
circuits [64].

V. CONCLUSION

We have examined the properties of two- and three-boson
bound states in the Creutz ladder. In the flat-band single-
particle limit, the two-boson bound states admit a completely
analytical description, which we have used to identify and an-
alyze the appearance of unusual two-body edge states formed
by the bonding of a single-particle topological edge state and
a localized flat-band state. We have also derived an effective
model for doublons in the strongly interacting limit, show-
ing behavior similar to that of single particles. This effective
model unveils the presence of nontopological doublon edge
states which hybridize with the topological ones and tend to
displace them one cell away from the boundaries of the ladder.

When we further extend this to three-body bound states
in the regime of strong interactions, we again show that such
trions replicate the properties of single particles and have non-
topological edge states. However, due to their larger energy
difference with the bulk, these states have a lower hybridiza-
tion with the topological edge states, which are therefore
more clearly displaced to the unit cells next to the edges of
the ladder. Finally, we examined Aharonov-Bohm caging of
bound states. In the situation in which the single-particle band
structure is flat, we have shown that a certain type of two-
body bound states exhibit perfect Aharonov-Bohm caging for
arbitrary values of the interaction strength. In the strongly
interacting limit, it is also possible to observe approximate
Aharonov-Bohm of doublons by tuning the hopping phase. In
this scenario, we have shown that a many-body state formed
by multiple doublons localized in different parts of the ladder
exhibits a clear suppression of the spreading of two-body
correlations.

We note that this approach can be generalized to any
number of particles, offering a route to explore many-body
topological phases in flat-band systems.
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APPENDIX: SCHRIEFFER-WOLFF TRANSFORMATION

In this Appendix, we provide a detailed derivation of the
Schrieffer-Wolff transformation used in the main text. Let us
consider an optical lattice filled with N interacting bosons.
We describe this system with a standard Bose-Hubbard
Hamiltonian with hoppings Ji j and a uniform on-site interac-
tion strength U :

Ĥ = U

2

∑
i

n̂i(n̂i − 1) +
∑
〈i, j〉

Ji j â
†
i â j ≡ ĤU + ĤJ . (A1)

In the strongly interacting limit U � Ji j , this model supports
bound states of up to N bosons that are well separated in
energy from the rest. We are interested in deriving an ef-
fective model for these high-energy states. By treating the
tunneling as a perturbation, it is possible to find such an
effective model [80] using a unitary transformation known as
Schrieffer-Wolff transformation [81], which diagonalizes the
Hamiltonian perturbatively in blocks of states with different
on-site occupations. To proceed with the SW transformation,
we decompose the kinetic term of the Hamiltonian ĤJ into a
sum of terms that change the number of on-site bosonic pairs
by a quantity m:

ĤJ =
N−1∑

m=−(N−1)

Ĥm
J . (A2)

Since each of the Ĥm
J terms creates (for m > 0) or annihilates

(for m < 0) m pairs of bosons, and the energy associated with
each pair is U , these terms must obey the following commuta-
tion relations with the interacting part of the Hamiltonian ĤU :

[
ĤU , Ĥm

J

] = mUĤm
J . (A3)

The transformation of the Bose-Hubbard Hamiltonian Ĥ un-
der any unitary eiŜ (with Ŝ† = Ŝ) can be computed as a
perturbative series of nested commutators:

H̃ = eiŜĤe−iŜ = Ĥ + [iŜ, Ĥ ]

1!
+ [iŜ, [iŜ, Ĥ ]]

2!
+ · · · . (A4)

From Eqs. (A3) and (A4), it can be readily seen that the
zeroth-order terms that couple states with different numbers
of on-site occupation (i.e., Ĥm

J with m �= 0) can be removed
from the transformed Hamiltonian H̃ by choosing

iŜ =
m=N−1∑

m=−(N−1),m �=0

Ĥm
J

mU
. (A5)

After applying this transformation, H̃ still contains terms of

O(
J2

i j

U ) that couple subspaces with different numbers of on-site
occupancies. It is possible to iteratively construct kth-order

transformations to remove terms of O(
Jk+1

i j

U k ) [80], but for our
purposes it is sufficient to use the transformation given by
Eq. (A5).
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To understand more clearly how this general procedure
allows us to derive effective models for bound states, let us
explicitly consider the cases of bound states of N = 2 bosons
(doublons) and N = 3 bosons (trions).

