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ABSTRACT  

One in three people living with diabetes are affected by diabetic foot ulcers (DFUs) which, if left unmonitored and 

untreated, reduce quality of life, and may lead to foot amputation. Regular foot screening is suggested by relevant national 

guidelines. Yet, compliance with screening is poor, mostly due to the inconvenience of the screening process itself. 

In this work, we describe a preliminary version of a simple low-cost device intended for self-monitoring of foot circulation, 

to identify the areas of poor perfusion expected to be at the root of the formation of DFUs. This device is based on 

multispectral imaging of the feet in the visible and near-infrared ranges. The device is tested on the hands and feet of a 

single subject, where impairment of circulation has been simulated through a brief ligature of a finger/two toes. 

Multispectral images are captured, and a simple machine-learning-based classifier correctly identifies areas of low 

perfusion on the hand and shows promising data on toes. Albeit the device and the classifier are still susceptible of 

significant improvement, this is indicative of the fact that the multispectral images contain relevant information on tissue 

perfusion. 

Keywords: Multispectral Imaging, Diabetic Foot, Screening, Perfusion, Diabetes  

1. INTRODUCTION

422 million people globally live with diabetes1 and up to one in three of these people will be affected by diabetic foot 

ulcers (DFU) in their lifetime 2 . This complication is caused by peripheral neuropathy and vascular abnormalities within 

the feet that is driven by hyperglycaemia. The combination of these two conditions, if left unmonitored and untreated, can 

cause a minor injury on the foot to become an ulcer that causes irreversible damage3. DFUs reduce quality of life 4, and 

half of those with ulcers develop fast-spreading infections and complications that require amputation2.  

To prevent ulceration, people living with diabetes are asked to check their feet every day and to attend regular foot 

screening set out by relevant national guidelines5. This screening involves a trained operator performing an assessment of 

the dermatological, vascular, neurological and musculoskeletal condition of the feet6, reducing the risk of amputation7. 

Patient compliance to the screening has been shown to affect the recurrence rate of DFU8. However, due to screening 

inconvenience both for patients and for healthcare providers, compliance with DFU screening is poor9,10.  

Current research is trying to make the screening more convenient to patients by developing devices that will aid in at-home 

monitoring of DFU. Some of the devices currently available monitor indicators of ulcer development, such as 

inflammation11–13 or they monitor peripheral neuropathy14. Although there has been research into different methods on 

how to monitor the vasculature of the foot such as near-infrared spectroscopy (NIRS), hyperspectral imaging and 

transcutaneous oximetry approaches15, the devices developed still require a trained operator and are therefore not suitable 

for at-home monitoring.  

In this paper, an at-home monitoring device that aims to monitor indicators of blood-oxygen perfusion anomalies without 

the need for a trained operator is described. Preliminary measurements on a healthy subject’s hand and foot are presented. 

2. METHODS

The device is a low-cost implementation of a multispectral imager (MSI) that uses visible and infrared reflectance to 

monitor the blood-oxygen perfusion of the feet. This technique, which has shown potential to monitor DFUs16,17 was 
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chosen as it is non-invasive15 . With the present work, we are aiming towards implementing it with a format and cost 

compatible with deployment directly in the home of people living with diabetes and at risk of DFUs.  

 

1.1 The hardware  

This at-home MSI comprises of a camera unit and a footrest as seen in Figure 1. The camera unit is a Raspberry Pi Camera 

Module 2 NoIR (Raspberry Pi Foundation, United Kingdom) in the centre of an illumination ring. The ring contains 

twenty-four LEDs of five different central wavelengths; 525 nm (Green) (599 Series Single Color, Dialight), 633nm (Red) 

(599 Series Single Color, Dialight), 740 nm (OIS-150, OSA Opto Light), 770 nm (OIS-150, OSA Opto Light), and 850 

nm (WL-SICW Chip LED Infrared Waterclear, Würth Elektronik) plus white LEDs (SM1206UWC, Bivar).The LEDs are 

placed in a symmetrical configuration within the ring as seen in Figure 2. Both the camera and illumination ring are 

powered and controlled through a Raspberry Pi 4 (Raspberry Pi Foundation, United Kingdom). This is currently attached 

to a monitor, mouse and keyboard and designed for future operation via Bluetooth (e.g., via a mobile phone), and a Python 

(Python Software Foundation, Netherlands) script that switches the LEDs on in sequence and takes the related images. 

These components are encased in a specifically designed 3D printed encasement. The capture resolution is 640x480 pixels, 

and the exposure time was set to obtain a number of saturated pixels on the order of 0.01% of the total number of pixels. 

 

To allow the foot sole to be captured, a footrest with a capture window was built from medium-density fibreboard. The 

footrest had a 177 mm elevation and had an incline of 30 ̊. The top was then laminated with an anti-reflective clear acrylic 

panel to act as the pane for the window. For hygiene reasons, the footrest was painted with a gloss paint which allowed it 

to be wipeable. The internal was painted in Black 3.0 acrylic paint (Culture Hustle – Stuart Semple Store, United Kingdom) 

to remove reflections. The camera unit was anchored to the base of the footrest on a mount that tilts the camera by 35 ̊, this 

was to offset any direct reflections caused by the LEDs during image capture.   

 

  

Figure 1. The at-home MSI. A: The camera unit containing the Pi Camera module 2 NoIR, the illumination ring and Raspberry 

Pi 4. B: The footrest in use, with the subject’s foot placed on top of the window.  
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Figure 2. A map of the wavelengths selected for the MSI. There are 5 wavelengths: 525 nm (Green), 633 nm (Red), and Near-

Infrared (740 nm, 770 nm, and 850 nm). White LEDs were also added to the ring illumination. These wavelengths are 

distributed symmetrically throughout the ring. 

