
Mechanical Systems and Signal Processing 218 (2024) 111532

0
(

S
a
C
a

0
b

c

A

C

K
N
R
E
N
C
R

0

h
R

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

trongly nonlinear multi-degree of freedom systems: Experimental
nalysis and model identification
ristiano Martinelli a,c,∗, Andrea Coraddu b, Andrea Cammarano c

University of Strathclyde, Department of Naval Architecture, Ocean and Marine Engineering, 100 Montrose Street, Glasgow, G4
LZ, Scotland, United Kingdom
TU Delft, Department of Maritime and Transport Technology, Mekelweg 2, CD Delft, 2628, The Netherlands
University of Glasgow, James Watt School of Engineering, James Watt South Building, Glasgow, G12 8QQ, Scotland, United Kingdom

R T I C L E I N F O

ommunicated by J. Noël

eywords:
onlinear dynamics
educed order models
xperimental analysis
onlinear system identification
ontrol system
estoring force surface methods

A B S T R A C T

Lightweight structures, once ubiquitous in specific sectors such as aeronautics and space sectors,
in recent years, have increasingly attracted the attention of industries that, historically, have
not been particularly concerned with structural weight. Ample examples are provided by the
civil and automotive industry, in which the paradigm shift towards lower carbon footprint
and sustainability prompted new trends characterised by mass reduction, the use of novel
materials, and the accounting for large deformations. However, accurately modelling the
dynamic behaviour of such structures requires nonlinear mathematical models, which are not
widely used in common industrial practices. Reduced-Order Models (ROMs) have emerged as
a popular alternative to computationally expensive Finite Element (FE) models, nonetheless,
there is still a need to evaluate their effectiveness in accurately modelling strongly nonlinear
behaviours.

This study investigates the capacity of multiple-degree-of-freedom (MDOF) ROMs to capture
and predict the nonlinear behaviour of lightweight structures subjected to large deformations. A
novel identification procedure, built on existing linear and nonlinear identification methods, is
used to identify an ROM from numerical and experimental data. Being based on the separation
of the linear and nonlinear restoring force contributions, the proposed method can be easily
embedded in the current industrial practices for the identification of mechanical systems,
paving the way to an integrated usage of linear and nonlinear dynamic models. To validate the
identified MDOF-ROM, a lightweight structure composed of lumped masses and nonlinear elastic
connections is experimentally studied and the numerical and experimental results are compared
at different excitation conditions. We demonstrated that the existence of the Nonlinear Restoring
Force (NLRF) surface in a reduced subspace corresponds to the presence of local active
nonlinearities in the experimental model. This information permits simplifying the nonlinear
restoring force function of the ROM, improving the overall identification process. Finally, we
showed that the identified ROM accurately represents the nonlinear dynamic behaviour of
the experimental test rig and correctly predicts the passage from high-amplitude response to
low-amplitude response (jumps) when different levels of excitation are applied to the system,
demonstrating the effectiveness of the proposed procedure.
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1. Introduction

Lightweight structures have been largely adopted in the aerospace industry for the design and manufacturing of spacecraft and
atellites. This choice is driven by the necessity to reduce the weight, a good cost predictor [1], to satisfy the limited mass and
olume budgets allocated to space missions [2]. In recent years, however, industrial sectors that have historically privileged strength
n favour of weight, like the automotive, power, civil, and transport industries have shown increasing interest in the adoption of
ightweight structures and systems, as testified by the increasing usage of composite material in the automotive sector [3]. This
atural trend towards lighter structures is driven by the need to face technological problems that emerged with the strict CO2
olicies [4,5], nowadays implemented by many countries, which aim to reduce emissions. For example, in the civil sector, the
sage of lightweight high-performance systems would reduce material utilisation and would lower the CO2 emissions associated
ith the production and transportation of raw materials. Likewise, in the transport industry, the utilisation of lighter vehicles
ould reduce fuel consumption and emissions [6]. On the contrary, in the energy sector, lighter structures would help to solve

echnological problems, allowing further increases in the maximum dimension of wind turbines [7]. In this case, lightweight
tructures and materials may allow facing the presence of increasing inertia and gravity loads in large wind turbine blades, reducing
heir overall weight and boosting wind turbine energy production. Nonetheless, high-performance lightweight structures may show
onlinear behaviours in the operational range; typical examples come from the aerospace industry where nonlinear structural
ynamic behaviours have been observed for a long time. For instance, Cassini spacecraft [8] and Airbus A400M aircraft [9]
howed typical nonlinear behaviours during classical experimental ground vibration tests. In addition, many numerical studies have
emonstrated the possibility of triggering geometric nonlinearities in lightweight systems and structures at relatively low forcing
evels [10–14]. This undermines the classical linear assumption adopted in the majority of the industrial practices for modelling
he dynamic behaviour of mechanical systems and makes it more difficult to perform dynamic simulations. Despite the existence of
umerical techniques, e.g., nonlinear Finite Element Analysis (FEA), modelling complex systems results in a computational burden
hat increases exponentially with the number of Degrees of Freedom (DOFs), which makes unpractical the investigation of the full
ynamics of a nonlinear structure. This represents a major issue for industries that must perform multiple simulations and investigate
he system dynamics in diverse scenarios, like in the certification phase of new aerospace solutions.

