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ABSTRACT

One of the foundational goals of Information Retrieval (IR) is to

satisfy searchers’ Information Needs (IN). Understanding how INs

physically manifest has long been a complex and elusive process.

However, recent studies utilising Electroencephalography (EEG)

data have provided real-time insights into the neural processes

associated with INs. Unfortunately, they have yet to demonstrate

how this insight can practically bene�t the search experience. As

such, within this study, we explore the ability to predict the realisa-

tion of IN within EEG data across 14 subjects whilst partaking in a

Question-Answering (Q/A) task. Furthermore, we investigate the

combinations of EEG features that yield optimal predictive perfor-

mance, as well as identify regions within the Q/A queries where a

subject’s realisation of IN is more pronounced. The �ndings from

this work demonstrate that EEG data is su�cient for the real-time

prediction of the realisation of an IN across all subjects with an

accuracy of 73.5% (SD 2.6%) and on a per-subject basis with an

accuracy of 90.1% (SD 22.1%). This work helps to close the gap by

bridging theoretical neuroscienti�c advancements with tangible

improvements in information retrieval practices, paving the way

for real-time prediction of the realisation of IN.
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1 INTRODUCTION

The primary objective of any Information Retrieval (IR) system is

to ful�l a searcher’s Information Need (IN) [4, 14, 18]. In the realm

of IR, numerous endeavours have been dedicated to unravelling
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and de�ning the intricate concept of IN. Pioneering works, such

as Taylor’s Question Negotiation Process [19], Anomalous State of

Knowledge Model [1], and Wilson’s Information Seeking Behavior

[21], have signi�cantly contributed to this pursuit. These works

explore the essence of IN by examining user behaviour through

techniques like user-system interactions [2], self-re�ective notes

[10], and interviews/questionnaires [13]. While these methods o�er

valuable insights, reporting IN by subjects is often challenging due

to its intricate and elusive nature, thereby constraining the e�cacy

of user-based studies [18].

Consequently, over the last decade, a new line of research has

endeavoured to address the inherent limitations by directly exam-

ining the neurological activity in the searcher’s brain through the

utilisation of neuroimaging technologies[14, 16–18]. Research con-

ducted at the crossroads of neuroscience and information retrieval

is often referred to as NeuraSearch [15]. This interdisciplinary �eld

has yielded numerous �ndings focused on the tangible representa-

tion of information needs (INs) within speci�c brain regions. For

instance, Functional Magnetic Resonance Imaging (fMRI) was em-

ployed to observe subjects’ brain activity in a Q/A task [17, 18]. The

results revealed a distributed network of brain regions commonly

associated with IN, with varying activity levels in these regions

based on whether the subject knew the answer to a question or

needed to search for it. Further exploration [17] utilised fMRI data

from a similar Q/A task to train a support vector machine (SVM)

capable of distinguishing instances when a searcher possesses an IN.

These investigations have presented compelling evidence regarding

the existence and expression of INs within the minds of searchers.

However, employing fMRI for such analyses presents several limi-

tations. Firstly, the physical hardware of an fMRI machine is both

sizable and costly, necessitating the subject to lie supine within

the central bore of the apparatus while maintaining stillness, as

outlined by Moshfeghi et al. [17]. Secondly, despite its �ne spatial

resolution, fMRI exhibits suboptimal temporal resolution, with each

measurement taking a duration of 2 seconds [17]. This limitation

is further exacerbated by the Blood Oxygenation Level Dependent

(BOLD) signal’s inherent delays [17, 18]. Despite the valuable in-

sights o�ered by fMRI, the cumbersome nature and high cost of

the equipment, coupled with its temporal constraints, hinder its

seamless integration into current IR systems.

Acknowledging the limitations inherent within fMRI data, re-

searchers sought alternative neuroimaging methods to better depict

the dynamics of INs with higher temporal resolution. One such

approach involves the utilisation of Electroencephalography (EEG)

data, a cheaper and more practical method, where electrical activity

from the brain is recorded at a millisecond scale through electrodes

placed on the subject’s scalp [20]. In the research presented by [14],
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EEG data is employed to observe subjects’ brain activity during a

Q/A session. This investigation aims to understand the temporal

dynamics of IN formation, detecting the presence of INs even before

searchers consciously acknowledge them. This exploration opens

avenues for a proactive search process, o�ering insights into the

early stages of information needs. Although previous works [14]

provided an excellent analysis of the physical manifestations of the

realisation of an IN within real-time through the use of EEG data,

the question of “Can the realisation of an IN be predicted in real-time?”

is still unanswered. From this hypothesis, we formulate these four

research questions: RQ1: "Is it possible to predict the realisation

of an IN in real-time from EEG data?", RQ2: "Can prediction of

the realisation of IN be generalised across subjects, or is it subject-

speci�c?", RQ3: "During the Q/A session, where are the strongest

indicators of the realisation of an IN?", RQ4: "What combination

of features is optimal for the realisation of an IN prediction?".

