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Polymer physics models suggest that chromatin spontaneously folds into loop networks with transcription
units (TUs), such as enhancers and promoters, as anchors. Here we use combinatoric arguments to enumerate
the emergent chromatin loop networks, both in the case where TUs are labeled and where they are unlabeled.
We then combine these mathematical results with those of computer simulations aimed at finding the inter-TU
energy required to form a target loop network. We show that different topologies are vastly different in terms of
both their combinatorial weight and energy of formation. We explain the latter result qualitatively by computing
the topological weight of a given network—i.e., its partition function in statistical mechanics language—in the
approximation where excluded volume interactions are neglected. Our results show that networks featuring local
loops are statistically more likely with respect to networks including more nonlocal contacts. We suggest our
classification of loop networks, together with our estimate of the combinatorial and topological weight of each
network, will be relevant to catalog three-dimensional structures of chromatin fibers around eukaryotic genes,
and to estimate their relative frequency in both simulations and experiments.
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I. INTRODUCTION

Chromatin is a protein-DNA composite polymer that pro-
vides the building block of chromosomes, and it constitutes
the form in which genomic information is stored in the nu-
clei of eukaryotic cells. Chromatin also provides the genomic
substrate for fundamental intracellular processing of DNA,
such as transcription and replication [1,2]. Longstanding ob-
servations suggest that the three-dimensional (3D) structure of
chromatin is functionally important: for instance, it is known
that the 3D structure of a gene locus correlates with its tran-
scriptional activity [3].

Polymer models to determine the chromatin structure in
3D are therefore important in this field, and several coarse-
grained potentials have been developed to describe them (see,
e.g., [4–8], and [9,10] for a review of some of these). Typ-
ically, coarse-grained polymer models view chromatin as a
copolymer, or heterogeneous polymer, where different beads
may have different properties to reflect, among others, the
local sequence and post-translational modification in DNA-
binding histone proteins, such as acetylation or methylation
(see, e.g., [3,6,11]).

A simple copolymer model for active chromatin [12],
which is relevant to our current work, views the fiber as a
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semiflexible polymer with interspersed “transcription units”
(TUs; the red circles in Fig. 1), representing open chromatin
regions such as enhancers or promoters which have high affin-
ity for multivalent chromatin-binding proteins associated with
transcription—such as RNA polymerases and transcription
factors, or protein complexes including both of these [13,14].

Simulations of more sophisticated polymer models, resolv-
ing chromatin-binding proteins, show that TUs come together
due to the bridging-induced attraction, a positive-feedback
loop associated with multivalent chromatin-protein binding
[13]. The bridging-induced attraction leads to microphase
separation into clusters of TUs (and their associated proteins)
because clustering the TUs creates loops whose entropy grows
superlinearly with TU number, eventually balancing the ener-
getic gain of clustering [12,13]. This phenomenon provides a
mechanistic model for the formation of transcription factories
in mammalian nuclei [15]. This discussion suggests that in a
simpler effective model, one can consider the TUs themselves
as sticky for each other, and this is the model sketched in
Fig. 1.

In the copolymer model of Fig. 1, chromatin loop networks
emerge in a steady state due to the sticky nature of TUs.
Some natural questions then arise, namely, how to classify the
emerging network topologies [such as the one in Fig. 1(b)]
and what the statistical likeliness of observing each of such
topologies is. A possible way to classify the loop topologies
is by computing the entropic exponent associated with the
network, as in [16]. However, the issue arises that all networks
with the same number of nodes and edges (or legs) emanating
from each node would have the same entropic exponent, as
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(a) (b)

FIG. 1. (a) Top: A chromatin fiber with n = 8 TUs. Bottom: A
possible structure formed when TUs attract each other, for instance,
effectively due to the bridging-induced attraction [13]. The structure
is made of two clusters and four local loops. (b) The loop network
topology corresponding to this configuration (repeated at the top for
clarity) is shown at the bottom of the panel.

they have the same number of nodes and edges [16]. As shown
in the companion paper [17], simulations suggest, instead, that
the probability of observing different networks is not constant
at all, so it would be desirable to go beyond the calculation
of the entropic exponent and estimate the statistical weight
associated with each loop topology.

We consider two possible classes of chromatin loop net-
works. First, “labeled” networks are those in which the TUs
are numbered. This is often relevant in biological examples
where different TUs correspond to different regulatory el-
ements, and it may be important in practice to distinguish
networks with the same topology and distribution of clusters,
but where different TUs participate in the clusters.

Second, “unlabeled” networks are those where TUs are not
numbered, such that different configurations are topologically
nonequivalent configurations of our chromatin fiber. For ex-
ample, the two networks in Fig. 2(a) are different labeled
networks, but represent the same topology when counting
unlabeled networks. Unlabeled networks are relevant when
considering generic topologies, for example, the rosette and
watermelon ones in Fig. 2(b), and asking which topology is
most often found in gene loci genome-wide. Labeled networks
are a lot simpler to count combinatorically with respect to un-
labeled ones; this is because it is hard, in general, to count the
multiplicity of labeled networks corresponding to a unique,
unlabeled network topology.

In the present work, we aim to classify topologies of
chromatin loop networks, counting them and finding their
statistical weights, which measure the probabilities of observ-
ing them in a polymer model. Our article is structured as
follows. First, in Sec. II, we provide combinatorial formulas
to count labeled networks. As we shall see, the theory of
Bell numbers and partitions provides a powerful way to count
such networks. We also find a series of recursion relations
which constrain the number of labeled networks with specific
properties (e.g., without or with singletons). These recursions
are associated with an exponential network-generating func-
tion for which we find explicit formulas. Second, in Sec. III,
we discuss the case of unlabeled, topologically inequivalent
networks, and derive a formula to count the number of such

(a)

(b)

FIG. 2. (a) An example of two different labeled networks with
two clusters which yield the same unlabeled topology (neglecting
singletons). (b) Rosette R and watermelon W topologies.

structures with two clusters, which is of interest in applica-
tions to chromatin structures in real gene loci. Section IV
contains numerical results obtained by simulating chromatin
folding within a specific polymer model, viewing the chro-
matin fiber as a semiflexible self-avoiding chain with equally
spaced sticky sites (the TUs). Here we show that different tar-
get topologies require different interaction energies between
the TUs to form so that they are, in general, associated with
a different entropic cost of formation. These results comple-
ment those discussed in the companion paper [17], which
show that rosettelike topologies, that are rich in local loops,
are much more favored statistically with respect to others with
nonlocal loops. In Sec. V, we compute the statistical weight
of a generic topology in the simplified case of a phantom
freely jointed chain (i.e., without excluded volume interac-
tions). We show that the weights that we compute, although
approximate due to the neglect of excluded volume effects,
are sufficient to recapitulate the much enhanced statistical
likeliness of forming rosettelike networks, in spite of the fact
that the combinatoric multiplicities of other topologies are
often larger. Finally, Sec. VI contains our conclusion.

