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Vortex mediated turbulence can be the key element in the generation of extreme events in spatially extended lasers
with optical injection. Here we study the interplay of vortex mediated turbulence and cavity solitons on the onset of
extreme events in semiconductor lasers with injection. We first analyse and characterise these two features separately,
spatio-temporal chaotic optical vortices for low values of the injection intensity and cavity solitons above the locking
regime. In regimes where vortex mediated turbulence and cavity solitons coexist, localized peaks of light inhibit instead
of enhance the generation of rogue waves by locally regularising the otherwise chaotic phase of the optical field. Cavity
solitons can then be used to manipulate and control extreme events in systems displaying vortex mediated turbulence.

The connection between cavity solitons and rogue waves
in lasers is a complex interplay that has significant impli-
cations for the dynamics of optical systems. On the other
hand, the presence of vortex mediated turbulence in the
laser systems with injection has been identified as a key
mechanism for the generation of rogue waves. When both
features are present, the cavity solitons are observed to in-
hibit the generation of rogue waves by imposing order on
the chaotic phase of the optical field. This intricate inter-
action highlights the potential for cavity solitons to locally
control extreme events in laser systems, offering oppor-
tunities for enhanced stability and control in applications
such as imaging and sensing.

I. INTRODUCTION

Oceanic rogue waves (RWs) found their optical counter-
parts by the first observation of extreme events in a physical
system based on a microstructured optical fiber1. Since then,
the topic has been the focus of research in many optical sys-
tems and has led to remarkable advances in understating their
basic concepts and underlying mechanisms2–7.
One peculiar mechanism for the generation of optical RWs
in spatially extended lasers and optical parametric oscilla-
tors has been identified in 2016 via vortex mediated turbu-
lence (VMT) and interacting defects8 with obvious connec-
tions to hydrodynamics9. Since then several other mecha-
nisms for spatio-temporal RWs in optical systems with large
aspect ratio have been described in the literature such as non-
linear spatio-temporal instabilities and bifurcations10–14, com-
petition of patterns15, and cavity solitons (CSs)16.
Although RWs are known for their sudden, unpredictable and
uncontrollable occurrences, recent techniques proposed for
their prediction and control have added to the feasibility of
their potential applications17–21. Imaging and sensing tech-

nologies, for example, can benefit from the generation of
high-amplitude optical pulses to improve image quality via
enhanced signal-to-noise ratio or sensitivity through increased
output-to-input change ratio. In this respect, spatially ex-
tended semiconductor lasers, such as vertical-cavity surface-
emitting lasers (VCSELs), are suitable candidates to be stud-
ied due to their unique features such as compactness, ease of
integration on various optical devices, and advanced fabrica-
tion technologies22,23. Two-dimensional RWs have recently
been investigated in broad-area semiconductor lasers in a va-
riety of configurations, see for instance11,12,16,21,24 for those
with a saturable absorber,20 for those with delayed-feedback
and25 for those with coherent injection.
The RW mechanism through VMT described in9,26 is uni-
versal in nonlinear optics and has been recently extended to
models of coherently injected broad-area VCSELs that in-
clude the linewidth enhancement factor α and retains car-
rier density dynamics25. Below the injection locking point
the lower branch of the homogeneous stationary state (HSS)
is Hopf unstable27 and is prone to exhibit spatio-temporal
chaotic structures. Investigation of the chaotic dynamics of
our system below the injection locking threshold (Hopf insta-
bility region) reveals that the amplitude of the oscillations in-
creases with the reduction of the injection intensity leading to
large densities of vortex singularities where the carrier density
is high. In agreement with9, it is close to these singularities
that we observe the appearance of rogue waves.
In25 the polarization of the semiconductor medium was adi-
abatically eliminated and a reduced form of Maxwell-Bloch
equations with an added diffusive term28 was employed to
successfully describe RW formation. It speeds up the com-
putations but requires a careful determination of the diffusive
term28. We consider here the full set of Maxwell-Bloch equa-
tions to describe a broad-area VCSEL above laser threshold,
driven by an external coherent beam and displaying CSs29–31.
CSs have been reported to exist below the injection locking
threshold and atop a spatio-temporally unstable background
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FIG. 1. (a) Steady state curve along with the unstable domains and
the cavity soliton branch. Vertical bars show the time average of
the maximum amplitude of the intensity oscillations due to Hopf.
Injection locking point is depicted by a circle at the position |Ei|2IL=

