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Abstract 

This paper proposes a practical approach for data-efficient metamodeling and real-time 

modeling of laterally loaded monopiles using physics-informed multi-fidelity data fusion. The 

proposed approach fuses information from 1D beam-column model analysis, 3D finite element 

analysis and field measurements (in order of increasing fidelity) for enhanced accuracy. It uses 

an interpretable ‘scale factor’-based data fusion architecture within a deep learning framework 

and incorporates physics-based constraints for robust predictions with limited data. The 

proposed approach is demonstrated for modeling monopile lateral load-displacement behavior 

using data from a real-world case study. Results show that the approach provides significantly 

more accurate predictions compared to a single-fidelity metamodel and a widely used multi-

fidelity data fusion model. The model's interpretability and data efficiency make it suitable for 

practical applications. 
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List of notation 

𝐻 lateral load applied to pile 

𝑢𝐻 ground-level lateral displacement of pile 

D pile outer diameter 

L pile embedded length 

𝑇𝑤 pile wall thickness 

𝑦𝐿  low-fidelity data 

𝑦𝐻  high-fidelity data  

𝑦𝐻𝐻  data that is higher fidelity than 𝑦𝐻 

𝛼 scale factor between low- and high-fidelity data 

𝑁𝑁𝐻 neural network approximating high-fidelity data  

𝑁𝑁𝐿  neural network approximating low-fidelity data 

𝑠u  undrained shear strength 

𝑠u
av average undrained shear strength over the pile length 
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Introduction 

Accurate pile design models are needed for optimizing foundation design and achieving cost-

efficiency and reliability. The state-of-the-art in offshore pile design involves: (i) the use of 

simplified design models based on a one-dimensional (1D) beam-column monopile structure 

and non-linear soil springs (e.g., API 2011; DNV 2014; Suryasentana and Lehane 2014; Byrne 

et al. 2020a), which are fast and interpretable but may have limited accuracy for complex 

seabeds, and (ii) advanced three-dimensional (3D) finite element analysis (FEA), which can 

provide more realistic estimations (Jostad et al. 2020; Zdravković et al. 2020) but is 

computationally expensive, complex to set up and requires a suite of advanced laboratory tests 

for the calibration of the constitutive model. Often, a combination of both methods, conducted 

independently, is used to balance efficiency and accuracy. 

Metamodeling has been proposed as a technique to reduce FEA computational costs for 

offshore pile design (Mentani et al. 2023). This approach develops fast surrogate models that 

can approximate the FEA results. Various techniques can be used for metamodeling, such as 

polynomial chaos expansion (Mentani et al. 2023), radial basis functions (Wang and Owens 

2022), response surface methods (Khuri and Mukhopadhyay 2010), artificial neural networks 

(Shen et al. 2022) and kriging (Kang et al. 2015, Soubra et al. 2019). However, existing 

metamodels have limitations. First, they require up to hundreds of FEA simulations (Mentani et 

al. 2023) for training, which limits their applicability when FEA data is scarce and expensive to 

generate (especially if FEA modeling is outsourced). Moreover, the interpretability of these 

models may be limited. In the current paper, interpretability is defined as the extent to which a 

human can understand and trace the decision-making process of a model (Murdoch et al., 

2019). For example, a linear regression model has high interpretability because the decision-

making process is straightforward and can be easily traced. High interpretability allows users to 

have more confidence in the model predictions, which is vital for offshore foundation design 

certification. 
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Metamodeling is relevant for the design phase, where the objective is to use available site 

investigation data to optimize the pile foundation design. Real-time modeling is relevant for the 

operational phase, where the objective is to use available field measurement data to update the 

foundation performance predictions and ensure that the design is still safe. This is critical for 

foundation design security and will influence decision-making on foundation inspection and 

maintenance. However, existing model updating techniques (e.g., Conde et al. 2021; Sheil et al. 

2022; Buckley et al. 2023) to assimilate available field measurement data to update the design 

predictions tend to be computationally demanding. Recent advances in machine learning 

provide significant opportunities to enhance the accuracy and efficiency of both offshore and 

onshore geotechnical engineering (Stuyts and Suryasentana 2023, Sheil et al. 2020a, b). 