II. COMBINATORICS OF LABELED
CHROMATIN LOOP NETWORKS

We first consider the case of labeled chromatin loop
networks, where more progress can be done analytically.
Therefore, in this section, TUs are assumed to be labeled from
1 to n, and we think of TUs as the set {1, 2, . . . , n} that is also
denoted by [n].

For such labeled networks, we first derive a few enumer-
ative results; we then discuss recursion relations and derive
their generating function. Whenever suitable, the asymptotics
will be discussed and we will also give references to the
Online Encyclopedia of Integer Sequences [18], when the
counting sequence in question can be found there.

The combinatoric multiplicities which we will find can
be used, for instance, to find all possible configurations of a
chromatin segment with a given number of TUs and a list of
desired features (such as the number of clusters and of single-
tons). This provides a useful bound for all possible topologies
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that this genomic region can form, in either simulations or
experiments.

A. Configurations with an arbitrary number of clusters

To begin with, we note that if we do not care about the
number of clusters in the configurations, then the number of
different configurations with n TUs is given by the Bell num-
ber Bn. This is because each configuration can be thought of as
a partition of the set [n], where each subset (or block, or part)
with at least two TUs will form a cluster, while the singletons
will correspond to the TUs not belonging to any clusters.
For example, for n = 6, the partition {{1, 4}, {2}, {3, 5, 6}}
encodes a possible configuration with two clusters. It is well
known that Bn counts the number of partitions of [n], and this
is the sequence A000110 in [18] that begins with

1, 2, 5, 15, 52, 203, 877, 4140, . . . . (1)

The Bell numbers satisfy the recurrence relation Bn+1 =∑n
k=0 (n

k)Bk . Their exponential generating function
∑

n�0 Bn
tn

n!

is eet −1, while the ordinary generating function is

B(t ) =
∑
k�0

t k∏k
j=1(1 − jt )

. (2)

Also, the Bell numbers satisfy Dobinski’s formula Bn =
1
e

∑∞
k=0

kn

k! and asymptotically (n → ∞),

Bn ∼ 1√
n

(
n

W (n)

)n+ 1
2

exp

(
n

W (n)
− n − 1

)
, (3)

where the Lambert W function has the same growth as the
logarithm [19].

Interestingly, if B∗
n denotes the number of configurations

without singletons (i.e., each TU is part of a cluster), then the
following (well-known) combinatorial argument can be used
to show that B∗

n+1 = Bn − B∗
n. Note that Bn − B∗

n is the number
of partitions of [n] that have at least one singleton. Now, take
all singletons in a partition counted by Bn − B∗

n and add them
together along with the element n + 1 to form a subset in
a partition of [n + 1] that has no singletons (and hence is
counted by B∗

n+1). This mapping, between partitions of [n]
with singletons and partitions of [n + 1] without singletons,
is a bijection.

B. Configurations with a fixed number of clusters

We now discuss how to enumerate configurations with a
fixed number of clusters. To do so, a useful set of quantities is
provided by the Stirling numbers of the second kind, S(n, k),
which count the number of ways to partition the set [n] into
k subsets. Even though S(n, k) does not directly give us the
number of configurations with k clusters, below we will make
use of these numbers.

We wish to find the number of partitions of [n] into subsets
(i.e., the number of configurations) so that precisely k subsets,
1 � k � n − 2, have two or more elements (i.e., there are
exactly k clusters). We call this number f (n, k). We highlight
that this quantity counts the partition of n TUs into k clusters,
with an arbitrary number of singletons.

1. Number of configurations with one cluster

There are 2n − n − 1 configurations corresponding to the
case of k = 1. Indeed, each binary string s1s2 . . . sn over the
alphabet {0, 1} corresponds to a configuration, where si = 0
indicates that the TU i is a singleton, while si = 1 indicates
that the TU i is included in the only cluster. The number of
possibilities is 2n, but we need to subtract the situations when,
at most, one 1 is present in the string because a cluster needs
to have at least two TUs. Note that asymptotically, we have
O(2n) such configurations. For n � 1, the counting sequence
begins

0, 1, 4, 11, 26, 57, 120, 247, 502, . . . (4)

and this is the sequence A000295 in [18].

2. Number of configurations with two clusters

The case of k = 2 can be derived similarly to the case
of k = 1. Instead of binary sequences, we can consider se-
quences over {0, 1, 2} (there are 3n of them) and then subtract
those sequences that do not correspond to configurations with
precisely two clusters (for example, sequences with no 2’s,
or with one 1 and one 2). However, this method is still
cumbersome, so we use the following approach instead: Let
i correspond to the number of singletons in a configuration
(this number cannot be bigger than n − 4 for us to be able to
create two clusters); then, (n

i ) is the number of ways to choose

these singletons in [n], and S(n − i, 2) (equal to 2n−i−1 − 1
[20]) counts the number of configurations with two subsets
for (n − i) TUs. Subtracting, from this number (n − i), the
number of possibilities for subsets receiving a single TU and
summing up all possible numbers of singletons, we find

f (n, 2) =
n−4∑
i=0

(
n

i

)
[S(n − i, 2) − (n − i)]

=
n−4∑
i=0

(
n

i

)
(2n−i−1 − 1 − n + i)

= 1

2
(3n + 1) − (n + 2)2n−1 +

(
n

2

)
+ n. (5)

The last equality can be checked, for instance, by induction.
We note that asymptotically, the number of configurations is
O(3n) and the counting sequence begins, for n � 4, with

3, 25, 130, 546, 2037, 7071, . . . ; (6)

this is the sequence A112495 in [18].

C. Recurrence relations and generating function for loop
networks with an arbitrary number of singletons

Using the approaches above is rather cumbersome to pro-
duce explicit formulas for arbitrary k. Alternatively, we can
produce a recurrence relation for the numbers in question,
f (n, k), that can be turned into a partial differential equa-
tion for the respective generating function.

Note that for n � 2, this recursion reads as follows:

f (n, k) = (k + 1) f (n − 1, k) + (n − 1) f (n − 2, k − 1).
(7)
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To prove Eq. (7), we can think of producing, in a unique way,
a configuration with n TUs from a smaller configuration by
introducing the nth TU. The possible disjoint options are as
follows:

(i) n joins an existing cluster (with at least two TUs in it)
or n becomes a singleton, and there are (k + 1) f (n − 1, k)
possibilities in this case;

(ii) n ends up in a cluster with exactly two TUs, and there
are (n − 1) f (n − 2, k − 1) ways as there are n − 1 ways to
select a TU to share the cluster with n.

