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A B S T R A C T   

Indoor location information, which is an indispensable label for linking the vast amount of data circulating in the 
world of IoT, 5G, and AI, is essential. This paper proposes a novel template pattern matching-based acoustic 
positioning method, Location Template-based Positioning Model, for indoor acoustic source localisation. This 
innovative technology, similar to the passive SONAR systems on submarines, uses audible acoustic waves to 
locate acoustic sources in complex indoor environments. The proposed LTPM is a statistical model, and it cal
culates the coordinates of acoustic sources by matching input acoustic signals with template acoustic signals that 
are pre-collected from preset locations. A comprehensive overview of the principles and implementations of 
LTPM is provided, and its feasibility is verified through preliminary positioning tests in this paper. It is hoped to 
provide research references for the advancement of pattern matching-based acoustic indoor positioning 
technologies.   

1. Introduction 

Indoor positioning technologies, a cornerstone of modern engineer
ing, hold immense practical significance. Notable examples include ul
trasonic positioning, Wi-Fi network-based location fingerprint 
positioning, and Ultra-Wideband (UWB) positioning. In real-world 
positioning tasks, ultrasonic positioning and UWB positioning face 
challenges in indoor environments due to base station installation 
complexities and specific requirements on propagation paths between 
base stations and target objects [1]. However, the Wi-Fi network-based 
location fingerprint positioning technology shines in its excellent 
adaptability to complex indoor environments since it relies on the pre- 
measurement of Received Signal Strength (RSS) at preset locations 
instead of measuring time differences. Drawing inspiration from the 
ultrasonic positioning technology and the Wi-Fi network-based location 
fingerprint positioning technology, a Template Pattern Matching (TPM)- 
based acoustic positioning method which utilises audible acoustic sig
nals as the system input and adapts to complex indoor environments is 
proposed and tested preliminarily in this paper. 

TPM was exploited in the EU project Tangible Acoustic Interfaces for 

Computer-Human Interaction (TAI-CHI) to improve the two- 
dimensional positioning accuracy [2]. However, existing positioning 
research tends to achieve signal source localisation with radio networks 
rather than acoustic waves. Therefore, a TPM-based acoustic positioning 
method, Location Template-based Positioning Model (LTPM), is intro
duced in this paper to fill the gap. LTPM combines TPM with audible 
acoustic waves to realise three-dimensional acoustic source localisation 
in indoor environments. 

In static environments, acoustic waves emitted by acoustic sources 
with fixed directivity patterns at different locations form different 
acoustic patterns due to multipath propagations. A direct quantitative 
reflection of different acoustic patterns is the change of acoustic features 
in received acoustic signals. Acoustic patterns corresponding to different 
locations are distinguishable when multiple signal features are defined. 
Acoustic sources can be located with template acoustic signals collected 
from preset locations, signal processing and pattern matching tech
niques. The entire positioning procedure is similar to the passive SONAR 
positioning system on submarines. This positioning method does not 
rely on measuring the time difference of arrival; therefore, it has 
excellent adaptability to complex indoor environments compared to 
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TDOA-based ultrasonic/electromagnetic indoor positioning systems. 
The correlation between locations and acoustic features is critical 

since the TPM-based positioning method matched the input signal with 
pre-collected template signals according to the defined acoustic features. 
The acoustic multipath effect ensures that each preset location corre
sponds to a set of unique acoustic features. In indoor environments, 
acoustic waves propagate at a certain velocity in the air and interact 
with substances inside the environment. Physical effects such as atten
uation, refraction, diffraction, reflection, path loss, etc., occur during the 
propagation of acoustic waves, as shown in Fig. 1. The acoustic signal 
received by the sensor at a fixed position is a mixed signal, which con
sists of a series of acoustic waves. This physical effect is the multipath 
effect or acoustic reverberation [3]. The multipath effect brings unde
sirable signal components to the received acoustic signal, as shown in 
Fig. 2. As a result, specific differences exist in the acoustic signals 
emitted by the same acoustic source at different locations. The proposed 
LTPM utilises this phenomenon to locate acoustic sources. As a com
parison, in TDOA-based indoor positioning studies, signal components 
caused by the acoustic multipath effect in the received acoustic signal 
are always suppressed to ensure signal consistency for accurate mea
surement of the time difference of arrival. 

Current electromagnetic signal feature-based TPM positioning tech
nologies use the Received Signal Strength (RSS) as the primary signal 
feature. Such positioning systems can locate signal sources at 500 mm 
intervals [4]. However, improving the matching accuracy further is 
difficult because the RSS values of template signals fluctuate, and the 
RSS values collected at adjacent locations overlap severely [5]. Multiple 
dimensional and dimensionless features are defined in LTPM to prevent 
such a problem from happening. In this way, the floating influence of 
individual features is suppressed, and the complementarity of acoustic 
features among different signal groups is utilised. 