To address the above challenges, this paper introduces a practical approach for data-efficient 

metamodeling and computationally efficient real-time modeling of laterally loaded monopiles 

using physics-based multi-fidelity data fusion. Multi-fidelity data fusion is defined as the 

integration of data from a multitude of sources, each varying in accuracy and data volume 

(Peherstorfer et al. 2018). This improves the quality and robustness of the synthesized 

information by leveraging the strengths of each source. Physics-based multi-fidelity data fusion 

integrate physics-based laws to enhance the robustness of the fusion process. The proposed 

approach is based on a physics-informed multi-fidelity neural network (PIMFNN) that fuses 

three data sources: 1D beam-column model predictions, 3D FEA predictions and field 

measurements. PIMFNN incorporates physics-based constraints to ensure physically 

reasonable predictions. Moreover, PIMFNN provides uncertainty quantification using the Monte 

Carlo (MC) dropout technique (Gal and Ghahramani, 2016). This paper evaluates PIMFNN 

using data from a real-world case study (Byrne et al. 2020a, b). The performance of PIMFNN is 

compared against existing approaches such as single-fidelity metamodeling and a widely used 

multi-fidelity data fusion model (Kennedy and O’Hagan 2000).  
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Case study 

This paper demonstrates PIMFNN as a proof-of-concept using data from the PISA case study 

(Byrne et al. 2020a, b), which involved lateral load field tests on monopiles in Cowden till. Four 

of the tested piles were analyzed with advanced 3D FEA, where the soil is modeled using an 

enhanced modified Cam Clay model. Detailed FEA implementation can be found in Zdravkovic 

et al. (2020b). Table 1 summarizes the pile dimensions and availability of 3D FEA results. 

Detailed ground conditions, including the undrained shear strength profile, can be found in 

Zdravkovic et al. (2020a). 

The primary task is to predict the ground level lateral load-displacement behavior of the piles, up 

to a ground-level lateral displacement 𝑢𝐻 of 0.1𝐷, where 𝐷 is the outer pile diameter. The 

predictive output is the applied lateral load 𝐻 and the inputs are 𝐷, 𝐿/𝐷 and 𝑢𝐻/𝐷, where 𝐿 is 

the pile embedded length. In this study, the pile wall thickness 𝑇𝑤 was not included as an input 

as initial analyses suggested that 𝑇𝑤 has negligible effect on the predictive output. This may be 

due to the limited range of 𝑇𝑤/𝐷 examined in this study. However, in larger-scale studies with a 

broader range of values, 𝑇𝑤 could be a significant factor and should be duly noted.  

This case study provides three data sources with different fidelities and sparsity. The lowest 

fidelity data are the 1D beam-column model predictions of the 𝐻 − 𝑢𝐻 behaviour for all the piles 

in Table 1, based on the API soil reaction model (API 2011). The API soil reaction model is 

adopted as the purpose of the case study is to illustrate how the predictive task can still benefit 

from inaccurate low-fidelity predictions. The next higher fidelity data are the 3D FEA predictions 

for the four piles marked in Table 1, which were digitized from Zdravkovic et al. (2020a). The 

highest fidelity data are the field measurements of the 𝐻 − 𝑢𝐻 behaviour for all the piles in Table 

1, which were digitized from Byrne et al. (2020b). Detailed information on how the field 

measurements were obtained can be found in Byrne et al. (2020b). 
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Evaluation 

The paper evaluates PIMFNN for two tasks: metamodeling and real-time modeling. 

Metamodeling is relevant for the design phase of monopiles, where the API model predictions 

are available for all design cases, but 3D FEA predictions are available only for a few cases. 

PIMFNN uses this small set of 3D FEA predictions to improve the API model predictions and 

estimate the ‘3D FEA-equivalent’ predictions for all design cases. Real-time modeling uses 

available field measurements to correct any potential inaccuracies with the predictions made 

during the design phase. PIMFNN uses information from all three data sources (API model, 

FEA, field measurements) for this purpose. 