 

1.2 Data collection 

Images were captured on a healthy subject (one of the investigators) where the subject would first take images without any 

disruption to blood flow, then occlude blood flow to ring finger (hand), and second and third toe (foot) through a 2-minute 

temporary ligature, and then re-capturing a set of images. Six un-occluded and five occluded images of the right hand and 

of the right foot were captured in total, placing the hand/foot over the window on the footrest, and using the device to take 

six images in rapid sequence.  

 

1.3 Data analysis 

One of the hand images and one of the foot images with occluded circulation, randomly chosen amongst the five captured, 

were used to train a simple pixel classifier. In particular, for each image, the red, green, and blue channel values were 

extracted as, even in the presence of monochromatic illumination, these carry different spectral information18, albeit details 

of the spectral profiles are difficult to determine at this stage, as we do not know the spectral sensitivity of each camera 

pixel. Additionally, the average intensity of each channel for all illumination wavelengths was calculated and, from this, 

normalised channel values were calculated. 

The hand and the foot images were manually segmented to assign pixels to a region with good blood flow, or to a region 

with occluded flow, or to the background. Areas not to be used for training to avoid unnecessary unbalancing of the size 

of the training dataset were also identified. 

Simple classification code was written in C# (dotNET Core 8, Microsoft Inc., USA) using Microsoft Visual Studio 2022 

(Microsoft Inc, U.S.A.). The ML.NET library19 was used, utilising the AutoML functionality, which identified as the best 

models a multiclass variant of LightGBM20, a gradient boosting technique that uses tree-based learning, for the hand, and 

a fast implementation of Multiple Additive Regression Trees21 for the feet, where LightGBM tends to overfit due to the 

smaller pixel dataset. The classifier was trained on the manually segmented hand and foot images and used to classify the 

pixels in the other hand and feet images. 

3. RESULTS  

Figures 3 and 4 are the reported representative multispectral image stacks of the hand and foot, particularly those used for 

training. In Figure 5 the training masks are presented, mapping the multispectral data on occluded (red), un-occluded 

(blue), background, and to-be-ignored areas (green). In Figure 6 a representative pixel classification on two hands (with 

and without occlusion) and on two feet (also with and without occlusion) is reported.  
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Figure 3. Reported representative multispectral image stacks of the hand with the MSI; a) White, b) Green, 525 nm c) Red, 

633 nm d) 740 nm, e) 770 nm, f) 840 nm. 

 

 
Figure 4. Reported representative multispectral image stacks of the hand with the MSI; a) White, b) Green, 525 nm c) Red, 

633 nm d) 740 nm, e) 770 nm, f) 840 nm. 

 

 
Figure 5. Training masks for the hand (a) and foot (b). The red pixels represent occluded areas, the blue pixels are non-

occluded, and the green are pixels to be ignored during the training. 

a) b) 
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 Figure 6. Pixel classification on the hand and foot, where red represents occluded and blue non-occluded pixels a) non-

occluded hand, b) hand with one finger occluded, c) non-occluded foot, d) foot with two toes occluded.   

 

4. DISCUSSION  

Multispectral images have been successfully acquired on hands and feet. Even with the simplistic classification protocols 

used, the pixel classification, based on training on small areas of a single image, appears able to differentiate occluded vs 

non-occluded tissue, especially on the hands. Importantly, on the hand images, the training, performed on very small areas 

(the red and blue areas in Figure 5a) is sufficient to correctly classify most of the exposed skin (figures 5a and 5b). This 

gives some reassurance that the classification is being performed on the tissue spectra, rather than on simple channel 

intensity, which varies considerably across the hand surface. The same cannot be said for the feet images. We believe that, 

at this very preliminary stage, the number of pixels used for training of the foot classifier (red and blue areas on Figure 5b) 

is, essentially, insufficient. The AutoML library highlights this by converging onto a classifier requiring significantly less 

training data, and correctly identifying overfitting if using the same LightGBM classifier used for the hands. Also, 

occlusion of blood flow to a toe is difficult to achieve compared to a finger.  

 

Indeed, these are very preliminary results. While the present work is mostly directed towards the description of the 

instrument, rather than of the data analytics, we note that these results, while indicative of the fact that the images contain 

the information we seek to extract, are still susceptible to significant improvement.  

 

Firstly, the machine learning (ML) algorithm was trained, calibrated, and tested on a single subject which results in little 

variation within the dataset. This can cause biases that may not allow generalisation of the training. We note, however, 

that this device is designed for monitoring the progress of DFU, and therefore training on a single image of a single subject 

may well be acceptable for the intended use case, as this would in any case allow DFU progress monitoring. More 

importantly, the spectral data and related preprocessing used to train the ML algorithms is most likely redundant. Indeed, 

it is very likely that, albeit the different channels in the images carry independent information, correlations are high, and 

therefore the dataset would benefit from an initial dimensionality reduction. 

 

Also importantly, we note significant variations in the intensity across the images. This points towards a sub-optimal 

illumination, also to be improved in the next iterations of the device. Indeed, the better classification of hand vs foot 

exposed areas might well be due to the smaller intensity variations across the hand surface with respect to the foot surface, 

ultimately ascribed to a better planarity of the hand with respect to the foot sole. 

a) b) 

c) d) 
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Finally, even though the device appears to be able to discriminate between perfused and under-perfused tissue already with 

the current simplistic data capture and analysis, little is known in the literature on whether this tissue differences are 

representative of early stages of DFU, and clinical trials should indeed be aimed to establishing whether this is the case. 
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