The key contributions of this study are:  

• A TPM-based acoustic indoor positioning technology, Location 
Template-based Positioning Model (LTPM), is proposed and tested.  

• A matching method that combines signal processing and machine 
learning is developed to replace RSS-based similarity analysis and 
utilise complementarity between different acoustic features. 

• Prerequisites of LTPM are summarised and a brief comparison be
tween different positioning technologies that are applicable in in
door environments is provided. In addition, the application potential 
of LTPM is briefly analysed.  

• This paper presents the first comprehensive introduction to the TPM- 
based acoustic positioning technology and provides research refer
ences for subsequent studies on acoustic indoor positioning. 

The paper consists of five sections. Section 1 presents the background 
introduction. Section 2 introduces the LTPM. Section 3 introduces de
tails on data processing and model training. Section 4 presents the 
preliminary positioning tests, while Section 5 presents the conclusion 
and future works. 

2. LTPM and template signal collection 

The Location Template-based Positioning Model (LTPM) is an 
acoustic positioning method that determines an acoustic source’s loca
tion by matching the acoustic signal generated by the acoustic source 
with labelled template signals in the matching database. The positioning 
principle of LTPM is introduced in this section. 

2.1. Location Template-based positioning model 

LTPM achieves acoustic source localisation by matching the input 
acoustic signal with template signals collected from preset locations. 
The red dots in Fig. 3 are preset locations in an indoor environment. An 
acoustic source is repeatedly placed at all preset locations to generate 
template acoustic signals. Template signals at each preset location form 
a corresponding signal group, and all acoustic signal groups compose the 
template signal database for pattern matching. In positioning, the 
positioning system identifies the signal group with the highest proba
bility of generating the features of the input signal. Then, the co
ordinates of the identified signal group are determined as the 
coordinates of the acoustic source. 

2-1 is the positioning equation for TPM-based localisation. The 
location of a signal source is determined by comparing the input signal 
with template signals, which are pre-collected at preset physical loca
tions [6]. Due to the positioning mechanism, LTPM can only locate one 
acoustic source at a time. However, it is feasible to simultaneously locate 
two or multiple different acoustic sources with different frequency 
components if specific signal filtering and separation algorithms are 
merged into the signal processing module. The received composite 
signal can be processed and decomposed into two corresponding 
acoustic signals with bandpass filters and then input into the positioning 
model sequentially for coordinates calculations. However, in this study, 
acoustic sources with single frequencies are utilised in the illustration 
and tests to facilitate the introduction of LTPM. 

Vf = argmin
i∈(1,2⋯n),n∈N

( {⃒
⃒f
(
Sinput

)
− f

(
SVi

) ⃒
⃒
} )

(2.1)  

where f(Sinput) is the feature extracted from the input signal, e.g. RSS. 
f(SV) stands for the feature extracted from a template signal. n is the 
number of template signals. The output Vf is the location label of the 
matched template signal. 

The implementation of LTPM consists of three steps, as shown in 
Fig. 4. The first step is the collection of template acoustic signals. An 
acoustic source is placed at a preset location, and a microphone collects 
the acoustic wave generated by the acoustic source. The location tem
plate provides coordinates for template acoustic signals, as shown in 
Fig. 5. In the test, cubic location templates are designed according to a 
UR-10 robot’s coordinate system. In this way, the robot can precisely 
transport the acoustic source to preset locations, and a template signal 
matching database is established by merging the collected template 
signals with preset coordinates. 

In the second step, signals in the template signal matching database 

Fig. 1. The acoustic multipath effect.  
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are processed to generate feature datasets and a positioning model is 
trained with the processed datasets. Acoustic source localisation is 
available after the positioning model training is completed. In the 

positioning test, acoustic sources are always estimated at one of the 
preset locations on the location template. Notably, different machine 
learning methods can be applied to train the positioning model 

Fig. 2. The power distributions of two acoustic signals sampled by the sensor (corresponding to acoustic signals received by the sensor in Fig. 1).  

Fig. 3. The illustration of location templates and signal collection.  

Fig. 4. The architecture of machine learning supported LTPM.  
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according to the selected acoustic signal processing technique. For 
example, the random forest is used to classify acoustic features calcu
lated with signal extraction functions. In contrast, the convolutional 
neural network processes signal images generated with signal trans
formation functions. Predictably, the positioning models trained with 
different machine learning algorithms have different positioning per
formances; thus, machine learning supported LTPM has great applica
tion potential. 