The initial conditions of Eq. (7) are f (0, 0) = 1 and
f (0, k) = 0 for k �= 0, and f (1, 0) = 1 and f (1, k) = 0 for
k �= 0, along with f (n, k) = 0 for k < 0.

We now consider the exponential generating function,
defined as

F (t, x) =
∑

n,k�0

f (n, k)
t n

n!
xk . (8)

We can write that

∂

∂t
F (t, x) =

∑
n�1,k�0

f (n, k)
t n−1

(n − 1)!
xk (9)

=
∑

n�1,k�1

k f (n − 1, k)
t n−1

(n − 1)!
xk

+
∑

n�1,k�0

f (n − 1, k)
t n−1

(n − 1)!
xk

+
∑

n�2,k�1

f (n − 2, k − 1)
t n−1

(n − 2)!
xk

= x
∑

n,k�1

k f (n, k)
t n

n!
xk−1 +

∑
n,k�0

f (n, k)
t n

n!
xk

+ tx
∑

n,k�0

f (n, k)
t n

n!
xk

= x
∂

∂x
F (t, x) + F (t, x)(1 + tx). (10)

Therefore, F (t, x) satisfies the following partial differential
equation:

∂

∂t
F (t, x) − x

∂

∂x
F (t, x) = (1 + tx)F (t, x). (11)

The solution of this equation with the boundary conditions
F (0, x) = 1 and F (t, 0) = et can be explicitly found to be

F (t, x) = exet −x+(1−x)t . (12)

Equation (12) can be used to find f (n, k) for arbitrary values
of n and k, as well as the associated asymptotic behavior. Note
that f (n, k) is the sequence known as A124324 in [18], where
Eq. (12) is also given.

D. Loop networks with a fixed number of singletons

We can refine Eq. (7) to enumerate configurations with a
fixed number of singletons. Let f (n, k, �) be the number of
configurations with n TUs, k clusters, and � singletons. This

quantity satisfies the following recursion relation:

f (n, k, �) = k f (n − 1, k, �) + f (n − 1, k, � − 1)

+ (� + 1) f (n − 1, k − 1, � + 1). (13)

Indeed, we can think of producing, in a unique way, a con-
figuration with n TUs from a configuration with n − 1 TUs
by introducing the TU n. The possible disjoint options are as
follows:

(i) n joins an existing cluster (with at least two TUs in it)
and there are k f (n − 1, k, �) possibilities in this case;

(ii) n is a singleton and there are f (n − 1, k, � − 1) possi-
bilities in this case;

(iii) n forms a cluster with precisely one other TU, in which
case there are (� + 1) f (n − 1, k − 1, � + 1) possibilities.

By iterating the recursion relation (13) with the easily
checkable base f (1, 0, 1) = 1, and f (1, k, �) = 0 otherwise,
we obtain

(i) f (2, 0, 1) = 0, f (2, 0, 2) = 1, f (2, 1, 0) = 1, recover-
ing the total number of configurations with two TUs, B2 = 2;

(ii) f (3, 0, 2) = 0, f (3, 0, 3) = 1, f (3, 1, 0) = 1, f (3,

1, 1) = 3, recovering the total number of configurations with
three TUs, B3 = 5;

(iii) f (4, 0, 4) = 1, f (4, 1, 0) = 1, f (4, 1, 1) = 4, f (4,

1, 2) = 6, f (4, 2, 0) = 3, recovering the total number of con-
figurations with four TUs, B4 = 15;

(iv) f (5, 0, 5) = 1, f (5, 1, 0) = 1, f (5, 1, 1) = 5, f (5,

1, 2) = 10, f (5, 1, 3) = 10, f (5, 2, 0) = 10, f (5, 2, 1) = 15,
recovering the total number of configurations with five TUs,
B5 = 52, and so on.

By using a similar approach as in Sec. II C, we can define
the following exponential generating function:

F (t, x, y) =
∑

n,k,��0

f (n, k, �)
t n

n!
xky�, (14)

which obeys the following partial differential equation,

∂

∂t
F (t, x, y) − x

∂

∂x
F (t, x, y) − x

∂

∂y
F (t, x, y) = yF (t, x, y).

(15)

Quite remarkably, the physically relevant solution of this more
complex equation can also be explicitly found and is given by

F (t, x, y) = eyt ex(et −1−t ). (16)

Note that this solution satisfies the following boundary
conditions: (i) F (0, x, y) = 1, (ii) F (t, 0, y) = eyt , and (iii)
F (t, x, 0) = ex(et −1−t ). Once more, Eq. (16) can be expanded
to yield coefficients f (n, k, �), therefore solving the problem
of enumerating all configurations with a fixed number of TUs,
clusters, and singletons.

E. Results for networks without singletons

It is sometimes useful, or of interest, to consider the case
where there are no singletons in the configuration. This is,
for instance, the case that is considered in the companion
paper [17]. If we denote by N (n, k) the number of configu-
rations with n TUs, k clusters, and no singletons, such that
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FIG. 3. Example of a reducible network and of its decomposition into irreducible blocks (here separated by dashed vertical lines). The
shown configuration is a string of rosettes.

N (n, k) = f (n, k, 0), we find that for k = 2,

N (n, 2) = 2n−1 − n − 1 = f (n − 1, 1) − 1

= f (n − 1, 1) − N (n − 1, 1). (17)

This equation can be derived by noting that the configurations
of the chain can be constructed by assigning the first bead to
cluster 0, and computing the number of configurations of the
rest of the TUs with a single cluster and an arbitrary number of
singletons. The singletons are then put in the same cluster as
the first bead. In this way, we obtain all configurations with
two clusters and no singletons once we subtract the single
configuration which has no singletons in the rest of the chain
[as this would lead to a configuration where the first TU is a
singleton, which does not contribute to N (n, 2)].

A similar argument leads to the general identity

N (n, k) = f (n − 1, k − 1) − N (n − 1, k − 1), (18)

linking the number of configurations with a given number of
clusters with and without singletons.

The quantities N (n, k) obey the following recursion rela-
tion [21–23]:

N (n, k) = kN (n − 1, k) + (n − 1)N (n − 2, k − 1). (19)

Similarly to what was previously done, starting from
Eq. (19), we can find the following exponential generating
function for N (n, k):

G(t, x) =
∑
n�0

N (n, k)
t n

n!
xk, (20)

to be given by

G(t, x) = ex(et −1−t ). (21)

The related quantities

gk (t ) =
∑
n�0

N (n, k)
t n

n!
(22)

can now be found exactly for each k and are given by [21]

gk (t ) = (et − 1 − t )k

k!
. (23)

F. String of rosettes and reducible networks

A natural question is whether a particular configuration can
be broken up, or reduced, into a series of simpler configura-
tions. To characterize such states, we call a configuration with

n TUs irreducible if it contains no cluster and only singletons,
or it has k clusters, one of which contains TU n, and it is not
possible to separate the k clusters into two groups by cutting
a single polymer segment.