0.937, |Es|2IL= 0.234. (b) Turing and (c) Hopf instability domains
in |Es|2−K2 plane. K corresponds to the frequency associated with
the transverse mode whose wave vector has modulus K. Parameter
values in the text.

affected by a Hopf instability29,32 or atop a spatially unstable
background affected by a Turing instability33. The motiva-
tions of this paper are better served by the full set of Maxwell-
Bloch equations rather than the reduced form since carrier dif-
fusion and polarization dynamics, which act as spectral fil-
ters, play an important role in the complex dynamics below
injection locking. For completeness, we compare simulation
results of Maxwell-Bloch equations in the full and reduced
forms, with and without the transverse carrier diffusion. We
show that the macroscopic polarization variable, which is ab-
sent in the reduced form of the equations, provides the most
important spectral filter effect when studying the spatiotem-
poral chaotic states.
Here we study the nonlinear dynamics of the Hopf unstable

domain while considering the injection intensity as the con-
trol parameter. In these regimes we investigate the interplay of
VMT and CSs on the onset of extreme events in semiconduc-
tor lasers with injection. The reason to do this is that in lasers
with saturable absorbers the set of parameters more suitable
for finding extreme events is compatible with that of stationary
and oscillating CSs16. Would this apply to the case of optical
injection too? We show first that the expansion of the limit cy-
cle orbits away from the injection locking point (lower injec-
tion intensities) has direct consequences on the formation of
the RWs at the peaks of spatio-temporally chaotic structures.

FIG. 2. Field distributions in the Argand plane as Re(E) and Im(E)
in all the points of the grid at a fixed time. (a) Unlocked state at
|Ei|2 = 0.46 at t = 0.84 ns labeled 2 (red), at t = 0.86 ns labeled 3
(orange), at t = 0.92 ns labeled 4 (green), and at t = 1.60 ns labeled
5 (blue). (b) Fully unlocked state at t = 6.4 ns. The initial locked
state at |Ei|2 = 0.95 at t = 0 is shown in (a) labeled 1 (black circle).

We then turn our attention to CSs existing on top of the spatio-
temporally chaotic background. We show that oscillating CSs
due to the Hopf unstable background do not emit RWs while
RWs are abundantly emitted by the surrounding background
radiation via VMT. Such coexistence of CS and RW emitting
VMT states constitutes the regimes of study in this paper. De-
spite the amplifying nature of CSs due the presence of excess
gain, they inhibit instead of enhance the emission of extreme
pulses that would otherwise be generated by the background
emission in their absence. This observation is confirmed by
the almost Gaussian distribution of total intensities collected
in a finite area around the CS and its comparison with heavily
tailed distribution of intensities in far areas from the CS tails
which follows a negative exponential fit. We conclude that
VMT remains the main source of RWs in lasers with optical
injection even when CSs generate large peaks of the laser in-
tensity.

In section 2 we introduce the model equations along with
the homogeneous stationary solutions and the instabilities. In
section 3 the statistical analysis concerning RW emission and
its connection to nonlinear dynamical features of the Hopf do-
main is presented. In section 4 we introduce a regime where
CSs can stably exist atop a RW emitting spatio-temporally
chaotic background and show the ability of CSs to inhibit ex-
treme events through statistical analyses and considerations
regarding the formation of vortices. Finally, in section 5 we
draw the conclusions and discuss the physical aspects of the
connection between CSs, VMT and extreme events.

II. MODEL EQUATIONS

The following complete set of Maxwell-Bloch equations
can suitably describe an injected broad-area VCSEL28–32:

∂tE = σ [Ei +P− (1+ iθ)E + i∇2
⊥E], (1)

∂tP = ξ (D)[(1− iα) f (D)E −P], (2)

∂tD = µ −D−1/2(EP∗+E∗P)+d∇
2
⊥D, (3)
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FIG. 3. Top row: field distributions in the Argand plane of the un-
stable Hopf background. Bottom row: intensity versus phase values
of the maximum points. (a,d) |Ei|2 = 0.1, (b,e) |Ei|2 = 0.5, and (c,f)
|Ei|2 = 0.9.

where E and P are the slowly varying amplitudes of the
electric field and the macroscopic semiconductor polarization
variables, respectively, D is the carrier density, σ is the pho-
ton decay rate, Ei is the amplitude of the external injection,
θ is the frequency detuning between cavity and optical injec-
tion, α is the linewidth enhancement factor, µ is the pump
parameter, and d is the carrier diffusion constant. Diffraction
is described by the transverse Laplacian operator, ∇2