The third step is to test the trained positioning model. Multiple 
positioning models are trained and tested with different training and test 
datasets to determine the positioning performance of LTPM. Positioning 
test results and summaries are presented in Sections 4 and 5. 

2.2. Acoustic source and sampling system 

In the indoor environment, the acoustic signal received by a micro
phone at p1 is a superimposed acoustic signal which is composed of 
direct signal components and multipath signal components, as shown in 

Fig. 6. For an acoustic source at S1, the acoustic signal received at p1 
consists of three acoustic signals: Fig. 7. 

Yp1(x1) = Ydm1(x1) + Yr2(x2) + Yr4(x3) (2.2) 

For an acoustic source at S2, the propagation paths of acoustic waves 
are different. The acoustic signal received at p2 is: 

Yp2(x2) = Ydm2(x4) + Yr4(x5) + Yr6(x6) (2.3) 

Acoustic signals emitted by the same acoustic source at different 
positions differ, and the difference is utilised to match the input signal 
with template signals. Yp1(x1) and Yp2(x2) are composite acoustic sig
nals, and they can be decomposed into plural sinusoidal waves with the 
Fourier Transform. On the contrary, a composite acoustic signal can be 
acquired by superimposing multiple acoustic signals with single fre
quencies and performing the Inverse Fourier Transform; therefore, if 
acoustic waves with single frequencies can be used for pattern matching, 
then acoustic waves with multi-frequencies can also be used to achieve 
pattern matching. Moreover, abundant feature variation patterns of 
acoustic waves with multi-frequencies are beneficial for improving 
matching accuracy. However, to focus on the introduction and imple
mentation of LTPM, an acoustic source with a single resonate frequency 
is selected in this study. 

The acoustic source used in the three-dimensional positioning test is 
a piezoelectric buzzer with a resonance frequency of 3100 Hz, and 
acoustic signals generated by the buzzer are isolated from the back
ground noise with an FIR bandpass filter (2900 Hz – 3500 Hz). 

The buzzer is powered by the peripheral extension interface on the 
robot module, and the robot transports the buzzer to preset spatial lo
cations labelled by the location template. Meanwhile, a sampling 
module is deployed beside the robot module for signal collection. The 
sampling system consists of a GRAS AE146 microphone, an AA-12 power 
module, and a DAQ-2010 data acquisition card. The DAQ-2010 is 
configured with API functions in MATLAB. The sampling rate of the 
sampling system is set to 50,000 Hz. 

3. Data processing and model training 

3.1. Pre-processing and signal separation 

Data collection and processing are completed in a closed test cell 

Fig. 5. The design of cubic location templates (left) and the physical setups in the positioning test (right).  

Fig. 6. The multipath propagation of acoustic waves in an indoor environment. 
Although the same acoustic . 
Source is placed at S1 and S2, respectively, acoustic signals received at p1 and 
p2 differ due to the multipath propagation of acoustic waves 
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with a noise level of 60–65 dB. The signal acquisition system consists of a 
measurement microphone, an amplification power supply module and a 
data acquisition board. Acoustic signals are sampled and transferred to 
the MATLAB workspace through Direct Memory Access (DMA). Digital 
filters, compensators, and energy-based signal separation algorithms are 
integrated into MATLAB for post-processing. The overall signal-to-noise 
ratio is maintained at 20 dB (power spectral density estimation). The 
acoustic environment contains realistic environmental factors, and the 
quality of sampled acoustic signals is sufficient to support pattern 
matching. 

All template signals in the database and input signals need to be 
processed equally for feature extraction. The signal processing consists 
of three steps: pre-processing of signal sequences, signal separation and 
feature extraction, as shown in Fig. 8. The pre-processing of signal se
quences aims to improve the signal-to-noise ratio of the sampled signal 
sequence (20 dB after compensation) and all sampled signal values are 

regulated within [-10,10]. The signal separation aims to separate 
acoustic signals from the processed signal sequences. The time-domain 
image of a separated signal is shown in the middle of Fig. 8. 

Next, feature extraction functions extract features from the separated 
acoustic signals. 43 acoustic features are defined in the feature extrac
tion function. The 43 acoustic features consist of statistical features and 
information theoretic features, as shown in Table 1. The statistical fea
tures are selected according to the physical properties of acoustic waves. 
For example, the propagation of acoustic waves is subject to the multi
path effect; thus, acoustic signals received by the sensor at a fixed 
location have different lengths due to multipath propagations. Similarly, 
centroid frequency is selected because the midpoint frequencies of 
acoustic signals shift with different locations. Entropy features are 
selected because entropy represents the uncertainty of the timing signal 
series. For instance, the permutation entropy indicates the complexity of 
a time series [7] and the signal entropy represents the probability 

Fig. 7. A sampled signal in the time domain (left) and its power spectrum (right). The acoustic . 
Source is a 3100 Hz buzzer, but it still consists of multiple signal components with different frequencies 

Fig. 8. Signal processing for LTPM.  
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distribution of the acoustic signal series [8]. 
Part of the features is introduced below: 
A signal sequence received by the sensor is: 

X(i) = s(i − td) + η(i) (3.1)  

whereas s(i) is the source signal. td is the time delay. η(i) is random 
Gaussian white noise. i is the length of the signal sequence. 