Data fusion methodology 

The motivation for multi-fidelity data fusion (MFDF) is that high-fidelity data (e.g. FEA 

predictions) are scarce due to cost and time constraints, while low-fidelity data (e.g. 1D beam-

column model predictions) are abundant. MFDF uses information from all data sources to 

provide more accurate predictions than using any single data source alone. PIMFNN learns the 

relation between data sources of different fidelities using a scaling relationship: 

𝑦𝐻(𝒙) = 𝛼(𝒙) 𝑦𝐿(𝒙) (1) 

where 𝑦𝐿 and 𝑦𝐻 are the low- and high-fidelity output data corresponding to some inputs 𝒙. For 

the current study, the output is 𝐻 and the inputs are 𝐷, 𝐿/𝐷 and 𝑢𝐻/𝐷. 

𝛼(𝒙) in Eq. 1 is a scale factor that may vary with 𝒙. This allows Eq. 1 to model non-linear scaling 

relationships between 𝑦𝐻 and 𝑦𝐿. PIMFNN can fuse any number of data sources by applying Eq. 

1 autoregressively e.g., 𝑦𝐻 = 𝛼𝐿 𝑦𝐿, 𝑦𝐻𝐻 = 𝛼𝐻 𝑦𝐻 , where 𝑦𝐻𝐻 is a data source that is higher 

fidelity than 𝑦𝐻.  

This ‘scale factor’-based fusion architecture is chosen for the following advantages: (i) it offers 

high interpretability as the concept of scale factors are aligned with common geotechnical 

engineering practice e.g., the shaft friction and end bearing capacity of piles in cohesive soil are 

calculated by applying a scale factor to the undrained shear strength of the soil (API 2011); and 
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(ii) it allows the incorporation of a physics-based hard constraint to guarantee the physical 

reasonableness of the model predictions, as will be explained later. 

PIMFNN is based on a neural network framework, which consist of multiple layers. Each layer 

transforms the layer input 𝒙 to the layer output 𝒚 =  𝑓(𝑾𝒙 +  𝒃), where 𝑾 and 𝒃 are the 

weights and biases of the layer, and 𝑓 is a non-linear activation function. 𝑾 and 𝒃 in each layer 

are adjusted during training to minimize a loss function. Fig. 1a shows the core architecture of 

PIMFNN, which has two neural networks 𝑁𝑁𝐿 and 𝑁𝑁𝐻. 𝑁𝑁𝐿 approximates 𝑦𝐿(𝒙), while 𝑁𝑁𝐻 

approximates 𝛼(𝒙) in Eq. 1. Both networks have two fully connected hidden layers with equal 

number of neurons and hyperbolic tangent activation. MC dropout, which randomly zeros some 

neurons during training, is applied to the last hidden layer of 𝑁𝑁𝐻 to quantify the model 

uncertainty and minimize overfitting. The dropout rate is 0.1, following Zhang et al. (2021, 2023). 

The networks are trained sequentially (𝑁𝑁𝐿, followed by 𝑁𝑁𝐻) to save computation, as 𝑁𝑁𝐿 

does not need retraining if only the high-fidelity data changes. 

Physics-based or empirical constraints (Cuomo et al. 2022) can be added to neural networks to 

make predictions more robust and physically reasonable. These constraints can be soft or hard. 

Soft constraints are penalized in the loss function. They are easy to implement but may not 

satisfy the constraints everywhere. Hard constraints are enforced by modifying the network 

architecture itself; they satisfy the constraints everywhere, but implementation can be intractable 

for complex constraints. PIMFNN incorporates the hard constraint that its output must match the 

sign of the low-fidelity data, which prevents physically unreasonable predictions such as 

negative 𝐻 when 𝑢𝐻 is positive; this can happen if there are very limited high-fidelity training 

data. The hard constraint is enforced by adopting the data fusion architecture per Eq. 1 and 

applying an exponential activation at the last layer of 𝑁𝑁𝐻 to make the scale factor always 

positive-valued.  