⊥, and the
spatial variables are scaled to the square root of the diffraction
parameter (typically of the order of 4˘5µm). Time is scaled
to the carrier decay time, which is assumed to be 1 ns. For a
photon lifetime in the cavity of about 2.5 ps, the photon decay
rate is σ = 400.
The function f (D) = D−βD2 accounts for a nonlinear de-

pendence of gain on carrier density and the value of β = 0.125
that we use here is obtained as the best fit of the gain calcu-
lated with the microscopic model34. The complex function
ξ (D) provides a phenomenological description of the suscep-
tibility of the semiconductor material defined as

ξ (D) = Γ(D)(1− iα)+2iε(D), (4)

where Γ(D) is associated with the width of the gain curve and
ε(D) represents the detuning between the reference frequency
and the peak of the gain curve provided that |ε(D)| ≪ Γ(D).
The dependence of Γ and ε on D takes into account the
changes of the susceptibility as the carrier density varies.
In this paper, we set Γ(D) = (0.560D + 0.293)× 104 and
ε(D) = (0.155D + 0.054)× 104. The other parameters are
α = 4, θ =−2, and d = 0.052 unless stated otherwise.

For comparison, we also introduce a reduced form of Eq.
(1-3) where the polarization of the semiconductor medium
has been adiabatically eliminated. However, to retain the role
of the macroscopic polarization P as a spectral filter and to
avoid unphysical short wavelength instabilities below the in-
jection locking point, a diffusive term δ is phenomenologi-
cally introduced in the equation for the electric field. The ex-
istence of a most unstable wave-vector and of a finite band
of unstable wave-vectors cannot be reproduced after the stan-
dard adiabatic elimination of P from the full set of Maxwell-

FIG. 4. Probability density functions (PDF) of all the intensity val-
ues: (a) |Ei|2 = 0.1, (b) |Ei|2 = 0.3, (c) |Ei|2 = 0.6 and (d) |Ei|2 = 0.9.
Data acquisition time is 20 ns for all.

Bloch equations (1-3) since it amounts to assuming infinite
width of the gain leading to the wrong prediction that all the
wave-vectors K are equally unstable below the injection lock-
ing point. The effect of the diffusion term is that of adding
a damping term −σδK2EK to any transverse mode EK with
transverse wave vector of modulus K. The diffusion term
can therefore also be interpreted as a loss term for modes that
propagate in an oblique direction in a transversely finite cav-
ity.
The value of the diffusion term δ = 0.01 was chosen as the
smallest possible value to avoid self-collapsing and will take
into account a finite linewidth for the laser gain25. A detailed
derivation can be found in35 for a two-level system and in36

for both a two-level system and a VCSEL. Such a reduced
form is given as

∂tE = σ [Ei − (1+ iθ)E +(1− iα) f (D)E

+(δ + i)∇2
⊥E], (5)

∂tD = µ −D−|E|2 f (D)+d∇
2
⊥D. (6)

These sets of dynamical equations, Eq. (1-3) and Eq. (5,6),
were numerically integrated by a split-step programming
method with periodic boundary conditions. We have used
space step of 0.5 for a box of size 256× 256 which corre-
sponds to spatial size of 512 × 512µ m for the device and
space unit of 2 µ m for our simulations.

A. Homogeneous stationary solutions and instabilities

The dynamical equations (1-3) as well as (5,6) admit a
plane wave stationary solution E = Es, P = Ps, D = Ds by
setting ∂t = 0, ∇2

⊥ = 0. The equation that links the output
intensity |Es|2 to the input intensity |Ei|2 is given by

|Ei|2 = |Es|2[(1−Ds +βD2
s )

2 +(θ +αDs −αβD2
s )

2], (7)
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FIG. 5. (a) RW ratio and (b) kurtosis values versus the injection
intensity. Data acquisition time as in Fig. 4.

where

Ds =
1+ |Es|2 −

√
(1+ |Es|2)2 −4|Es|2β µ

2|Es|2β
. (8)