In order to address our �rst research question, within this study

we incorporated the EEG data gathered from 14 subjects whilst

they took part in a Q/A task which involved the subjects observ-

ing queries word-by-word and determining if they could correctly

answer the question or had a need to search (IN). This data is

then provided to machine learning models to predict the subject’s

realisation of an IN. Additionally, we investigate the inter and intra-

variability of EEG data across a variety of subjects by exploring how

the prediction of the realisation of an IN is a�ected when the models

are trained to generalise across subjects compared to when they

are trained on a single subject at a time. Moreover, whilst subjects

examine the queries from the Q/A tasks word-by-word, we deter-

mine which segments within the given sentences are the strongest

indicator of the realisation of an IN. As well as this, we perform an

ablation analysis to discern the combination of commonly extracted

EEG features that enables the models to best distinguish between

di�erent search states.

2 METHODOLOGY

subjects. The subjects were recruited by the University of Strath-

clyde. They received no monetary payments but were eligible for

academic credits. The subjects consisted of 13 females (93%) and 1

male (7%) within an age range between 18 and 39 years and a mean

age of 23 years (SD 6.5).

Recording. The EEG data was captured using a 40-electrode Neu-

roScan Ltd. system with a 10/20 cap, sampled at a frequency of

500Hz. The Q/A task was made of general knowledge questions

taken from TREC-8 and TREC-2001 and B-KNorms Database2.

Q/A Dataset. Two independent assessors separately evaluated the

question di�culty (Cohen’s Kappa: 0.61). A subset of 120 questions

was then selected, and both annotators agreed upon their di�culties.

The di�culty of the questions was equally distributed between easy

and di�cult for the overall dataset.

Experimental Procedure. Ethical permission to conduct the study

was approved by the Universities Ethics Committee, with the tasks

being conducted in a laboratory setting and all subjects meeting

the inclusion criteria, i.e. healthy subjects of ages 18 - 55 years,

�uent English ability, and no prior/current neurological disorders

that may in�uence the task. Before any trials began, consent was

obtained from the subjects. To ensure the subjects had a solid grasp

Figure 1: Task Procedure.

of the procedure, before the main trial, they were supplied with a

practice example, which consisted of �ve questions not included

in the main trial. For the practice session, there was no time limit,

and subjects were allowed to repeat if required, until comfortable

to proceed. The following task procedure was repeated for each

trial. The trial began by viewing a �xation cross in the middle

of the screen for a duration of 2000ms, indicating the location of

the next stimuli on the screen, which was a way to minimise eye

movements on the screen. The subjects then viewed a sequential

presentation of a question randomly selected from the dataset. Each

word within the question was displayed for 800ms on the screen one

at a time. Within this step, the subject processed the information as

it was being presented word-by-word. Following the presentation

of all the words within the question, the subjects were presented

with a now fully-displayed question and three on-screen answer

choices associated with the question. They were requested to select

the correct answer or the option "I do not know", see Figure 1. If

the subjects correctly or incorrectly answered the question, the

answer was displayed onscreen (NoNeedToSearch), where the trial

terminated and moved on to the next question. However, if the

subject selected the "I do not know", they were presented with two

options: whether they wanted to search (NeedToSearch) for the

correct answer or not (NoNeedToSearch). For this task, there was

no search process as the overall goal was to analyse the presence of

an information need based on the decision to search by the subject.

After selecting one of the two options, the trial would terminate,

and the next question would be presented. This was repeated for

all 120 questions. Upon task completion, analysis of the 14 subjects

revealed that 85% of the responses were classed as NoNeedToSearch,

and the remaining 15% were NeedToSearch, in order to balance the

dataset, the number of NoNeedToSearch classes was made equal to

the number of NeedToSearch classes. The subjects completed the

task (without breaks) on average in 44 min (sd=4.62, med=43.40).

Pre-processing. During EEG recording, the individual’s actions of-

ten introduce electrical activities that can a�ect measurements and

distort results. To address this issue, it is essential to eliminate these

artefacts as e�ectively as possible. Initially, we utilised a bandpass

�lter [5, 9] with a range of 0.5 to 50Hz. This range is commonly

used because research indicates that the brain’s recorded electrical

activity falls within this spectrum. Additionally, we implemented

average re-referencing [11], a technique that establishes a reference

point by aggregating the activity measured across all electrodes.