Metamodeling 

The PIMFNN implementation used for the metamodeling task is called ‘Dual-Fidelity Neural 

Network’ (DFNN), which is represented by Fig. 1a. Here, the low- and high-fidelity data are the 
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API and 3D FEA model predictions, respectively. Since FEA predictions are available for only 

four piles in Table 1, the paper uses the ‘leave-one-out’ method to test DFNN’s performance. It 

uses the FEA prediction for one pile as test data and the rest as training data. It does this for 

each of the four piles once. Table 2 shows the FEA training and test data for each iteration. 

DFNN uses the FEA training data in Table 2 as high-fidelity data and the API model predictions 

for all the piles in Table 1 as low-fidelity data. 

The loss functions to train 𝑁𝑁𝐿 and 𝑁𝑁𝐻 of DFNN are standard data loss functions, as follows: 

𝐿𝐷𝐴𝑇𝐴,𝐴𝑃𝐼 =
1

𝑁𝑦𝐴𝑃𝐼

∑ ((𝑦̃𝐴𝑃𝐼 − 𝑦𝐴𝑃𝐼)2)
𝑁𝑦𝐴𝑃𝐼
𝑖=1

(2) 

𝐿𝐷𝐴𝑇𝐴,𝐹𝐸𝐴 =
1

𝑁𝑦𝐹𝐸𝐴

∑ ((𝛼̃𝐹𝐸𝐴 − 𝑦𝐹𝐸𝐴/𝑦̃𝐴𝑃𝐼)2)
𝑁𝑦𝐹𝐸𝐴
𝑖=1

(3) 

𝑁𝑦𝐴𝑃𝐼
 and 𝑁𝑦𝐹𝐸𝐴

 are the number of API and FEA training data (denoted as 𝑦𝐴𝑃𝐼 and 𝑦𝐹𝐸𝐴), 

respectively. 𝑦̃𝐴𝑃𝐼 and 𝛼̃𝐹𝐸𝐴 are the predictions of 𝑁𝑁𝐿 and 𝑁𝑁𝐻, respectively. Eqs. 2 and 3 serve 

two distinct purposes. Eq. 2 trains 𝑁𝑁𝐿 to approximate the API data, which allows interpolation 

of the API data. Eq. 3 trains 𝑁𝑁𝐻 to learn the scaling relationship between the API and FEA 

data, which allows the leveraging of information from the API data to make improved predictions 

of the FEA data. 

Real-time modeling 

The PIMFNN implementation used for the real-time modeling task is called ‘Tri-Fidelity Neural 

Network’ (TFNN), which is represented by Fig. 1b. TFNN combines information from all three 

data sources (API, FEA, field measurements) by applying the PIMFNN framework 

autoregressively.  

First, a DFNN is trained using all available FEA training data as high-fidelity data and the API 

model predictions for all the piles in Table 1 as low-fidelity data. Then, TFNN uses the trained 

DFNN as 𝑁𝑁𝐿 and uses an initial portion (e.g., 0 ≤ 𝑢𝐻 ≤ 0.04𝐷) of the field measurements for all 

the piles in Table 1 as high-fidelity training data for 𝑁𝑁𝐻; the remaining portion of the field 

measurements are used as test data to evaluate the forecast performance of TFNN. 

Practical approach for data-efficient metamodeling and real-time modeling of monopiles using physics-informed multifidelity data fusion
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Eqs. 2 and 3 are used to train the DFNN component of TFNN. The loss function 𝐿𝐻 to train 𝑁𝑁𝐻 

of TFNN adds a soft constraint 𝐿𝑃 to the data loss 𝐿𝐷𝐴𝑇𝐴,𝐹𝐼𝐸𝐿𝐷, as follows: 

𝐿𝐻 = 𝑤0 𝐿𝐷𝐴𝑇𝐴,𝐹𝐼𝐸𝐿𝐷 + 𝑤1 𝐿𝑃 (4) 

where 

𝐿𝐷𝐴𝑇𝐴,𝐹𝐼𝐸𝐿𝐷 =
1

𝑁𝑦𝐹𝐼𝐸𝐿𝐷

∑ ((𝛼̃𝐹𝐼𝐸𝐿𝐷 − 𝑦𝐹𝐼𝐸𝐿𝐷/𝑦̃𝐹𝐸𝐴)2)
𝑁𝑦𝐹𝐼𝐸𝐿𝐷
𝑖=1

(5) 