An example of a reducible network is a string of rosettes,
shown in Fig. 3, where each irreducible component has a
single cluster, at most. The decomposition into irreducible
blocks is always unique, assuming that if the configuration
has at least one cluster, then the leftmost irreducible block has
a cluster.

We next derive the ordinary generating function A(t ) for
the number of configurations in a string of rosettes. Note that
there are 2n−1 − 1 irreducible configurations with n TUs with
a cluster, as this is precisely the number of ways to choose at
least one TU to join n in the cluster. The generating function
for these numbers is

I (t ) =
∑
n�2

(2n−1 − 1)t n = t
∑
n�2

(2t )n−1 −
∑
n�2

t n

= t

(
1

1 − 2t
− 1

)
−

(
1

1 − t
− t − 1

)

= t2

(1 − 2t )(1 − t )
. (24)

Noting that the generating function for irreducible blocks
without clusters is 1

1−t , we have

A(t ) = 1

1 − I (t )

1

1 − t

= 1 − 2t

1 − 3t + t2

= 1 + t + 2t2 + 5t3 + 13t4 + 34t5 + 89t6 + O(t7).

(25)

The corresponding sequence is A001519 in [18] and it has
many combinatorial interpretations. One can derive from the
generating function through the recurrence relation that

an = (φ2n−1 + φ1−2n)/
√

5, (26)

where φ = (1 + √
5)/2, and hence, asymptotically, the num-

ber of configurations in a string of rosettes is O[( 3+√
5

2 )n] ≈
O(2.618n).

The concept of reducible networks would be useful to
enumerate configurations of longer chains that we consider
in this work. Additionally, strings of rosettes appear often in
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FIG. 4. (a) Schematics showing how polymer networks can be converted into graphs, and graphs to matrices. (b) Examples of connected
and disconnected, traversable and not traversable, topologically equivalent and inequivalent graphs (or equivalently polymer networks).

simulations and it is therefore useful to provide a way to sep-
arately count the number of possible configurations leading to
this specific type of polymer network.

III. COMBINATORICS OF INEQUIVALENT TOPOLOGIES
FOR UNLABELED NETWORKS

We now discuss the case of unlabeled networks, which
as anticipated is of interest when discussing the relative fre-
quencies of different network topologies, irrespective of the
specific labeling that is chosen. This is relevant, for instance,
when asking whether, in a simulation or experiment, rosette
topologies are more or less common than watermelon ones.

To study this case, we will be mapping polymer net-
works to graphs and matrices. While this mapping is not
necessary to derive the formula we will give below, which
holds for k = 2 clusters, it provides a useful framework to
build, for instance, numerical algorithms which can enumerate
all possible inequivalent topologies with a larger number of
clusters, k.

Specifically, we begin by noting that the network topolo-
gies assembled by joining the TUs of a polymer can be
mapped to graphs with nv vertices and ne edges [see Fig. 4(a)].
Each vertex of the graph corresponds to either a cluster of TUs
or to one of the two polymer ends, while each edge of the
graph corresponds to a polymer segment between two TUs or
between one TU and one of the polymer ends.

We note that not all graphs can be representations of a
polymer with TUs: since they are associated with a folded
polymer, graphs representative of a chromatin loop network
must be connected and traversable [see Fig. 4(b)]. Addition-
ally, both nv and ne are constrained by the number of TUs, n.
If none of the TUs coincides with the ends of the polymer, and
if singletons are disallowed [as in Fig. 4(a)], then ne = n + 1
and 3 � nv � 	 p+1

2 
 + 2, where p = ne − 2 and 	x
 denotes
the floor of x (the largest integral smaller than or equal to x).
Two of these vertices correspond to the polymer ends, and
their degree is 1; we will call all the others internal vertices,

namely, all the vertices associated with clusters of TUs [V1

and V2 in Fig. 4(a)] [24].

A. Enumeration of inequivalent topologies with two clusters

We now proceed to count the number of topologically
inequivalent, connected, and traversable graphs with a given
number n + 2 of edges and 4 vertices, V1, V2, V3, V4, two of
which, V3, V4, are of degree 1. This is the number of topolog-
ically inequivalent networks with n TUs and k = 2 clusters,
without any singletons, studied in the companion paper [17].

Let G be a graph of this kind. G is identified by five
numbers: a, b, c, n1, and n2. Of these, a and b denote the
number of edges connecting, respectively, vertex V1 and vertex
V2 to themselves, c is the number of edges connecting vertex
V1 to vertex V2, while n1 and n2 are the numbers of vertices of
degree 1 connected, respectively, to V1 and V2 [for instance,
the network in Fig. 4(a) has n1 = n2 = 1, whereas the top
left graph in Fig. 4(b) has n1 = 2, n2 = 0]. The following
symmetric matrix, therefore, identifies G in a compact way
[see Fig. 4(a)]:

M(G) =
⎛
⎝ 0 n1 n2

n1 a c
n2 c b

⎞
⎠. (27)

To count the number of graphs we are interested in, we
remark the following:

(i) G and G ′ are equivalent if and only if

PT M(G)P = M(G ′), (28)

where P is one of the two permutation matrices,⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠,

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠. (29)

In this case, we say that M(G) and M(G ′) are equivalent (i.e.,
they represent equivalent graphs).

(ii) G is disconnected if and only if c = 0.
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(iii) n − 1 = a + b + c.
(iv) deg(V1) = n1 + 2a + c � 3 and deg(V2) = n2 + 2b +

c � 3.
(v) Since a connected graph is traversable if and only

if the number of vertices with odd degree is either 0 or 2
[25], deg(V1) and deg(V2) must be even. Moreover, since
deg(V1) = n1 + 2a + c and deg(V2) = n2 + 2b + c, we have
the following cases: (A) if c is even, either n1 = 2 and n2 = 0,
or n1 = 0 and n2 = 2; (B) if c is odd, n1 = 1 and n2 = 1.

Let us call {M}G the set of all inequivalent [according
to point (i) above] matrices representing a graph with the
desired constraints. To count the inequivalent topologies, let
us consider the map f : (a, b, c) | a, b, c ∈ N, c � 1, a + b +
c = n → M ∈ {M}G defined as

f (a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝0 2 0

2 a c
0 c b

⎞
⎠ if c is even

⎛
⎝0 1 1

1 a c
1 c b

⎞
⎠ if c is odd.