The objective is to capture any noise or interference impacting

all electrodes within this reference. Subsequently, we subtract this

reference from each electrode’s signal, e�ectively eliminating the

noise from each electrode’s signal.
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Feature Extraction. For this study, we extract a commonly adopted

core [9, 22] set of features from the EEG signals to determine which

combination is optimal for IN classi�cation, with each feature be-

ing extracted per-electrode (channel) signals across four speci�c

frequency bands: Delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),

beta (12–30 Hz) and gamma (30–40 Hz). The features are extracted

across every 800ms block where the question words are presented

to the subject and when they respond to the question (NoNeed-

ToSerach and NeedToSearch). The list of the features is as follows:

Mean: Calculates the average amplitude of the EEG signal within

the speci�ed frequency band over the 800ms block. It indicates the

central tendency of the signal, helping to characterise the overall ac-

tivity level. [22]. Standard Deviation: Measures the variability or

spread of the EEG signal within the frequency band [22]. Skewness:

Quanti�es the asymmetry of the EEG signal’s distribution within

the frequency band [9]. Kurtosis: Measures the "tailedness" of the

EEG signal’s distribution within the frequency band [9]. Curve

Length: Calculates the cumulative Euclidean distance between con-

secutive data points in the EEG signal within the frequency band

[22]. Number of Peaks: Counts the number of local maxima or

peaks in the EEG signal within the frequency band [22]. Average

Non-Linear Energy: Quanti�es the non-linear dynamics of the

EEG signal within the frequency band [22].

Experiment Conditions. As the overall goal of this study is to

explore the best methods for predicting IN from searchers RQ1, we

found it key to explore several experimental parameters outlined

by our research questions within Section 1.

Generalised & Personalised: To address the research question RQ2

during training, two methods are devised. For the �rst approach,

the samples relating to IN and non-IN from every subject were

combined into a single dataset that would then be passed onto the

model, this being the generalised training strategy to asses how

well our classi�er can discern IN across all subjects as EEG has

been noted to be heavily subject dependant. The second approach

maintained the IN and non-IN EEG data at a subject level, allowing

us to assess the variability of subject performance for IN prediction.

Window Size: To address RQ3, we adjusted the size of question seg-

ments (words) utilised by our classi�er. This modi�cation involved

implementing an expanding window, starting from the onset of the

subject’s search decisions: NoNeedToSearch and NeedToSearch. On

average, each question comprised seven segments, encompassing

both words and responses. The minimum segment count was 4,

while the maximum reached 16 segments. In this investigation, we

explored the expanding window with four distinct sizes: 2, 4, 8, and

16. These sizes represented the range from the moment of question

response to the full length of the question, including the response,

see Figure 2. The objective was to ascertain the segments that the

classi�er favoured for distinguishing between IN and non-IN in-

stances, potentially revealing where the realisation of IN was most

pronounced during the question review process.

Feature Combination: In accordance with RQ4, one of the primary

aims of this study is to determine the optimal combinations of

features commonly employed in EEG classi�cation for e�ectively

predicting the realisation of IN. As elaborated in Section 2, we

identi�ed and extracted seven key features for this investigation.

Generating an exhaustive list of all possible combinations from

Figure 2: Expanding Window Size.

these features resulted in 127 combinations. Each of these combi-

nations was then input into the classi�er, with the model’s per-

formance serving as the metric to assess the e�ectiveness of the

various feature combinations.

Predictive Models. For this study, we incorporated each of the

aforementioned experiment conditions into a training loop, where

Generalised & Personalised were separated where each would iterate

through every possible Feature Combination and Window Size. The

classi�ers selected for this task were the Support Vector Machine

(SVM) [7], Random Forest Classi�er [3], and AdaBoost [6] models,

as they have seen substantial success within the realm of EEG

classi�cation [8, 12] and are well suited to the limited quantity of

data available for this task. Prior to this investigate several Deep

and Recurrent Neural Networks were trained on the collected EEG

data, however, their performance was sub-optimal as they were

limited by the number of samples within the dataset. Each dataset

provided to the model through each of the possible combinations

of experiment conditions was cross-validated with a k-fold size = 5.

Each fold returned the following metrics: Accuracy, Precision, and

Recall, where their average across each fold was calculated along

with their standard deviation. Baseline. Since there are no prior

works to compare to, we introduce a baseline that represents an

untrained model where all its predictions are based on a random

choice, i.e. where its accuracy is set to 50%.