The stationary curve can be bistable depending on the param-
eters µ,α , and θ . The nonlinear gain coefficient β is also
an important parameter that modifies both the shape of the
stationary curve and laser threshold condition. In order to de-
termine the threshold value µth in absence of the injected field
(free running laser) and in the plane-wave approximation, we
must set Ei = 0 and θ = −α in Eq. 7. This implies either
Es = 0 or 1−Ds + βD2

s = 0. The latter equation combined
with Eq. 8 provides an equation which links the stationary
intensity |Es|2 with the pump µ . At threshold |Es|2 = 0 and
Eq. 8 gives Ds = µ . Replacing Ds with µ in the equation
1−Ds +βD2

s = 0 we obtain the threshold value:

µth =
1−

√
1−4β

2β
. (9)

For the case of this paper that considers nonlinear gain β =
0.125, the laser threshold is µth = 1.171 and we study the
regime of µ = 1.2µth which corresponds to µ = 1.406. The
parameter values chosen in this paper guarantee an S-shaped
form of the stationary curve as shown in Fig. 1(a). The chosen
value of the pump current which is much lower than that in25

is necessary to have the injection locking point on the lower
HSS branch and a region where the background for the CSs is
stable. We shall discuss the details in the following sections.

The stability of the homogeneous solutions is analyzed by
studying the response of the system against perturbations of
the form ∆ Ξexp(λ t + iK · r), with Ξ = E,P,D and λ is the
growth rate of the perturbation. Two types of instability can
now be obtained: (i) the Turing instability (Reλ > 0 and
Imλ = 0) which affects the negative slope branch (K = 0) and
part of the upper branch, does not depend on ξ hence indepen-
dent of the way we describe the semiconductor susceptibility,
only slightly affected by the pump current, and is responsi-
ble for the formation of patterns and eventually CSs37; (ii)
the Hopf instability (Reλ > 0 and Imλ ̸= 0) which is asso-
ciated with lasers with an injected signal and appears when-
ever the frequency of the injected field differs from that of
the free running laser. Such bifurcation is affected substan-
tially by the pump current, exists for low injection intensities,
and disappears at the injection locking point where the injec-

FIG. 6. Optical vortices in the contour plot of the real (yellow and
light) and imaginary (blue and dark) parts of the electric field. (a)
|Ei|2 = 0.7, (b) |Ei|2 = 0.5, (c) |Ei|2 = 0.3 and (d) |Ei|2 = 0.1.

tion intensity is large enough to lock the laser to its own fre-
quency. The coordinates of the injection locking point are
|Ei|2IL= (θ + α)2(µ − µth) and |Es|2IL= µ − µth. With our
choice of the parameters |Ei|2IL= 0.937 and |Es|2IL= 0.234.
These two instability domains are shown in Fig. 1(b-c) and
were also mapped on the steady state curve in Fig. 1(a).

B. Nonlinear dynamics in the Hopf instability domain

In Fig. 2, we show how the Hopf instability sets in when
the control parameter (injection intensity) is decreased from
a locked state to an unlocked state. It is seen from Fig. 2(a)
that starting from an injection locked solution at time zero (the
black circle labeled 1) and by switching the value of |Ei|2 to
0.46 inside the Hopf unstable domain, the system first moves
along its phase degree of freedom, see labels 2, 3 and 4, and
then excites an amplitude instability (see the one labeled 5)
in a way similar to what seen in9,26. Finally, a regime of ex-
tended spatio-temporal chaos is reached where amplitude and
phase instabilities invade the entire transverse structure, see
Fig. 2(b). VMT is expected here.
In Fig. 3(a-c) we look at the field distributions in the Argand

plane of the unstable Hopf domain for different injection in-
tensities. In these figures, one moves from a completely phase
and amplitude unbound solution, Fig. 3(a) for |Ei|2 = 0.1,
to an almost bound solution just before the injection locking
point, Fig. 3(c) for |Ei|2 = 0.9. In Fig. 3(d-f) the same tran-
sition is shown plotting intensity versus phase values of the
points where the intensity has a maximum. These observa-
tions imply that the unbound state, which corresponds to spa-
tiotemporal chaos of large oscillation amplitude, is enhanced
by moving to lower injection values inside the Hopf domain.
We will see in later sections that high amplitude spatiotempo-

4

���� ��
��� ��

� ����� ����
��� ���� ���������� �������������

�������� � �
������

���������⸀�
� �������� �����

� ���
��� �  ���� ����

��� �
�� ����� �

��

��� �� �� �� ��� �� �� �� �� �� ��� ��
�� ���� �� ���� �� �� �� ��

��� �

��



Cavity soliton inhibition of extreme events in lasers with injection

FIG. 7. Average number of vortices over time in the spatio-temporal
chaotic regimes with increasing injection. Simulation time is 20ns.

ral chaos has direct consequences in the vortex density, and
number and intensity of RWs.