𝐿𝑃 =
1

𝑁𝑦𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇

∑ ((
𝜕𝛼̃𝐹𝐼𝐸𝐿𝐷

𝜕(𝑢𝐻/𝐷)
− 0)

2

)
𝑁𝑦𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇
𝑖=1

 (6) 

𝑁𝑦𝐹𝐼𝐸𝐿𝐷
 is the number of field measurements training data, 𝑦̃𝐹𝐸𝐴 = 𝛼̃𝐹𝐸𝐴𝑦̃𝐴𝑃𝐼 is the prediction of 

the DFNN component of TFNN and 𝛼̃𝐹𝐼𝐸𝐿𝐷 is the scale factor learned by 𝑁𝑁𝐻 of TFNN. Eq. 6 

mitigates excessive scale factor fluctuations in the forecast region by driving the partial 

derivative of 𝛼̃𝐹𝐼𝐸𝐿𝐷 with respect to 𝑢𝐻/𝐷 (denoted as 
𝜕𝛼̃𝐹𝐼𝐸𝐿𝐷

𝜕(𝑢𝐻/𝐷)
) to be close to zero in the region. 

This involves calculating 
𝜕𝛼̃𝐹𝐼𝐸𝐿𝐷

𝜕(𝑢𝐻/𝐷)
 at evaluation points uniformly spaced in the forecast region, and 

guiding the network to learn a relationship for 𝛼̃𝐹𝐼𝐸𝐿𝐷 where 
𝜕𝛼̃𝐹𝐼𝐸𝐿𝐷

𝜕(𝑢𝐻/𝐷)
 are close to zero at those 

points. 𝑁𝑦𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇
 refers to the number of evaluation points. For example, if the forecast region

is 𝑢𝐻/𝐷 > 0.04, 
𝜕𝛼̃𝐹𝐼𝐸𝐿𝐷

𝜕(𝑢𝐻/𝐷)
 values are calculated, using automatic differentiation, at 𝑢𝐻/𝐷 =

0.045, 0.055, 0.065, 0.075, 0.085, 0.095, for each set of 𝐷 and 𝐿/𝐷 in the training dataset. 𝑤0 

and 𝑤1 in Eq. 4 are self-adaptive weights to improve convergence rate (Liu and Wang, 2019). 

After some experimentation on a subset of the training data, 𝑤0 and 𝑤1 are set as: 

𝑤0 =
𝐿𝐷𝐴𝑇𝐴,𝐹𝐼𝐸𝐿𝐷

𝐿𝐷𝐴𝑇𝐴,𝐹𝐼𝐸𝐿𝐷+0.001𝐿𝑃
(7) 

𝑤1 =
0.001𝐿𝑃

𝐿𝐷𝐴𝑇𝐴,𝐹𝐼𝐸𝐿𝐷+0.001𝐿𝑃
(8) 

Applying the 0.001 factor to 𝐿𝑝 results in 𝑤0 being significantly larger than 𝑤1 initially. As the 

training progresses and 𝐿𝐷𝐴𝑇𝐴,𝐹𝐼𝐸𝐿𝐷 decreases, 𝑤1 increases. This approach prioritizes achieving 

a good fit with the training data first, before applying the soft constraint. 
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Comparison with existing approaches 

Kriging, a widely used metamodeling technique (Kang et al. 2015; Soubra et al. 2019), typically 

relies on a single data source for model training, referred to as single-fidelity kriging (SFK) in 

this paper. However, SFK's effectiveness in extrapolation is limited due to its dependence on 

spatial correlation assumptions that may not hold outside the sampled area (Oliver and Webster 

2014). To address these challenges, multi-fidelity kriging (MFK) (Kennedy and O’Hagan 2000) 

can be used. MFK is a popular MFDF technique, which has been used in many scientific 

applications (e.g., Liu et al. 2022; Han et al. 2022). It operates on the principle of linear 

correlation between data sources. Fig. 2 shows a strong linear correlation (correlation coefficient 

of 0.997) between FEA and API model predictions, suggesting MFK's applicability. 