(30)

This map covers all the desired inequivalent topologies, but
it is not injective [26]. The number of possible combinations
of (a, b, c) satisfying the constraints n = a + b + c, a � 0,
b � 0, and c � 1 is given by

n−1∑
i=1

(n − i) = n(n − 1)

2
. (31)

From this number, we first need to identify the combinations
of (a, b, c) which map to equivalent graphs (or matrices), then
to take away those which would lead to multiple counting of
the same topology, and finally to remove the combinations
which do not satisfy point (iv).

To do so, we note that the graph equivalence condition
PT MP = M ′ with M �= M ′ requires a = b′, b = a′, n1 = n′

2,
and n2 = n′

1. If c is even, this is never met by construction; if
c is odd, (a, b, c) and (b, a, c) are mapped to equivalent matri-
ces. To account for this, and avoid double counting of these
equivalent topologies, we require a � b, a condition which

removes
∑

odd c�n
c−1

2 possibilities: equivalently,
∑ n−1

2
i=1 i com-

binations if n is odd, and
∑ n

2 −1
i=1 i combinations if n is even.

Finally, to account for point (iv), we also remove the
two configurations (a = n − 2, b = 0, c = 2) and (a = n −
1, b = 0, c = 1) from the total count [27].

The total number of inequivalent graphs with n TUs and
two clusters is then given by

Nu(n, 2) = n(n − 1)

2
− 2 −

	 n−1
2 
∑

i=1

i

= n(n − 1)

2
− 2 −

⌊
n−1

2

⌋⌊
n+1

2

⌋
2

. (32)

B. Network multiplicities

Note that for each of the unlabeled network topologies just
found, there are multiple possible labeled configurations that
correspond to it. As these combinatorial weights, or multi-
plicities, are generally different for different topologies, it is

TABLE I. Topology summary table. All topologies with n = 8
binding sites and two clusters (graph vertices) are listed, together
with their number of ties (nt ), number of loops (nl ), nontrivial vertex
orders (L1 and L2 for first and second cluster), and multiplicity (�).
The last two columns give the critical energy between TUs needed
to form the topology, εc, in units of kBT , together with the 95%
confidence interval (CI): these results correspond to the simulations
presented in Sec. IV. The set of diagrams can be divided into three
classes, each characterized by the same pair of nontrivial vertex
orders (L1, L2) [or (L2, L1)]. Using the order in which these are
shown in the table, these classes are given by the first 7 diagrams,
the 8 following diagrams, and the final 5 ones.

Diagram nt nl L1 L2 � εc/(kBT ) CI/(kBT )

1 6 8 8 1 9.1 [ 9.0, 9.5]

2 5 8 8 3 9.7 [9.5, 10.1]

3 4 8 8 9 9.8 [9.5, 10.2]

4 3 8 8 9 10.4 [10.1, 10.5]

5 2 8 8 9 11.1 [10.0, 11.1]

6 1 8 8 3 10.9 [10.6, 11.5]

7 0 8 8 1 11.2 [11.0, 11.4]

1 6 6 10 2 8.8 [8.7, 9.3]

2 5 10 6 4 9.6 [9.4, 10.0]

2 5 6 10 2 9.0 [8.8, 9.3]

3 4 6 10 16 9.3 [8.9, 9.4]

4 3 10 6 12 10.1 [10.0, 11.0]

4 3 6 10 4 9.2 [9.2, 9.5]

5 2 6 10 12 9.8 [9.5, 10.2]

6 1 10 6 4 10.6 [10.5, 11.3]

1 6 4 12 2 8.7 [8.6, 9.0]

2 5 12 4 5 9.1 [8.8, 9.3]

2 5 4 12 1 8.8 [8.5, 9.0]

3 4 4 12 10 9.0 [8.5, 9.3]

4 3 12 4 10 9.3 [9.1, 9.3]

desirable to keep track of these. It is, however, difficult to go
beyond a case-by-case study. Here, we focus on the case of
n = 8 TUs and k = 2 clusters, studied in [17], for which there
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are 20 inequivalent topologies [as predicted by Eq. (32) for
n = 8].

In this case, for each inequivalent topology, Table I pro-
vides the number of ties, nt , the number of loops, nl , the
degree of the two vertices in the graphs (corresponding
to the clusters), L1 and L2, respectively, and the multiplicity
of the topology �, which is the number of labeled configura-
tions corresponding to that topology. The degrees L1 and L2

determine the entropic exponent of the polymer network [16]:
it can be seen that there are three classes of such exponents in
the 20 topologies considered in Table I.

Regarding multiplicities, we observe that these tend to be
larger for hybrid networks which are intermediate between
rosettes and watermelons and that multiplicities are, in gen-
eral, small for networks with low nl . This would suggest that
in the absence of other biases, such configurations would form
less often. We shall see in what follows, however, that these
topologies are actually easier to form, so there is an interesting
competition between the combinatoric multiplicity and the
entropic cost of formation of these loop networks.

Note that as required, the total sum of multiplicities for
all topologies is N (8, 2) = 119, namely, the number of two-
cluster configurations with n = 8 without singletons found
previously [see Eq. (17)].

IV. COARSE-GRAINED MOLECULAR
DYNAMICS SIMULATIONS

Having discussed the combinatorial problem of enumer-
ating the possible configurations and inequivalent topologies
of a chromatin loop network, we now turn to the associated
polymer physics problem and ask what interaction between
TUs needs to be included to form a target topology in practice.
This calculation requires computer simulations for polymer
models representing chromatin fibers, and therefore here we
use coarse-grained molecular dynamics simulations to study
this problem.

In this section, we will first describe the model that is used
and then present our simulation results, whose main outcome
will be to show that different topologies require significantly
different energy inputs to form. This energy of formation will
combine in practical examples with the combinatoric multi-
plicities discussed above (the relevant ones for the case at
hand are those given in Table I) to determine the likeliness
of observing a given topology in an unconstrained polymer
simulation, such as the one discussed in [17].

A. Model and potentials used

We model a chromatin fiber as a bead-and-spring polymer.
The underlying equations of motion are the set of Langevin
equations for each bead,

m
d2xi

dt2
= −∇iU − γ

dxi

dt
+

√
2kBT γ η(t ), (33)

where m is the bead mass, xi is the ith bead position, γ

is the drag, and η(t ) is uncorrelated white noise defined by
〈η(t )〉 = 0 and 〈ηα (t )ηβ (t ′)〉 = δαβδ(t − t ′). This Langevin
equation imposes an NVT ensemble on the system within

which fluctuation and dissipation govern the exploration of
the configuration space.