III. ROGUE WAVES ANALYSIS

RWs corresponds to short-lived and large intensity peaks
in a spatio-temporally chaotic state. They satisfy a widely ac-
cepted threshold defined for characterizing RWs, i.e. ⟨I⟩+8σ ,
where σ is the standard deviation9,15,16,21,25,38. Moreover, the
extremeness of events can be checked via the probability den-
sity function (PDF) of all the intensity values obtained during
simulations. For the considered RW threshold, a positive de-
viation from a negative exponential function exp(−I/ < I >
)/ < I > should be regarded as a signature of extreme events
in the system39. Two other indicators are also used to measure
the degree of rogueness, RW ratio and kurtosis16 correspond-
ing, respectively, to the number of spatio-temporal events with
intensities exceeding the RW threshold to the total number of
spatio-temporal events during simulation and to the ratio of
the fourth moment about the mean to the square of the vari-
ance

K =

1
n

∑
n
i=1(Ii −⟨I⟩)4[

1
n

∑
n
i=1(Ii −⟨I⟩)2

]2 . (10)

Roughly speaking, higher values of kurtosis correspond to
larger positive deviation from the negative exponential associ-
ated with Gaussian statistics. In Fig. 4(a-d) we show the PDF
of total intensity for different injection intensities. In corre-
lation with the discussion of sec. II B, spatio-temporal events
deviate the most from the negative exponential fit and exceed
the most the RW threshold value when the device is oper-
ated far from injection locking point. Large intensity events
approach normal distributions close to the injection locking
point. Suppression of the chaoticity and thus strong reduc-
tion of the number of RWs by increasing the injection strength
are well illustrated by RW ratio and kurtosis curves shown in
Fig. 5.

The details of population, phase and gain dynamics at the

FIG. 8. (a) The steady state curve with the Turing and Hopf unsta-
ble domains for θ = −3.5. The CS considered in our simulation is
shown by a black circle at |Ei|2 = 0.016. Note that the entire lower
branch is Hopf unstable and the average value is used for the CS in-
tensity. The black and green vertical bars show the average extent of
intensity oscillations for the CS and the background respectively. (b)
Variation of the extent of the Hopf region in the lower branch which
is coexistent with the upper branch when varying θ . For θ =−4 the
entire Hopf branch coexists with an upper state.

time of RW formation are essentially the same as those dis-
cussed in25 for the same system using a reduced model with
no carrier transverse diffusion involved. In terms of RW statis-
tics, however, we observe from Fig.5(a) and (b) that adiabatic
elimination of the macroscopic polarization in the reduced
equations (5,6) seems to be responsible for more chaotic states
with larger number of RWs (by more than 40 percent) and
kurtosis values (by more than 15 percent) while the inclusion
of a diffusion factor for the electric field seems to be unable
to fully reproduce the same spectral filter effect. We also
observe that, unlike semiconductor lasers with saturable ab-
sorber where carrier diffusion plays a significant role in stabi-
lizing or destabilizing a spatiotemporally chaotic state leading
to either enhancement or suppression of extreme events de-
pending on the ratio of carrier lifetimes in active and passive
materials24, here in the semiconductor laser with injection car-
rier diffusion plays a minor contribution.
It is useful now to look into the electric field phase behavior to

establish a possible connection between VMT due to optical
vortices and formation of RWs. Optical vortices (or photonic
quantum vortices) are phase singularity points with zero in-
tensity that has revealed interesting relations between macro-
scopic physical optics and microscopic quantum optics40. The
zero-intensity point at the core of an optical vortex represents
a point where the phase of the light field is not defined, i.e.
a singularity. The integral of the gradient of the phase on a
circular path around the singularity is plus or minus 2π (topo-
logical charge). This continuous change in phase results in
spiral phase patterns around the singularity, which is a defin-
ing feature of the optical vortices. The topological features
of phase defects ensure that the singularities are well-defined
and robust to perturbations. VMT in lasers with injection and
its relevance to RW formation is discussed in details in9,26.
Here we focus on the abundance of such vortices for different
injection intensities and conclude that the degree of chaoticity
and thus the number of emitted RWs are correlated with the
number of optical vortices in VMT. In Fig. 6 we show the con-
tour plots for the real (light yellow) and imaginary (dark blue)
parts of the electric field, where color-filled areas correspond
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FIG. 9. (a) Spatio-temporal intensity maxima obtained for simulation
window of 2 ns and square regions of data acquisition around the CS.
The smaller box corresponds to the CS area bounded by its tails. The
larger box extends from the tails of the CS up to 3 times the FWHM
value of the CS (10 µm). PDF of all the intensity values obtained
inside (b) the smaller square shown in (a) and (c) the larger square
far from tails of the CS. We note that in (c) and similar analyses in
the rest of the paper, CS intensities are excluded from the statistics
of the background VMT state. Number of data points is 6050000 for
both. Note that the RW threshold for (b) is 4.98.