The centroid frequency of an acoustic signal is defined as: 

CentroidFrequency =

∫∞
0 fS(f)df
∫∞

0 S(f)df
(3.2)  

where S(f) is the amplitude corresponding to the bin f in the Fast Fourier 
Transform (FFT) power spectrum. The centroid frequency describes the 
distribution of the signal spectrum [9]. 

The permutation entropy is defined as: 

Hpe(m) = −
∑m

j=1
pjlogpj (3.3)  

where m is the embedded dimension. pj is the probability function. The 
acoustic series is partitioned into vectors, and the permutation entropy is 
calculated by calculating the probability of each permutation of vectors. 
The permutation entropy indicates the complexity of signals [7]. 

43 Feature extraction functions are compiled in MATLAB. In the 
feature extraction stage, these functions extract the acoustic features of 
each separated acoustic signal. Next, the extracted features are merged 
with coordinates to generate input data for LTPM. The data format is 
shown in 3–4. 

SNi :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s11, s12, s13⋯s143, coordinate1

s21, s22, s23⋯s243, coordinate2

⋯

sN1, sN2, sN3⋯sN43, coordinateN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3.4) 

The weights of these features are automatically assigned and 
adjusted during the training of the positioning model and examined with 
the MDI (Mean Decrease Impurity) feature importance measuring 
method, as shown in Fig. 9. 

Feature reduction tests on the 43-feature set are also performed to 
verify the positioning performance of LTPM after removing some fea
tures with low weights. Test results in Fig. 10 showed that the model 
maintains the same level of classification accuracy when the feature 
dimensionality decreases to 25. However, the computational complexity 
of the model is not improved significantly after removing some features; 
thus, all features are listed and calculated in this study. 

The variation pattern of each feature set represents the inherent 
pattern of acoustic signals at the corresponding preset physical location. 
As a preliminary test, 7 location templates (56 locations) are established 
in this study, and the total number of collected signals is 123,500. 

The signal database, which contains more than 32,000 signals, is a 
primary database. The numbers of signals of the three primary databases 
are presented in Table 2. 

The signal database, which contains less than 3,200 signals, is a 
secondary database. The numbers of signals of the four secondary da
tabases are presented in Table 3. 

Table 1 
Acoustic features of LTPM.  

Signal domains Signal features 

Time domain Signal Length, Energy, Mean value, Absolute Mean value, 
Variance, Standard Deviation, Absolute sum, 

Peak value, Valley value, Valley-Peak, Median value, 
Kurtosis, Skew, Root Mean Square, 

Sin factor, Crest factor, Impulse factor, L factor, 
Zero Crossing Rate, Singular Value Decomposition 

Frequency domain Max Amplitude, Min Amplitude, Median Amplitude, 
Mean Amplitude, Valley-Peak, Centroid Frequency, 

Mean Square Frequency, Mean Square Root Frequency, 
Frequency Variance, Frequency Standard Deviation, 

Centroid Frequency of Kurtosis Diagram 
Power Spectrum Max Power, Min Power, Median Power, 

Mean Power, Centroid Frequency, 
Signal to Noise Ratio, Occupied Bandwidth, Pitch 

Entropy Signal Entropy, Spectrum Entropy, 
Sample Entropy, Permutation Entropy  

Fig. 9. The ranking of numerical features. The Mean Decrease Impurity (MDI) uses in-sample (IS) measurements to estimate feature importance for tree- 
based classifiers. 
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3.2. Positioning model 

The second step of LTPM is to classify the data collected at preset 
locations with the machine learning algorithm. Random Forest (RF) was 
selected for the training of the acoustic positioning model since Random 
Forest and TPM have consistent requirements for the input data. That 
the input data should contain both features (acoustic features) and labels 
(coordinates). The RF-based positioning model is continuously opti
mised to improve the matching efficiency and accuracy between fea
tures and labels during the training so that the trained positioning model 
is able to predict the location label of the input signal. 