For the metamodeling task, the paper compares DFNN with SFK and MFK. SFK uses only the 

FEA training data from Table 2, while MFK uses the same API and FEA training data as DFNN. 

SFK and MFK are used as benchmark models for standard metamodeling and MFDF, 

respectively, due to their extensive use in these areas. For the real-time modeling task, the 

paper compares TFNN with MFK (which uses the same API, FEA and field training data as 

TFNN), and SFK (which uses only the field training data).  

Table 3 summarizes the neural network configurations for DFNN and TFNN. All neural networks 

are implemented using Pytorch (Paszke et al. 2019), while MFK and SFK are implemented in 

SMT (Saves et al. 2023). 

Results 

All load-displacement results are presented in the figures in normalized form (
𝐻

𝑠u
av𝐷2 , 𝑢𝐻/𝐷), 

where 𝑠u
av is the average undrained shear strength along the pile length. The paper first 

evaluates all the models’ abilities to approximate the training data for metamodeling. Fig. 3 

compares the predictions using DFNN with those determined by MFK and SFK for CM2, CM9, 
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CM3 and CL2, when they are included in the training dataset. All models are shown to match 

the FEA data well. Fig. 3 also shows the model uncertainty of the DFNN predictions through the 

shaded bounds that represent the 5th to 95th percentiles (P5-P95) of 1000 random samples of 

the DFNN predictions with dropout (the same dropout rate of 0.1 that was used for training is 

also used for the sampling of the predictions). Fig. 4 shows the scale factors that DFNN has 

learnt, which are not very sensitive to 𝑢𝐻. 

Fig. 5 shows the predictions of DFNN, MFK and SFK for each test case in Table 2. For all test 

cases, DFNN demonstrates higher accuracy than MFK and SFK, as corroborated by the root-

mean-square (RMS) errors detailed in Table 4. The ability of DFNN to produce reasonable 

predictions given limited high-fidelity training data is notable, especially since most test cases 

are extrapolation tasks, as outlined in Table 2. MFK is more accurate than SFK, which highlights 

the benefits of fusing information with another data source, even if it is low in accuracy. 

However, MFK can produce negative-valued predictions (see Fig. 5a, c), which are not 

physically reasonable. This highlights the benefits of incorporating physics-based hard 

constraints in PIMFNN. 

For the real-time modeling evaluation, Figs. 6 and 7 compare the predictions of TFNN with 

MFK, SFK and DFNN for the piles where FEA data is available and not available, respectively. 

TFNN’s forecasts improve upon DFNN’s predictions for all cases, as detailed in Table 4. 

Notably, TFNN provides reasonably accurate forecasts, even without FEA data (see Fig. 7). In 

contrast, MFK only offers reasonably accurate forecasts when FEA data is available, as can be 

seen by comparing Figs. 6 and 7. SFK is generally inaccurate for all cases. 

As more field data becomes available, TFNN’s forecasts will improve, as shown in Fig. 8 and 

Table 4 for the example pile case of CM3. Fig. 9 shows the scale factors learned by TFNN as 

more field data becomes available, which suggests that they generally do not vary much after 

𝑢𝐻/𝐷 > 0.06. 

Practical approach for data-efficient metamodeling and real-time modeling of monopiles using physics-informed multifidelity data fusion
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Discussion 

PIMFNN is generally more accurate than single-fidelity metamodeling and a widely used MFDF 

model. The physics-based constraints are critical for robust predictions with limited data. The 

reduced data requirements of PIMFNN enable practical applications with feasible data volumes. 

Interpretability via scale factors provides transparency and promotes engineering confidence. 

Note that the physics-based constraints are not limited to neural networks and may also be 

implemented in other machine learning models. 