In order to reproduce behavior that is appropriate to chro-
matin, the following potentials U enter into this equation ac-
cording to the particular beads under consideration. A simple
phenomenological Lennard-Jones potential, truncated to in-
clude only the repulsive regime (Weeks-Chandler-Andersen
potential) acts between all beads in the system enforcing ex-
cluded volume, or self-avoidance. This is given by

ULJ(ri j ) =
{

4ε
[(

σ
ri j

)12 − (
σ
ri j

)6] + ε if ri j < 21/6σ

0 otherwise,
(34)

where σ is the bead diameter.
To capture chain connectivity, finite extensible nonlinear

elastic (FENE) bonds are considered, acting only between
consecutive beads along the polymer chain,

UFENE(r) = − 1
2 KR2

0 ln

[
1 −

(
r

R0

)2
]

(35)

if r < R0, and ∞ otherwise, where K = 30kBT/σ 2 is the
spring constant and R0 = 1.6σ is the maximum extent of the
bond. While FENE springs are used, in line with the literature
on chromatin modeling, we expect strong harmonic bonds will
lead to equivalent results, and could have been used instead.

Finally, we add a bending or Kratky-Porod potential, which
acts on the angle θ between three consecutive beads along the
chain and enforces a nonzero persistence length lp,

Ubending = Kb[1 + cos(θ )], (36)

where Kb = kBT lp/σ = 3kBT . Note that the persistence
length is artificially raised at the beginning of equilibra-
tion to remove overlaps and assist the system in reaching
a self-avoiding configuration. The persistence length is then
lowered from 10σ to 3σ , which is an appropriate value
for flexible chromatin [13,14,28]. The polymer is further
equilibrated in the presence of excluded volume interactions
only. Subsequently, attractive interactions are switched on
for the production runs. We note that as for naked DNA
[29], chromatin stiffness may depend on epigenetic modifi-
cations and, for instance, be higher in inactive chromatin, or
heterochromatin [30].

Specifically, to study the formation of a target topology, we
include attractive interactions between beads that should be in
the same cluster in the target topology; this procedure is sim-
ilar to what is done in a Go model approach to study protein
folding, where only attractive interactions between residues
in contact in the folded state are included [31]. We consider
all 20 topologies in Table I; for instance, for a symmetric
two-rosette state, we include an interaction between the first
four TUs and between the last four. The attraction between
the selected TUs is simulated by a Lennard-Jones potential,
where part of the attractive tail is retained. The interaction
range (cutoff) is set to 1.8σ , while the interaction strength
ε is varied between 5kBT and 15kBT . For large enough ε,
the target topology is formed, with all interactions realized.
(Note that not all topologies may be realizable if the steric
interactions between different polymer segments prevent this,
but in our case, this is not an issue.)
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The transition between an initially unstructured chain and
the target topology arises because the energy gained as bind-
ing sites come together increases (asymptotically) linearly
with the number of binding beads in a cluster, whereas the free
energy cost of adding loops to a cluster scales superlinearly
[12,16,32]. As such, there is a critical energy εc at which the
energy gain just offsets the entropic loss and this is the transi-
tion point. Our goal is to find how the value of εc depends on
topology. Note that all topologies that we compare (i.e., within
each of the three classes in Table I) contain the same number
of binding site interactions, hence the same total maximum
energy. The difference in εc is then primarily due to the free
energy cost of forming that specific target topology.

Our script loads a modular pair coefficient file generated
by a simple PYTHON script. This allows the target polymer
network topologies to be easily specified and changed, while
keeping other elements of the simulation fixed, which is
important for reproducibility, scalability, and comparisons. Fi-
nally, the system is evolved via Langevin dynamics using the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package [33].

B. Target topology simulations: Rosettes, watermelons,
and dependence on the number of ties

As discussed above, in the thermodynamic limit, it is ex-
pected that the entropic exponent of forming a given topology
should depend only on the number of legs (L1,2) meeting at
its vertices [16,32]. This partitions the set of 20 inequivalent
topologies into three classes that have the same values of L1,2

(see Table I), so that the results discussed below should be
compared only between topologies in the same class.

Among the first class (first seven topologies in Table I),
two topologies, namely, the rosette (top topology in the class)
and the watermelon (bottom topology in the class), stand out
as particularly illustrative choices to discuss the results of the
simulations. For these two topologies, simulations are carried
out by varying the interaction affinity ε between 5kBT and
15kBT . From the estimate of the pairing energy normalized
by the number of beads, εpair, we can identify the values of ε

for which the target topology is formed (Fig. 5).
As expected, for small values of ε, the chain remains

unfolded. In contrast, for sufficiently large values of ε, the tar-
geting topology is formed (examples of folded configurations
in this regime for the rosette and watermelon topologies are
shown in Figs. 6 and 7, respectively). The point of sharpest
variation of the sigmoidal curves in Fig. 5 can be interpreted
as the critical interaction affinity εc required to form the target
topology (either rosette or watermelon). Thicker lines indicate
the mean of εpair over 100 random initial configurations for
each ε used. The surrounding shaded regions represent one
standard deviation on either side of this mean.

The interaction affinity giving rise to the maximal stan-
dard deviation is taken as the recorded transition affinity εc.
Confidence intervals are computed using a bootstrapping pro-
cedure. In order to better illustrate the relationship between
the standard deviation amongst simulations with the same
interaction affinity and the inferred transition affinity, the stan-
dard deviations are plotted independently in Fig. 8. From these
curves, it is clear that the location of the maximum differs

FIG. 5. Plot of the average measured pairing attractive energy
per bead, εpair , as a function of the input attractive energy ε. The
sigmoidal shape of the curve signals a transition to the formation of
the target topology.

FIG. 6. Simulation snapshot and corresponding topology for the
rosette case. Note different TUs are colored differently.

FIG. 7. Simulation snapshot and corresponding topology for the
watermelon case. Note different TUs are colored differently.
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FIG. 8. Plot showing simulation results for the standard devi-
ation of the normalized pairing energy εpair as a function of the
attraction between TUs for the rosette (blue) and watermelon (red)
topologies. Maxima are used to infer the transition affinities, which
are indicated with dashed lines. Bootstrapped 95% confidence inter-
vals are shaded in yellow.

for the rosette and watermelon topologies. In particular, one
can observe that the rosette topology forms more easily, as it
requires a smaller value of ε or, equivalently, the associated εc

(corresponding to the peak in Fig. 8) is smaller.
Note that while the rosette and watermelon topologies have

the same values of L1,2, they differ by the number of ties, nt

(nt = 0 for the rosette topology and nt = 7 for the watermelon
one). In general, we observed that the larger nt in a target
topology, the greater the interaction affinity typically required
to form it (with exceptions, see Table I). In this respect, a
simple class to study is that of the first seven symmetric
topologies shown in Table I, of which the rosette and the
watermelon constitute the limiting cases. In order to elucidate
the relationship between nt and εc for this class, we carry
out a bootstrapped linear regression. The corresponding fit
is plotted in Fig. 9: a simple linear relationship between nt

FIG. 9. Plot of the critical energy εc against the number of ties,
nt , for the first class of topologies in Table I, with L1,2 = (8, 8).
Values corresponding to 95% confidence intervals for each value of
nt are found by bootstrapping.

and εc holds to a good approximation. As the number of
ties increases by one, the number of loops decreases by one
too, and so our results indicate that there is a nearly uniform
energetic cost each time one loop is exchanged for a tie in a
chromatin network. The estimate of the constant cost per tie
is �εc = 0.31kBT (95% confidence interval: 0.24–0.36kBT ).
The other two classes of topologies reported in Table I still
show an increase of εc with nt , but the functional form is less
clear (see Table I for a list of values of εc found for each
inequivalent two-cluster topology).