When An input signal sr is provided to the positioning model, fea
tures of the input signal are extracted as F

{
f1,⋯, f43

}
. Then these fea

tures are sent to the trained positioning model as a system input as 
shown in 3–5. Next, the positioning model calculates a system output (a 
location label) according to the system input. This paper focuses on 
introducing the TPM-based positioning method rather than machine 
learning since RF is introduced as a classification tool; thus, the pa
rameters and structures of machine learning will not be listed and dis
cussed. 

Lpredict = C*(F{sr} ) (3.5)  

where C* is the trained classification model and L is the system output. 
Training a Random Forest classification model is computationally 

intensive as it involves constructing multiple decision trees given the 
training data. In contrast, during inference, the positioning execution is 
less computationally intensive as the model makes predictions on new 
input data by simply passing it through each decision tree and then 
aggregating the results. Although training the model involves forward 

and backward passes through the network, the model only performs 
forward passes to predict locations during inference. In this study, the 
LTPM is trained offline; thus, the computational complexity of the 
positioning models for online inferencing is acceptable. 

LTPM is essentially a statistical model rather than a metric location 
algorithm. The output of a trained positioning model is one of the preset 
spatial coordinates on the location template; thus, the output has only 
two conditions: true localisation or false localisation. In traditional 
positioning methods, positioning accuracy refers to the closeness be
tween the measured location and the true or correct location of a point of 
interest. Still, the concept of positioning accuracy does not apply to 
LTPM. 

In this paper, classification accuracy is used to reflect the positioning 
performance of LTPM. The output of LTPM is determined as a True 
Positive (TP) result if the coordinates of the test acoustic signal are 
calculated correctly by the positioning model. Otherwise, this local
isation is a False Positive (FP) result. The classification accuracy is the 
proportion of the total number of predictions that were correct. 

ClassificationAccuracy =
TP

TP + FP
*100% (3.6) 

Classification accuracy is one of the evaluation metrics of statistics. 
In this study, the classification accuracy of LTPM is jointly determined 
by the design of location templates (i.e. the number of preset locations in 
the space, the density of preset locations, the interval between location 
templates, etc.), data (features), data volume, and the classification 
model. 

The RSS and Wi-Fi network-based positioning technology is adapt
able to complex indoor environments. The proposed LTPM inherits this 
advantage and has better data efficiency. The location label of the input 
signal is estimated with the data inference model in LTPM according to a 
series of features extracted from the input signal. In RSS and Wi-Fi 
network-based positioning, the matching algorithm searches for the 
most appropriate signal strength range that covers the signal strength of 
the received signal. Compared to the RSS and Wi-Fi-based positioning 
technology, the positioning model trained with acoustic data locates 
acoustic sources more accurately with audible acoustic waves, as shown 
in Table 4. 

The RSS-based positioning technology has a high classification ac
curacy at long distances due to the severe signal attenuation. In 2003, 
Ahonen and Eskelinen proposed to locate mobile phones with 3G UMTS 
networks. A classification accuracy of 67 % was achieved by using RSS 
and 3G mobile signals at gap distances of 25 m between preset locations. 
The accuracy increased to 95 % when the interval between preset lo
cations was set to 188 m [10]. Nowadays, the positioning accuracy of the 
RSS-based positioning technology has been improved to 500 mm −
1500 mm. The classification accuracy of the RF-based LTPM has 
dramatically improved compared to the RSS and Wi-Fi-based posi
tioning technology, as shown in Table 4. This advantage enables LTPM- 
based positioning systems to locate acoustic sources at gaps of 173 mm. 

The positioning accuracy is still available in RSS-based positioning 
systems since the relationship between RSS values and distances is linear 
[11]. The average RSS attenuation (in dB) at different distances from the 
signal source is proportional to the logarithm of the propagation dis
tance. Therefore, the locations of signal sources not at preset locations 
can be roughly predicted according to the changes in RSS values. In this 
study, the same techniques have been applied to LTPM, but test results 
show that the changes in multiple feature patterns in the database are 
not proportional to distances; thus, acoustic sources that are not at 
preset locations can hardly be predicted. For more details, please refer to 
the test results in Section 4 and the conclusion in Section 5. 

3.3. Prerequisites of LTPM 

Overall, the prerequisites for the implementation of LTPM include 
location template design, data collection, data processing, and 

Fig. 10. Feature reduction test result. Although features with low importance 
have a limited impact on the overall classification accuracy, the classification 
accuracy begins to decrease significantly when the number of features reduces 
to 15. 

Table 2 
The three primary databases.  

The side length of the location template 1200 mm 1000 mm 800 mm 
Number of samples 48,000 40,000 32,000  

Table 3 
The four secondary databases.  