1. Effective Hamiltonian for doublons

To derive an effective Hamiltonian for bosonic doublons
using the SW transformation, we restrict the maximum occu-
pancy of any site to nmax

i = 2. By doing so, we can decompose
the identity operator as 1 = δni,0 + δni,1 + δni,2. Multiplying
ĤJ by 1 from the left and right, we can rearrange the kinetic
term in the following way:

ĤJ = Ĥ−1
J + Ĥ0

J + Ĥ+1
J ,

Ĥ−1
J =

∑
〈i, j〉

Ji j (δni,1â†
i â jδn j ,2),

Ĥ0
J =

∑
〈i, j〉

Ji j[(δni,1â†
i â jδn j ,1) + (δni,2â†

i â jδn j ,2)],

Ĥ+1
J =

∑
〈i, j〉

Ji j (δni,2â†
i â jδn j ,1). (A6)

For instance, Ĥ−1
J annihilates a bosonic pair by moving a

particle from a site i with ni = 2 (ni = 1 at the end of the
process) to an adjacent site j with nj = 0 (n j = 1 at the end
of the process). It can be readily checked that these terms
obey the commutation relations (A3) for m = 0,±1. We now
apply the transformation iŜ = 1

U (Ĥ+1
J − Ĥ−1

J ) to the total
Hamiltonian Ĥ = ĤU + ĤJ to write the transformed
Hamiltonian as

H̃ = Ĥ0
J + ĤU +

[
Ĥ+1

J , Ĥ−1
J

] + [
Ĥ0

J , Ĥ−1
J

] + [
Ĥ+1

J , Ĥ0
J

]
U

+ O(U −2). (A7)

To proceed further, we consider that the total number of parti-
cles in the lattice is N = 2. By retaining in Eq. (A7) only the
terms that act nontrivially in the doubly occupied subspace,
we arrive at the following effective Hamiltonian for doublons:

ĤN=2
eff = ĤU + 1

U
Ĥ+1

J Ĥ−1
J + O(U −2). (A8)

Furthermore, in Ĥ+1
J Ĥ−1

J /U we only need to take into account
the hopping processes where a doublon splits and then recom-
bines again in the same site or an adjacent site. In the former
case, we will obtain an effective on-site energy shift, while the
second case corresponds to an effective second-order hopping
term that gives rise to doublon motion.

2. Effective Hamiltonian for trions

Following a procedure analogous to the case of doublons,
to derive an effective Hamiltonian for trions we restrict the lo-
cal occupancy to nmax

i = 3 and express the identity operator as
1 = δni,0 + δni,1 + δni,2 + δni,3. This allows us to decompose
the kinetic term of the Hamiltonian into the following parts:

ĤJ = Ĥ−2
J + Ĥ−1

J + Ĥ0
J + Ĥ+1

J + Ĥ+2
J ,

Ĥ−2
J =

∑
〈i, j〉

Ji j (δni,1â†
i â jδn j ,3),

Ĥ−1
J =

∑
〈i, j〉

Ji j[(δni,1â†
i â jδn j ,2) + (δni,2â†

i â jδn j ,3)],

Ĥ0
J =

∑
〈i, j〉

Ji j[(δni,1â†
i â jδn j ,1) + (δni,2â†

i â jδn j ,2).

+ (δni,3â†
i â jδn j ,3)],

Ĥ+1
J =

∑
〈i, j〉

Ji j[(δni,2â†
i â jδn j ,1) + (δni,3â†

i â jδn j ,2)],

Ĥ+2
J =

∑
〈i, j〉

Ji j (δni,3â†
i â jδn j ,1). (A9)

For instance, Ĥ−2
J annihilates two bosonic pairs by moving

a particle from a site i with ni = 3 (ni = 2 at the end of the
process) to an adjacent site j with n j = 0 (n j = 1 at the end
of the process). Again, these terms obey the commutation
relations (A3) with m = 0,±1,±2. The SW transformation
is now achieved with iŜ = 1

U ( 1
2 Ĥ+2

J + Ĥ+1
J − Ĥ−1

J − 1
2 Ĥ−2

J ).
The general expression of the transformed Hamiltonian Ĥ
becomes quite lengthy, but setting the total number of particles
to N = 3 and retaining only the terms that act nontrivially
on the trion subspace, we arrive at the following minimal
effective Hamiltonian allowing for trion motion:

ĤN=3
eff = ĤU + 1

2U
Ĥ+2

J Ĥ−2
J + 1

4U 2
Ĥ+2

J Ĥ0
J Ĥ−2

J + O(U −3).

(A10)

In the second-order term Ĥ+2
J Ĥ−2

J /2U , we only need to take
into account hopping processes where one particle forming
the trions moves to an adjacent site and then recombines to
the same site, giving rise exclusively to an energy shift. On the
other hand, the third-order term Ĥ+2

J Ĥ0
J Ĥ−2

J /4U 2 may give
rise both to processes in which a particle forming the trion
hops three times and then recombines to the same site (energy
shift) or in which the three particles forming the trion hop to
an adjacent site (effective trion hopping).
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