to positive values for Re(E) and Im(E). The zero isolines for
each variable are determined by the border of each area and
every crossing between them corresponds to a zero in the out-
put intensity corresponding to an optical vortex. The number
of crossings between the zero isolines and thus the number
of vortices increases by moving deeper inside the Hopf re-
gion away from the injection locking point, see Fig. 6(a-d).
In Fig.7 the average number of vortices in the spatio-temporal
chaotic regime is plotted with increasing injection which is
obtained by determining the saturation point of the average
number of intensity points with a larger value than a specific
threshold. This provides quantitative evidence of increasing
number of RWs with increasing number of vortices. This has
to be expected when VMT is the mechanism underlying the
appearance of RWs.

IV. CAVITY SOLITONS, VORTEX MEDIATED
TURBULENCE AND EXTREME EVENTS

To study the dynamical behavior of CSs over a spatio-
temporally chaotic background and its relevance to emission
of RWs, we increase the absolute value of the cavity detuning
to θ =−3.5 in order to guarantee a bistability of a background

FIG. 10. (a) A CS excited at the center of the transverse section by an
address pulse in absence of RWs. (b) Emission of a RW in presence
of the CS at the center. RW intensity is larger than the CS intensity
by 49 percent at this specific moment of RW emission.

with strong chaoticity and an upper branch where CSs can ex-
ist, see Fig. 8(a). Figure 8(b) shows instead the percentage
of the lower Hopf unstable branch which becomes coexistent
with the upper branch by increasing the absolute value of the
cavity detuning. We observe that for θ =−α =−4 the entire
Hopf unstable part of the lower branch coexists with an upper
branch. Here, we focus on a single excited CS located at the
center of the transverse domain and analyze the situation with
no loss of generality. The chosen values of the parameters
corresponds to CSs on a VMT background.
For the statistical analyses of the situation illustrated in Fig.
8(a), we introduce two different square regions around the CS
excited at the center of a 256× 256 box and collect all in-
tensity values of each square separately, as shown in Fig.9(a)
where the spatio-temporal maxima are depicted in a simula-
tion that is long enough to guarantee almost the same number
of data points. Simulations were run for a suitable time span
to obtain equal number of data points for the two square areas
as their sizes are different. We observe RWs to form at loca-
tions far from the CS tails, at least on the order of 3 times the
FWHM value of the CS roughly equal to 10 µm. In Fig.9(b,c)
we have shown the PDF of the square regions depicted in
Fig.9(a) where Fig.9(b) confirms that spatio-temporal events
do not deviate from the negative exponential function and thus
no RWs are emitted at the location of the CS up to the end of
its tails. Instead, we see from Fig.9(c) that in regions away
from the CS tails, RWs due to VMT are abundant and we
observe intensities deviating from the negative exponential fit
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Cavity soliton inhibition of extreme events in lasers with injection

FIG. 11. Snapshot of phase distributions of the electric field sepa-
rated by 0.056 ns from each other. (a) corresponds to the situation
shown in Fig. 10(b) at the time of a RW emission. Empty circles
correspond to CSs.