A major benefit of PIMFNN for real-time modeling is its non-intrusive and efficient nature.  Model 

updating techniques (e.g., Conde et al. 2021) require intrusive access to update numerical 

models like FEA to match field measurements, which may not be feasible for users who 

outsource the modeling. PIMFNN does not require access to the numerical model. It is also 

efficient to fine-tune with new field data, compared to the time-consuming parameter 

optimization inverse analysis for FEA-based model updating. Thus, PIMFNN enables 

assimilation of new field measurements for real-time modeling, with low computational cost.  

However, a drawback of PIMFNN is that it does not support the identification of input 

parameters, a feature that is available in model updating and can be important for certain 

applications. Additionally, the neural network architecture behind PIMFNN requires more 

hyperparameter tuning (e.g., number of layers, type of activation function etc.) than other 

models such as kriging. 

Some limitations remain to be addressed in future work. First, PIMFNN outperforms existing 

models with very limited data, but some prediction errors persist and the minimum FEA data 

requirements to attain a target accuracy remains unclear. Second, the performance of PIMFNN 

is uncertain for non-linearly correlated data sources, which could potentially apply for cyclic 

loading (e.g., Byrne et al. 2020c). Third, further investigation is needed to determine if PIMFNN 

can be applied to other foundation types like suction caissons, using similar low-fidelity 1D 

beam-column model predictions (Suryasentana et al. 2017, 2018, 2022, 2023a, 2023b; 

Suryasentana and Mayne 2022), and for other design tasks such as predicting failure envelopes 
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(e.g., Suryasentana et al. 2020, 2021) for ultimate capacity analysis under combined loading. 

Finally, this paper examines one case study with relatively uniform ground conditions as a proof-

of-concept; more validation across a wider range of pile dimensions, ground conditions, and 

loading regimes would test the model generalization and enable further refinement of the model. 

To facilitate this, the PIMFNN code is available open-source at 

https://github.com/autogeolab/PIMFNN/. 

Conclusion 

This paper describes the use of physics-informed multi-fidelity data fusion techniques for 

investigating the response of monopiles subjected to monotonic lateral loading. The proposed 

approach combines information from three sources with varying levels of accuracy - a 1D beam-

column model, FEA data, and field measurements (the latter two sourced from existing 

literature) - to enhance prediction accuracy, particularly in scenarios with limited high-fidelity 

data availability. The approach demonstrates good predictive capabilities in both interpolation 

and extrapolation scenarios, and holds potential for more effective interpretation of data from 

multiple sources for practical applications. 
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Table 1. Summary of unique pile dimensions that were field tested in the Cowden till case study, 

where ℎ is the height above ground for the lateral load application. 

Pile name 𝐷 (m) 𝐿/𝐷 𝑇𝑤/𝐷 ℎ (m) 3D FEA available? 

CM2 0.762 3 0.013 10 Yes 

CM9 0.762 5.25 0.014 10 Yes 

CM3 0.762 10 0.033 10 Yes 

CL2 2 5.25 0.012 10 Yes 

CS2 0.273 5.25 0.026 5 No 

CS3 0.273 8 0.026 5 No 

CS4 0.273 10 0.026 5 No 

Table 2. Summary of training and test sets of 3D FEA predictions from the Cowden till case 

study, where the test type is considered an extrapolation if the test pile diameter or 𝐿/𝐷 falls out 

of the respective range for the training piles. 

Test case Training piles Test pile 𝐷 range 𝐿/𝐷 range Test type 

T1 CL2, CM9, CM3 CM2 0.765 – 2 5.25 – 10 Extrapolation 

T2 CL2, CM2, CM3 CM9 0.765 – 2 3 – 10 Interpolation 

T3 CL2, CM2, CM9 CM3 0.765 – 2 3 – 5.25 Extrapolation 

T4 CM2, CM9, CM3 CL2 0.765 3 – 10 Extrapolation 

Table 3. Neural network configuration for the PIMFNN models (DFNN and TFNN) as per Fig. 1. 