The side length of the location 
template 

460 
mm 

750 
mm 

900 
mm 

1050 
mm 

Number of samples 3,200 100 100 100  
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positioning model training. LTPM requires a certain amount of acoustic 
template signals from preset spatial locations for model training. To 
deliver the research objectives, an industrial robot and a high- 
performance computer are integrated into the positioning system to 
perform repetitive sampling and data processing in this study. 

Besides, although obstacles between the signal source and the 
microphone will not affect the positioning performance of LTPM, test 
results indicate that the positioning performance of LTPM will decrease 
if objects with large surfaces, such as meeting tables/blackboards in the 
environment, are moved after the training completes. This is related to 
the disappearance of multipath components in the received signal. The 
positioning model and training datasets must be calibrated and re- 
collected to adapt to the changed environment. Therefore, a static 
environment is critical for LTPM to maintain a stable positioning 
performance. 

4. Test design 

4.1. Test objectives 

Different types of localisation tests are designed according to the 
practical needs of indoor localisation, including:  

i. Verify the feasibility of LTPM with indoor positioning tests and 
measure the classification accuracy of LTPM in situations that 
acoustic sources are at preset locations.  

ii. Determine the positioning performance of LTPM in situations that 
acoustic sources are not at preset locations. 

Predictably, the positioning performance of LTPM will decrease 
when acoustic sources deviate from preset locations. The linear distance 
between the acoustic source and the closest preset location is defined as 
the deviation distance, as shown in Fig. 11. To fulfil the second objec
tive, two secondary test objectives are established:  

i. Verify whether LTPM can locate acoustic sources to the closest preset 
locations.  

ii. Determine the relationship between the classification accuracy of 
LTPM and the deviation distance. 

4.2. The single location template positioning test 

The Single Location Template (SLT) positioning test aims to evaluate 
the classification accuracy of LTPM in situations that acoustic sources 
are at preset locations, as shown in Fig. 12. This test consists of five 
independent tests. The training and test data in each independent test 
are collected from the same location template. The first four tests 
correspond to the 1200 mm, 1000 mm, 800 mm, and 460 mm datasets. 
For each test, the input data is divided into a training dataset and a test 
dataset with a training-to-test ratio of 4:1. Each model has eight outputs 
corresponding to the eight vertex locations. Test results are presented in 
Table 5. 

In the fifth test, the 1200 mm, 1000 mm and 800 mm datasets are 
mixed. Overall, 120,000 samples from the three primary datasets are 
divided into a training dataset containing 96,000 samples and a test 
dataset containing 24,000 samples. Since all three location templates are 
used, the LTPM has 24 outputs. The test result is shown in the last 

Table 4 
Comparison between different localisation technologies.  

Positioning 
Technology 

Method Application 
Range 

Transmitter 
Dependence 

Medium Positioning 
Accuracy 

Classification 
Accuracy 

Sensor Number 

Location Template- 
based Positioning 

Model 
(Random Forest) 

Audible Acoustic 
Machine Learning- 

based Pattern Matching 

3D Room 
Scale 

No Air N/A 98.9 % at 173 mm 
interval 

Microphone 1 

RSS and Wi-Fi-based 
Location Template 

Matching 

Electromagnetic 
Pattern Matching 

3D Room 
Scale 

Yes Air 500 mm 70 % − 90 % at 
500–––1500 mm 

intervals 

Wireless Switch 2 or more 

3D Ultrasonic 
Positioning 

Ultrasonic 
TOA/ 
TDOA 

3D Room 
Scale 

Yes Air 20–50 mm N/A Transducer & 
Receiver 

Multiple 

TAI-CHI Audible Acoustic 
TDOA 

2D Surface No Solid 14 mm N/A Piezoceramic 
Sensor 

4 

UWB Electromagnetic 
TDOA 

3D Room 
Scale 

Yes Air 225 mm N/A Transceiver 5 or 
more  

Fig. 11. The illustration of deviation distance.  
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column of Table 5. 
The RF-based LTPM maintains a classification accuracy of over 96 % 

in the first three SLT localisation tests. In the fifth test, the RF-based 
LTPM reaches a classification accuracy of 98.9 %. These test results 
indicate that LTPM locates acoustic sources accurately in the situation 
that acoustic sources are at preset locations. In contrast, the classifica
tion accuracy of the LTPM trained with the 460 mm dataset decreases to 
88.66 % since the 460 mm dataset only contains 3,200 signals, indi
cating that the classification accuracy of LTPM varies with the data 
volume. 

The test results preliminarily verify the feasibility of LTPM and that 
LTPM accurately locates acoustic sources at a three-dimensional interval 
of 173 mm. 

4.3. The multiple location template (MLT) positioning test 

The MLT localisation test consists of two secondary tests. The pur
pose of the first secondary test is to verify the positioning performance of 
LTPM in the situation that acoustic sources are not at preset locations, as 
shown in Fig. 13. The second secondary test aims to determine the 
classification accuracy of LTPM at different deviation distances. 