3 RESULTS & CONCLUSION

The results produced for theGeneralised and Personalised conditions

are detailed in Table 1 and 2 respectively. Each of these tables

denotes the Model, the selected window size (W-Size), and the

best-performing feature combination at the given window size

with its subsequent Accuracy, Precision, and Recall scores. We also

performed a paired Wilcoxon test between the predictions obtained

for each model to check the signi�cance of the di�erence with the

baseline. All of the results obtained from our models trained on

a set of features were di�erent from that of the baseline with a

con�dence level of (p < 0.01).

We �rst address RQ1 by reviewing the results produced in both

the Generalised and Personalised conditions. As we can see the

prediction of the realisation of IN is possible, as every model in

Table 1 and Table 2 was able to achieve an accuracy score above that

of random classi�cation (50%), with the lowest reported accuracy

score being the RandomForest classi�er with an accuracy of 68.9%

(SD 19.7%) and the highest being the AdaBoost model with a score of

90.1% (22.1%) as seen in Table 2. These results demonstrate that EEG

data is capable of achieving greater Generalised and Perosnalised

accuracy performance for the prediction of the realisation of IN

than that of alternative neuroimaging techniques such as fMRI [17].
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Table 1: This table shows the prediction accuracy of our Generalised approach. The
standard deviation is presented in parentheses. The best-performing model is highlighted
in bold.

Model W-Size Features Accuracy (SD) Precision (SD) Recall (SD)

Baseline (Random) - - 50% 50% 50%

RandomForest 2 Mean-SD-Curve 73.5% (2.6%) 73.6% (2.5%) 73.5% (2.6%)

4 Mean-SD-Curve 71.9% (2.3%) 72.0% (2.2%) 71.9% (2.3%)

8 Mean-SD-Curve-AvEn 71.8% (0.9%) 71.8% (0.9%) 71.8% (0.9%)

16 Mean-Curve-AvEn 71.5% (1.1%) 71.6% (1.1%) 71.5% (1.1%)

SVM 2 Mean-AvEn 69.7% (2.1%) 69.8% (2.2%) 69.7% (2.1%)

4 Mean-AvEn 69.1% (2.4%) 69.2% (2.4%) 69.1% (2.4%)

8 Mean-Skew-AvEn 69.0% (1.0%) 69.0% (1.0%) 69.0% (1.0%)

16 Mean-Peaks 69.0% (1.1%) 69.1% (1.1%) 69.0% (1.1%)

AdaBoost 2 Mean-SD 70.6% (0.2%) 70.7% (0.2%) 70.6% (0.2%)

4 Mean-Curve 70.4% (0.2%) 70.0% (0.1%) 69.9% (0.2%)

8 Mean-Curve 70.3% (0.1%) 70.5% (0.1%) 70.3% (0.1%)

16 Mean-Curve-Peaks 70.0% (0.1%) 70.2% (0.1%) 70.0% (0.1%)

Table 2: This table shows the prediction accuracy of our Personalised approach. The
standard deviation is presented in parentheses. The best-performing model is highlighted
in bold.

Model W-Size Features Accuracy (SD) Precision (SD) Recall (SD)

Baseline (Random) - - 50% 50% 50%

RandomForest 2 Mean-SD-AvEn 68.9% (19.7%) 71.4% (20.3%) 68.9% (19.7%)

4 Mean 73.0% (21.5%) 75.7% (21.9%) 73.0% (21.5%)

8 Mean 75.9% (21.5%) 77.9% (21.5%) 75.9% (21.5%)

16 Mean 76.6% (21.3%) 77.5% (21.4%) 76.6% (21.3%)

SVM 2 Mean-Curver-AvEn 74.2% (21.5%) 75.4% (21.3%) 74.2% (21.5%)

4 Mean-Kur-Curve 74.3% (21.9%) 76.5% (22.1%) 74.3 (21.9%)

8 Mean-AvEn 73.5% (21.8%) 75.7% (22.3%) 73.5% (21.8%)

16 Mean-Kur-Curve-AvEn 71.7% (22.1%) 74.6% (22.1%) 71.7% (22.1%)

AdaBoost 2 Mean-Peaks 73.9% (23.4%) 74.5% (23.9%) 73.9% (23.4%)