𝑁𝑁𝐿 of DFNN 𝑁𝑁𝐻 of DFNN 𝑁𝑁𝐻 of TFNN 

No. of hidden layers 2 2 2 

No. of neurons in each hidden layer 32 128 256 

Activation function Tanh Tanh Tanh 

Optimiser Adam Adam Adam 
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Table 4. Root-mean-square (RMS) errors between the test data and the predictions of DFNN, 

TFNN, SFK and MFK for Figs. 5 to 8. 

Figure DFNN TFNN SFK MFK 

5a 2.42 - 36.96 29.21 

5b 2.06 - 25.87 19.88 

5c 26.16 - 143.82 74.62 

5d 114.48 - 1409.55 353.75 

6a 3.65 0.84 298.55 2.74 

6b 9.95 1.96 238.55 9.01 

6c 22.03 21.94 121.35 21.96 

6d 161.21 35.48 879.37 39.63 

7a 2.25 0.14 295.89 1.62 

7b 1.23 0.56 282.91 3.14 

7c 4.14 1.28 307.31 5.29 

8a 22.03 10.00 61.82 13.36 

8b 22.03 4.45 17.66 9.28 
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(a) (b) 

Figure 1. Schematic diagram of the PIMFNN architecture for: (a) DFNN model that integrates two 

data sources; (b) TFNN model that integrates three data sources. TFNN is made up of two 

PIMFNN units. First, a PIMFNN unit is trained on the API model and 3D FEA predictions to 

produce DFNN. Then, another PIMFNN unit employs DFNN as its trained 𝑁𝑁𝐿 and uses the field 

measurements to train its 𝑁𝑁𝐻, resulting in TFNN. 
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Figure 2. Comparison of the 3D FEA predictions with the corresponding API model predictions 

(see white markers), which shows a strong linear correlation (correlation coefficient of 0.996) 

between the two datasets. The dotted line is a 1:1 line for reference and the dashed line is the 

best linear fit between the datasets. 
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(a) (b) 

(c) 
(d) 

Figure 3. Comparison of normalized 3D FEA predictions with those determined using the DFNN, 

SFK and MFK models for (a) CM2 (b) CM9 (c) CM3 (d) CL2, when they are included in the 

training dataset. The API predictions are also included for comparison. 
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Figure 4. Comparison of the scale factors learned by DFNN 
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(a) (b) 

 (c) (d) 

Figure 5. Comparison of normalized 3D FEA predictions with those determined using the DFNN, 

SFK and MFK models for test cases (a) T1 (b) T2 (c) T3 (d) T4 in Table 2. The API predictions 

are also included for comparison. 
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(a) (b) 

 (c) (d) 

Figure 6. Comparison of normalized field test measurements with the predictions of the TFNN, 

DFNN, SFK and MFK for the cases where 3D FEA training data is available: (a) CM2 (b) CM9 

(c) CM3 (d) CL2. Only field test data up to 𝑢𝐻/𝐷 = 0.04 are used to train TFNN, SFK and MFK.
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(a) (b) 

 (c) 

Figure 7. Comparison of normalized field test measurements with the predictions of TFNN, 

DFNN, SFK and MFK for the cases where 3D FEA training data is not available: (a) CS2 (b) 

CS3 (c) CS4. Only field test data up to 𝑢𝐻/𝐷 = 0.04 are used to train TFNN, SFK and MFK. 

Practical approach for data-efficient metamodeling and real-time modeling of monopiles using physics-informed multifidelity data fusion



29 

 (a) (b) 

Figure 8. Comparison of normalized field test measurements with the predictions of TFNN, 

DFNN, SFK and MFK for pile case CM3 as more field test data becomes available for training: 

(a) up to 𝑢𝐻/𝐷 = 0.06; (b) up to 𝑢𝐻/𝐷 = 0.08
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(a) (b) 

 (c) (d) 

Figure 9. Comparison of the scale factors learned by TFNN as more field test data becomes 

available. The field data available for training is marked by the dotted vertical line in the above 

figures, up to 𝑢𝐻/𝐷 of (a) 0.02; (b) 0.04; (c) 0.06; (d) 0.08. 
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