In the first secondary test, one of the three primary datasets is used as 
the test dataset to test the LTPM trained with the other two datasets. The 
LTPM has 16 outputs since the training data are from two location 
templates. In the first subtest, a positioning model is trained with the 
1000 mm and 1200 mm datasets then tested with the 800 mm dataset. In 
the second subtest, a positioning model is trained with the 800 mm and 
1200 mm datasets then tested with the 1000 mm dataset. The second 
subtest is unique since it aims to determine the classification accuracy of 
LTPM when an acoustic source is equidistant from two preset locations. 
In the third subtest, the positioning model is trained with the 800 mm 

and 1000 mm datasets and then tested with the 1200 mm dataset. The 
test results are shown in Table 6. 

In MLT tests, the training data and the test data are collected sepa
rately from different location templates. The matching accuracy of the 
positioning model decreases inevitably because the trained positioning 
model does not contain the mapping relationship between the test data 
and preset locations. Since the 1000 mm location template is equidistant 
from the 800 mm location template and the 1200 mm location template, 
the classification accuracy increases slightly from 4.74 % to 8.67 %. But 
the overall low classification accuracy of the RF-based LTPM indicates 
that the RF-based LTPM cannot accurately locate acoustic sources to the 
nearest preset location. 

The second secondary test consists of five subtests. The 1000 mm 
dataset is used as the training data. The trained LTPM is then tested with 
five test datasets. In the first test, the trained LTPM is tested with the 
460 mm dataset. In the second test, the same LTPM is tested with the 
750 mm dataset. The same LTPM is tested with the 800 mm, 900 mm, 
and 1050 mm datasets in the third, fourth, and fifth tests. The LTPM 
used in the tests has eight outputs corresponding to the eight cubic 
vertices of the 1000 mm location template, and test results are shown in 
Table 7 in descending order of the deviation distance. 

Similar to the previous test results, the classification accuracy of 
LTPM is 15.65 % when the deviation distance is 468 mm. The classifi
cation accuracy further decreases to 5 % as the deviation distance de
creases to 217 mm. Then the classification accuracy of LTPM gradually 
increases as the deviation distance decreases and stabilises at 12.5 %. 
These results further verify that patterns of acoustic signals emitted by 
an acoustic source at distant locations differ. Millimetre-level deviations 
will cause corresponding changes in acoustic features, as shown in 
Fig. 14; thus, LTPM cannot accurately match the input acoustic signals 
since the training database excludes acoustic signals collected from the 
deviated locations. 

5. Conclusion 

This paper gives a comprehensive introduction to LTPM. The 

Fig. 12. The location template for the SLT test.  

Table 5 
The SLT test results.   

LTPM-8 
(1200) 

LTPM-8 
(1000) 

LTPM-8 
(800) 

LTPM-8 
(460) 

LTPM- 
24 

Minimum Interval 
between Acoustic 

Sources 

1200 
mm 

1000 
mm 

800 mm 460 mm 173 
mm 

Classification 
Accuracy 

98.21 % 96.47 % 98.90 % 88.66 % 98.90 
%  

Fig. 13. Location templates for MLT tests.  

Table 6 
Test results of the first secondary test.   

16 locations 800 
− (1000 + 1200) 

16 locations 1000 
− (800 + 1200) 

16 locations 1200 
− (800 + 1000) 

Deviation 
Distance 

173 mm / 
346 mm 

173 mm 173 / 
346 mm 

Classification 
Accuracy 

4.74 % 8.67 % 0.00 %  
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implementation of the proposed acoustic positioning method is divided 
into three steps: the data acquisition from preset locations, positioning 
model training, and positioning model test. The proposed LTPM is a 
statistical model that achieves acoustic source localisation by matching 
the input acoustic signal with template signals collected from preset 
locations; thus, the classification accuracy reflects the positioning per
formance of LTPM. 

For acoustic sources at preset locations: The LTPM trained with 
96,000 signals locates acoustic sources at 173 mm intervals with 98.9 % 
classification accuracy. Since test acoustic sources are placed at preset 
locations, the LTPM has a positioning error of 0 mm if the output of 
LTPM is true positive. 