4 Mean 80.5% (22.3%) 81.3% (22.4%) 80.5% (22.3%)

8 Mean-Peaks 88.9% (22.5%) 89.0% (22.2%) 88.9% (22.5%)

16 Mean 90.1% (22.1%) 90.3% (22.1%) 90.1% (22.1%)

By comparing the performance of the Genralised and Person-

alised models, it can be observed that the Personalised approach

achieves the highest overall prediction accuracy, evidenced by the

AdaBoost model that obtained 90.1% (SD 22.1%) in Table 2. When

trained using the Personalised method, the RandomForest, SVM,

and AdaBoost model’s accuracy on average across window sizes

increases over its Generalised counterparts by 1.4%, 4.2%, and 13%

respectively. However, this increased accuracy also comes with an

increased Standard Deviation, with the Personalsied RandomForest,

SVM, and AdaBoost models on average across window sizes having

a higher Standard Deviation of 19.3%, 21.8%, and 22.4% respectively

than the Generalised models. These �ndings help to address RQ2 as

they suggest, on average, creating a model tailored to each subject

is the best approach for predicting the realisation of IN as evidenced

by the performance of the AdaBoost model in Table 2. However,

the variation in Standard deviation indicates that the Generalised

models o�er a more robust and reliable prediction accuracy. This

di�erence follows the trend observed in prior works [17] and is

likely due to the natural variability in EEG data collected across sub-

jects. As such, for future systems aiming to predict the realisation

of an IN from EEG, the best approach may be to assess the model

performance on individual subjects and determine if the trade-o�

between accuracy and standard deviation is acceptable or if a gen-

eralised model with a lower accuracy but more reliable standard

deviation is more suitable for their speci�c research purposes.

Regarding RQ3, the results presented in Table 1 and Table 2

are in contrast to each other. In the Generalised condition Table 1,

we observe that all models achieve their peak performance when

the window size is set to 2, with the RandomForest, SVM and

AdaBoost models achieving an accuracy of 73.5%, 69.7%, and 70.6%

respectively. As the window size is increased from 2 up to 16, the

performance of the RandomForest, SVM, and AdaBoost models

decreases by 2%, 0.7%, and 0.6% respectively. Conversely, in the

Personalised results, Table 2 we observe that at the window size of

16, the RandomForest and AdaBoost models achieve their highest

performance of 76.6% and 90.1% respectively. As the window size is

increased from 2 up to 16 the RandomForest and AdaBoost models

accuracy increases by 7.7% and 16.2% respectively, except the SVM

model, which follows the same trend as the Generalised Models.

The results produced by the Generalised approach suggest that

the distinctive EEG patterns associated with the realisation of an IN

may be more strongly concentrated immediately after the subject

concludes their review of the question. This might be indicative

of a universal or commonly shared cognitive response that occurs

promptly after the comprehension of a question, highlighting a

quick and standardised recognition process for INs across subjects.

In Contrast to this, the performance of the Personalsied models

indicates that for individual subjects, the discernible EEG patterns

unfold over a more extended period. This could be in�uenced by

varying cognitive styles, attention spans, or information processing

speeds unique to each subject. subjects might take more time to pro-

cess and formulate their information needs, leading to a prolonged

period of activity associated with information-seeking. Lastly, ad-

dressing RQ4, we can observe that the best-performing feature is

the Mean value taken from the EEG segments, as it appeared in

every single best-performing combination at each window size for

both generalised and personalised training Table 1 and 2 respectively.

However, a large subset of key features see substantial use across

both training conditions, for Generalised condition the following

features are listed in order of occurrence: with Curve Length ap-

pearing in 7 optimal combinations, Average Energy in 5, Standard

Deviation in 4, Number of Peaks in 2, and Skewness in 1. Similarly

for Personalised: Average Energy appears in 4, Curve Length in 3,

Kurtosis in 2, and Standard Deviation appears in one. Our results

indicate that these features are strong performers in predicting the

realisation of IN.

In conclusion, the �ndings of this study demonstrate that through

the use of Electroencephalography (EEG) data, we were able to

predict the realisation of IN substantially above the random baseline

classi�cation accuracy of 50%, with models achieving up to 90.1%

accuracy. This work is the �rst to ever demonstrate the prediction

of the realisation of IN through the use of EEG data, and at an

accuracy higher than any other previously utilised neuroimaging

techniques, paving the way to real-time realisation of IN prediction.

Furthermore, the encouraging results obtained from the Generalised

and Personalised conditions will help to inform future research

and Information Retrieval (IR) systems that seek to incorporate

the realisation of IN prediction, by taking into consideration the

inter and intra-variability of EEG data cross subjects and examine

the trade-o� between a potentially more accurate subject-speci�c

models and a more reliable generalised model. Moreover, we also

highlighted optimal ranges within queries that should be examined

to provide the strongest indicators of the realisation of IN, as well

as the optimal combinations of features that should be considered

for the prediction of the realisation of IN within subjects.
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