V. TOPOLOGICAL WEIGHTS OF GAUSSIAN
CHROMATIN LOOP NETWORKS

Up to now, we have enumerated the configurations of
polymer loop networks, thereby finding their combinatorial
weights. We have also seen in the last section that Brownian
dynamics simulations show that the energy that is required to
offset the free energy cost associated with the formation of
these topologies is significantly different. In the companion
paper, we have additionally shown that inequivalent (unla-
beled) topologies with the same combinatorial weight, such
as the rosette and watermelon ones, are observed in polymer
models with starkly different frequencies. In this section, we
will show that these results can be understood, at least qualita-
tively, by computing the topological weight of a given graph,
which is essentially the partition function of a Gaussian poly-
mer network with that topology. (Note that this is equivalent
to a freely jointed polymer network with a large number of
monomers [34].)

More specifically, to compute the topological weight of a
given graph G associated with an inequivalent topology of a
chromatin loop network with n TUs, we need to compute its
corresponding partition function,

ZG =
∫

dx0 . . . dxn+1 δ(G)
n∏

i=0

e− 3(xi+1−xi )2

2lσ , (37)

where l is the mutual distance between two consecutive TUs,
σ is the bead size, and δ(G) is a product of Dirac delta func-
tions that describes the topology of the network (see below).

Here, e− 3(xi+1−xi )2

2lσ can be thought of, in field theoretical terms,
as the propagator of our Gaussian theory, from the ith to the
(i + 1)-th TU.

In the remainder of this section, we will first compute in de-
tail the topological weights of unlabeled configurations with
two clusters, which are the focus of the numerical simulations
in the companion paper [17]. Afterwards, we shall see how to
generalize the calculation to compute the topological weight
of any given Gaussian polymer loop network. This calcula-
tion can be done explicitly because we are approximating the
polymer to a Gaussian chain.

Including self-avoidance and mutual avoidance between
different polymer segments would require a separate treat-
ment and is outside the scope of the current work. In the
special case of two-cluster configurations, self-avoidance, or
excluded volume, can be included by using the self-avoiding
walk propagator [34] in place of the Gaussian propagator
used in the theory just described. The resulting weights are
calculated in the companion paper [17]. Excluded volume
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(a) (b)

FIG. 10. Loop network configurations and TU labeling used for
the calculation of the topological weights of the (a) rosette and
(b) watermelon topologies.

effects coming from self-avoidance of polymer segments fa-
vor rosettes over watermelon even more than is predicted by
the Gaussian theory. It would be of interest to also single out
the effect of mutual avoidance between different polymer seg-
ments. We note that such excluded volume effects contribute
to the difference in entropy between the different topologies
because, in the absence of energetic contributions (such as
from bending rigidity), all configurations are equal in energy,
and hence the difference in weights stems from differences in
entropy.

A. Topological weights of two-cluster configurations

We begin by noting that the term δ(G) in Eq. (37) is a
product of Dirac δ functions which specify the topology of
the network [16]. For instance, in the case of rosettes [G = R,
Fig. 10(a)] and watermelons [G = W , Fig. 10(b)], δ(G) is
explicitly given by δ(R) and δ(W ), with

δ(R) =
∏

i=2,3,4

δ(x1 − xi )
∏

j=6,7,8

δ(x5 − x j ),

δ(W ) =
∏

i=3,5,7

δ(x1 − xi )
∏

j=4,6,8

δ(x2 − x j ). (38)

The topological weight of the rosette topology is therefore
given by

ZR =
∫

dx0 . . . dx9

[
8∏

i=0

e− 3(xi+1−xi )2

2lσ

]

×
∏

i=2,3,4

δ(x1 − xi )
∏

j=6,7,8

δ(x5 − x j ), (39)

where the TU labeling in the integral follows the one in
Fig. 10(a).

Noting that∫
dx0 e− 3(x1−x0 )2

2lσ =
∫

dx0 e− 3x0
2

2lσ = W −1
0 , (40)

with W0 ≡ ( 3
2π lσ )3/2, and that an analogous formula holds

for the integral over dx9, we obtain, by making use of the
properties of the δ function, that

ZR = W −2
0

∫
dx1dx5 e− 3(x1−x5 )2

2lσ = W −3
0 V, (41)

where we have called V the volume of the system.
By repeating the same steps for the watermelon topology

[see Fig. 10(b) and the associated choice of TU labeling), we

FIG. 11. Loop network configuration and TU labeling used for
the calculation of the topological weights of a network with multiple
clusters (here, four).

get

ZW = W −2
0

∫
dx1dx2 e−7

3(x2−x1 )2

2lσ = W −3
0 V

73/2
= ZR

73/2
.

(42)

Therefore, the topological weight of the watermelon is
much smaller than that of the rosette. Additionally, one
can generalize the result shown above to hybrid rosette-
watermelon configurations with two clusters and nt ties,
obtaining that their topological weight is given by

ZG = ZR

n3/2
t

, (43)

which becomes Eq. (42) for nt = 7 (which holds for the
watermelon topology). The decrease in topological weight
of two-cluster topologies with nt qualitatively explains why
they are seen less frequently in simulations [17] and why the
interaction energy between TUs needed to stabilize a topology
increases with nt , as found in the previous section with coarse-
grained molecular dynamics simulations.

B. General formulas for the topological
weights of Gaussian loop networks

With a bit more work, the topological weight calculation
just outlined can actually be generalized to any chromatin loop
network.

To see how, let us consider the topology G shown in Fig. 11.
Its associated topological weight is given by

ZG =
∫

dx0 . . . dx10

[
9∏

i=0

e− 3(xi+1−xi )2

2lσ

]
δ(x1 − x4) δ(x1 − x8)

× δ(x2 − x7) δ(x3 − x6) δ(x5 − x9), (44)

which, by using methods similar to those described in the
previous section, can also be written as

ZG = W −2
0

∫
dx1dx2dx3dx5 e− 3

2lσ f (x1,x2,x3,x5 ), (45)

where

f (x1, x2, x3, x5) = [2(x2 − x1)2 + 2(x3 − x2)2

+ (x3 − x1)2 + (x5 − x3)2 + 2(x5 − x1)2].