For acoustic sources that deviate from preset locations, The classi
fication accuracy of LTPM is severely degraded. The classification ac
curacy decreases to 12.5 % when the acoustic source is 43 mm from the 
nearest preset location. The primary causes of this phenomenon are:  

i. The feature pattern of the input signal at a non-preset location is not 
included in the training data. Thus, the input signal can only be 
randomly matched to a signal group according to features with high 
weights, resulting in a decreased classification accuracy.  

ii. The classification accuracy is subjected to the classification model, 
defined acoustic features and data volume. In the test, 43 features are 
defined as the basis for matching, and the theoretical minimum 
distinguishable distance of the LTPM trained with 40,000 template 
signals is less than 43 mm. In other words, the trained model is 
overfitting; it can accurately locate acoustic sources at preset loca
tions but cannot locate acoustic sources to the nearest preset 
location. 

The minimum distinguishable gap distance is set to 43 mm in this 

study because the distance is subject to the test equipment, especially 
the robot. The acoustic source is transported to preset locations by the 
robot, and the acoustic wave from the source interacts with the robot 
during its propagation; thereby, the proportion of multipath compo
nents in the received signal is increased, resulting in improved classifi
cation accuracy. The robot arm used in the test has a 45 mm radius. 
Thus, the minimum gap distance between location templates is set to 50 
mm to avoid overlapping positions of the robot arm so that the impact of 
the robot on the test results is minimised. 

5.1. Technical advantages of LTPM 

The acoustic positioning technology developed by TAI-CHI trans
forms solid substances such as tables, walls and glasses into two- 
dimensional tangible interfaces [12]. In comparison, this study aims to 
achieve three-dimensional localisation with acoustic waves and TPM. 
Current positioning technologies (both ultrasonic and electromagnetic) 
are based on TDOA and Time of Arrival (TOA) algorithms. These tech
nologies have certain limitations in practical use and always require the 
deployment of multiple transceivers [13]. Besides, the system response 
speed of TDOA-based positioning systems is more than twice that of 
LTPM since the acoustic waves emitted by transducers need to reach the 
target and then return. 

LTPM, conversely, does not require the participation of signal 
transmitters since the positioning model directly infers the location label 
with audible acoustic signals from the acoustic source. The positioning 
performance of LTPM relies on the design of location templates, data, 
data volume and the classification algorithm. The advantages of LTPM 
are:  

i. LTPM performs error-free positioning for acoustic sources at 
preset locations.  

ii. LTPM achieves acoustic source localisation with audible acoustic 
waves. The deployment of signal transmitters is unnecessary.  

iii. LTPM has low hardware costs and excellent environmental 
adaptability as it requires only one microphone and does not rely 
on measuring time differences. 

In addition, the disadvantage of LTPM is that it cannot predict 
acoustic sources at non-preset locations, but this defect can be 
compensated to a certain extent by replacing or combining the random 
forest with other machine learning algorithms. 

Unlike the TDOA-based positioning technology, LTPM is an acoustic 
positioning-oriented enabling technology that does not require direct 
paths between signal sources and sensors. This characteristic of LTPM 
covers potential three-dimensional interactive demands in Virtual Re
ality technology. In addition, the application scenarios of LTPM are not 
limited to indoor environments. Similar positioning methods have been 
applied to acoustic source localisation on battlefields. Microflown 
AVISA has developed a 3D acoustic situational platform to detect 
audible battlefield threats, and the TPM-based acoustic positioning is 
used to detect the incoming direction of bullets [14]. 

5.2. Future works 

The test result shows that a classification accuracy of 98.9 % is 
achieved by using LTPM at gap distances of 173 mm between locations. 
The minimum gap distance is set to 43 mm in the positioning test. But 
this result is subject to the testing equipment. Further studies on the 
minimum distinguishable gap distance will be conducted with a smaller 
robot system. 

On the other hand, research on the classification algorithm of the 
LTPM will be conducted continuously. Integrating different machine 
learning algorithms may enable fuzzy localisation so acoustic sources at 
non-preset locations can be located at the nearest preset location. The 
random forest algorithm used in this study will be replaced with 

Table 7 
The results of the second secondary test.   

8 
locations 
460 mm 
− 1000 

mm 

8 
locations 
750 mm 
− 1000 

mm 

8 
locations 
800 mm 
− 1000 

mm 

8 
locations 
900 mm 
− 1000 

mm 

8 
locations 
1050 mm 
− 1000 

mm 

Deviation 
Distance 

468 mm 217 mm 173 mm 87 mm 43 mm 

Classification 
Accuracy 

15.65 % 5.00 % 5.01 % 12.50 % 12.50 %  

Fig. 14. The relationship between classification accuracy and devia
tion distance. 
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Convolutional Neural Network (CNN) and the positioning performance 
of the CNN-based LTPM will be tested and analysed in future works. 

Subsequent research includes the impact of different directivity 
patterns of acoustic sources on the positioning performance and the 
synchronous localisation of two or multiple acoustic sources to improve 
the practicality of LTPM. 
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