FIG. 12. Total intensity PDF in the absence (a) and presence (b) of
several CSs in random positions. The situation is shown in Fig.13
with 15 CSs. Parameter values as in Fig.9.

with RW ratio of around 8×10−5.
It is also interesting to note that in all instances during the

spatio-temporal dynamics, the intensity of the RWs at the time
of their emission is higher than the CS intensity at the same
moment, as shown for example in Fig.10, although the maxi-
mum peak intensity of the CS can be larger than the RWs in
its erratic oscillations at the times of no RW emission.
To further look into the issue, we plotted the phase distribu-
tions of the output field in the presence of a CS at two se-
quential times in Fig.11. We observe from Fig.11 that at the
location of the CS and in a finite surrounding region the field
phase tends to change smoothly and does not present singular-
ities typical of vortices responsible for the formation of RWs.
The absence of rapid phase changes in the CS location and its
surrounding area corresponds to the absence of local vortices
in the neighborhood of the CS. Without a compensating num-
ber of vortices arising in other parts of the transverse space,
we conclude that the region occupied by a CS in lasers with
coherent injection not only inhibits the creation of RWs lo-
cally but also does not enhance vortex density in other regions
of the transverse plane. Thus, in absence of vortex clearing
effects away from CS tails, we observe the unaltered back-
ground dynamics seen without CS with generation of RWs
via VMT.
Since the formation and annihilation of optical vortices ac-

companied by abrupt changes of the field phase are key ingre-
dients for VMT leading to the emission of RWs in lasers with
coherent injection9,26, CSs inhibit spatio-temporal rare events.
A more effective inhibition action could be obtained if more
than one CS is switched on. In28 it was shown that in the
presence of an unstable background, CSs can interact even at

FIG. 13. Vortex clearing effect by 15 randomly positioned CSs in
consecutive snapshots of the field phase moving forward in steps of
0.04 ns from (a) to (d). The CSs are depicted by empty circles. Pa-
rameter values as in Fig.9.

FIG. 14. Average number of vortices versus the number of CSs
present in the output emission. Parameter values as in Fig.9.

very large distances. Therefore, one would expect that with a
relative small number of CSs in random positions, RWs can
be suppressed everywhere. In Fig.12, we compare the PDF of
the total intensity obtained in the same transverse area with-
out and with CSs. The suppression of RWs in the entire area
due to the presence of 15 randomly positioned CSs is clear as
all the intensity points are below the negative exponential fit in
Fig.12(b). Extended vortex clearing effect by 15 randomly po-
sitioned CSs can be observed in the consecutive snapshots of
Fig.13 where crossing of zero isolines is rare. More notable in
these figures is the absolute absence of vortices along the lines
connecting closer CSs. Reduction of vortices by the presence
of CSs is shown in Fig.14 where the number of CSs is progres-
sively increased from zero (no CS in the output emission) to
larger numbers for which the reduction in the average number
of vortices tends to saturate.
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Cavity soliton inhibition of extreme events in lasers with injection

V. CONCLUSION

We investigated broad-area semiconductor lasers like e.g.
VCSELs, with coherent injection to identify the key mech-
anisms for the generation of rogue waves in the region of
Hopf instability. We first discuss that the degree of spatio-
temporal chaos in the Hopf domain depends on the distance
from the injection locking point with direct consequences on
the generation of RWs, their number and intensity. In agree-
ment with9,25,26, VMT has been identified as the mechanism
behind the generation of RWs by checking the number of opti-
cal vortices found at the crossing points of zero isolines of the
real and imaginary pars of the the electric field. We measured
that the number of optical vortices decreases when approach-
ing the injection locking point and then found a region of co-
existence of VMT and CSs. This gave us the possibility of
addressing the question how CS emission may influence RW
generation16. We found instead that CSs excited on spatio-
temporally chaotic backgrounds of lasers with injection have
an inhibition effect on RW generation. Since the core of op-
tical vortices requires the local intensity to be zero, it is not
surprising that close to the maximum intensity of CSs no vor-
tices are detected. What is unexpected is that the presence
of a CS forbids the formation of optical vortices in areas sur-
rounding their tails and does not promote increasing vortex
densities in areas away from their peaks. These effects lead to
a normal distribution of events and inhibit the occurrence of
extreme events. The reason lies in the fact that the presence of
a CS in lasers with coherent injection maintains smooth field
phase changes in its vicinity leading to clearance of local vor-
tices around the CS. As the creation and annihilation of optical
vortices with abrupt phase changes are essential for the gen-
eration of RWs in such lasers, CSs act as inhibitors of spatio-
temporal rare events. Extensive clearing of vortices and RWs
by several randomly positioned CSs was also demonstrated
as a consequence of long range interactions of CSs. We note
that away from the tails of the CSs, RW generation via VMT
remains unchanged leading to sudden local peaks with inten-
sities higher than that of the CSs. The new inhibition effect
of CSs in dissipative systems displaying VMT can be used to
locally control the emission of RWs with useful applications
in modern imaging and sensing platforms19.
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