(46)
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We now introduce the following matrix:

A(G) =

⎛
⎜⎜⎝

0 2 1 2
2 0 2 0
1 2 0 1
2 0 1 0

⎞
⎟⎟⎠, (47)

which equals to the adjacency matrix of the multigraph cor-
responding to G [note that if loops were present in G, they
should not be included in the calculation of A(G)]. From this,
we define the matrix

B(G) =

⎛
⎜⎜⎝

5 −2 −1 −2
−2 4 −2 0
−1 −2 4 −1
−2 0 −1 3

⎞
⎟⎟⎠, (48)

where we have changed the sign of the off-diagonal compo-
nents and the diagonal components have been set equal to
the sum of the corresponding row in A(G). With this setup,
the argument of the exponential in Eq. (11) can be written in
matrix form as

f (x) = xT B(G)x, (49)

where xT = (x1, x2, x3, x5). Note that det[B(G)] = 0. This is
consistent with the fact that the topological weight is propor-
tional to the volume V of the system. By fixing the position of
one of the cluster’s center of mass, say x1, and integrating over
it, the weight associated with this topology can be given in
terms of the determinant of the matrix obtained by removing
the first row and column,

det[B′(G)] = det

⎛
⎝ 4 −2 0

−2 4 −1
0 −1 3

⎞
⎠ = 32, (50)

as follows:

ZG = W −3
0 V det[B′(G)]−3/2 = W −3

0 V

323/2
. (51)

It can be verified that as expected, the above result does not
depend on which cluster is fixed and integrated upon, as the
determinant of any matrix obtained by removing the ith row
and column of B(G) is the same. [Indeed, one can also show
that all minors of B(G) are the same up to a sign.]

By applying this procedure, for instance, to a string of
rosettes with n TUs, one can show that the corresponding
topological weight is W −3

0 V .
Finally, for a general graph G with n TUs and k clusters,

its topological weight can be computed by starting from the
corresponding matrix B(G) and computing the determinant of
any submatrix B′(G) obtained by removing the ith row and
column, for any i ∈ [1, k]. This is given by

ZG = W −3
0 V det[B′(G)]−3/2. (52)

As a generic network can be obtained from a string of rosettes
by adding a suitable amount of ties between clusters, which
leads to a decrease in the integrand in Eq. (45), this means
that det[B′(G)] � 1. Therefore, the above result confirms that
a generic network typically has a (significantly) lower weight
with respect to that of a string of rosettes with the same
number of TUs, n, in line with the numerical results obtained
for k = 2.

VI. DISCUSSION AND CONCLUSIONS

In summary, we have presented a combination of analytical
and numerical results for the combinatorial and topologi-
cal weights of chromatin loop networks. These weights are
important to determine the relative frequencies with which
different topologies arise in polymer models for DNA and
chromatin, which are studied in the companion paper [17].
In particular, we are interested here in the relation between
these results and the physical properties of the loop networks
which arise due to the bridging-induced attraction [13,14,28],
in polymer models for the 3D structures formed by chromatin
fibers in vivo, and which are associated with gene folding.
For instance, the statistical, or Boltzmann, weight associated
with a given topology shown in Table I, which determines the
frequency with which it is observed, for instance, in computer
simulations, is proportional to its combinatorial weight (com-
puted in Sec. III) times its topological weight (computed in
Sec. V).

We have shown that the enumeration problems associated
with counting labeled and unlabeled chromatin loop networks
are fundamentally different. When transcription units (TUs)
are labeled (Sec. II), the problem can be usefully mapped
to that of counting the ways in which n different TUs can
be distributed into k clusters with � 2 TUs per cluster. The
resulting combinatorial sequences are often related to the Bell
or Stirling numbers, and we have shown that it is possible to
find explicit formulas for the exponential generating functions
associated with a number of different cases, with or without
singletons (i.e., TUs not in any clusters). This is useful for
providing estimates or upper bounds for the number of topolo-
gies which a given chromatin region (with a specified number
of TUs) can fold into.

For networks with unlabeled TUs, corresponding to in-
equivalent topologies (Sec. III), the enumeration problem is
related to that of counting multigraphs, which is NP-complete
and hence harder. We have, though, provided here a derivation
of a formula counting all inequivalent topologies with n TUs
and k = 2 clusters; for n = 8 (a common occurrence in real
gene loci [3,17]) and k = 2, i.e., the case studied in detail
in the continuum paper, this formula gives 20 inequivalent
topologies (shown explicitly in Table I).

We also asked what attraction energy is needed to form
a target topology. This is a biophysically relevant question
regarding chromatin loop networks. For instance, we may
want to know whether a rosette topology or a watermelon
one forms more easily (i.e., requires less interaction between
the TUs), as this may affect the relative frequency with which
these two structures may be found in mammalian chromatin.
These predictions could then be compared with computer sim-
ulations of 3D chromatin folding [3,17]. Previous work based
on renormalization group calculations came to the important
conclusion that the entropic exponent of a polymer loop net-
work solely depends on the degree of its nodes (the clusters
in our terminology) [16,32]. However, this exponent does not
completely determine the weight, as there is a prefactor which
can, in principle, also be topology dependent. More in detail,
rosettes and watermelons, and indeed all first seven network
topologies in Table I, have the same entropic exponent, yet
they require significantly different energies to form, as we
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show in Sec. IV. In particular, by focusing on configurations
with n = 8 TUs and k = 2 clusters, our simulations show that
the critical energy to form a target topology tends to increase
with the number of ties, or polymer segments, linking the two
clusters, which we call nt .

Finally, in Sec. V, we have computed the topological
weight of a chromatin loop network, under the assumption
that the polymer is a Gaussian chain. This weight is the
partition function of a network with the given topology and,
importantly, we have found that it strongly depends on nt ,
qualitatively explaining our numerical results in Sec. IV.

In the future, it would be interesting to generalize the
topological weight calculations in Sec. V to the case where
the polymer network has both self- and mutual avoidance (for
a first step in this direction, see the companion paper [17]).
From an application perspective, it would be desirable to use

our labeled and inequivalent unlabeled topologies to classify
the 3D configurations of chromatin fiber around genes, for
instance, the gene loci configuration found by “HiP-HoP”
simulations in [3] or the interaction networks and hypergraphs
found by chromatin capture experiments accounting for mul-
tiway chromatin contacts, such as poreC [35]. We hope that
these extensions of our work will be addressed in the future.
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