Reduced-order modelling represents a promising methodology for reducing the computational cost of dynamic nonlinear
nalyses: this procedure tries to reduce the active DOFs of a nonlinear model by imposing, identifying, or selecting a certain number
f master DOFs, thus reducing the complexity of the system and improving the computational burden of simulations [12,15–17].
uch methods are particularly suitable for lightweight flexible structures which show geometric nonlinear behaviour when subjected
o large deformation [12]. Touzé et al. [17] recently reviewed the various methodologies for reducing the order of nonlinear systems
ased on the invariant manifold theory. The theory was originally applied to vibratory systems by Shaw and Pierre [18–20] and it is
ased on the Centre Manifold Theorem and the Lyapunov Subcentral Manifold Theorem [21,22] which guarantee the existence and
he uniqueness of a centre manifold. Nonetheless, the theory and associated theorems hold only for undamped unforced systems
conservative systems). Recent developments of Haller et al. [23] have extended this concept to non-conservative systems, i.e.,
ystems with damping and forcing terms, introducing the notion of Spectral Sub-manifold (SSMs). As shown by Touzé et al. [17],
educed order models can be obtained from either Partial Differential Equations (PDEs), e.g. with the Graph or Normal Form
tyles [18–20,24–26], or from FE models, e.g. with the Implicit Condensation and Expansion (ICE) [16,27], Stiffness Evaluation
rocedure (STEP) [28,29] and Direct Normal Form (DNF) method [15]. Therefore, ROMs represent a possible way to reduce the
omputational burden of nonlinear dynamic simulations, easing the usage of numerical continuation and integration schemes;
evertheless, most of the reduced models have been studied, compared, and verified only in numerical studies. The scientific
iterature features a few examples of using ROMs for the identification of experimental nonlinear systems [30–32]. Noël et al. [30]
roposed a procedure based on the Frequency-domain Nonlinear Subspace Identification (FNSI) method [33] for identifying the
onlinear Normal Modes (NNMs) of mechanical structures. In [30], the authors adopted a FE model to prove the capabilities of

he proposed procedure; after having identified a state-space reduced model, they showed that the NNMs, as frequency-amplitude
lots, can be correctly retrieved from experimental data, which were generated from a numerical model. Denis et al. [31] adopted
reduced model based on the normal form of the equation of motions. The resulting ROM was used to identify the parameters of
ifferent nonlinear systems from experimental backbone curves. Jossic et al. [32] performed the identification of the conservative
arameters of a Chinese gong featuring pitch glide and softening stiffness behaviour. They adopted the same procedure proposed
n [31] to identify a ROM and they compared the experimental backbone curves obtained by exciting one NNM or multiple NNMs,
apturing with their ROM the pitch glide which is mainly due to the nonlinear behaviour of the system. Czaplewski et al. [34]
xperimentally analysed a MEMS resonator featuring a 1:3 internal resonance. The authors demonstrated that a simple Duffing
scillator coupled with a linear oscillator can correctly describe the bifurcation diagram of the MEMS under investigation. Other
orks that adopt reduced models for identifying/visualising the response of the system can be found in [35–37]. In most of the
forementioned works, ROMs are utilised to identify the system parameters from experimental measurements. The method can be
nly applied to conservative systems [21,22] or systems where the damping contribution is negligible, and thus, direct identification
f the damping parameters cannot be achieved. This prevents us from verifying the ROM capacities to predict jumps and changes of
tability, i.e., to check all the phenomena typically connected to damping. Therefore, it is not possible to assess to what extent the
dentified model is representative of the system dynamics. Finally, the identification of MDOF ROMs is generally avoided because,
s demonstrated in many numerical examples [38,39], the behaviour of these systems may be extremely complicated even with
ew degrees of freedom. This is further complicated by the presence of internal resonances [40,10] and energy exchanges between
2
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Table 1
Longitudinal distance between the components of the experimental model. The directions are
expressed considering the triad shown in Fig. 1.
Component 𝑆1–𝑀1 𝑀1–𝑀2 𝑀2–𝑆2

Longitudinal distance (X) 85.0 mm 165.0 mm 85.0 mm.

non-resonant modes with unlocked phase [41] when certain forcing conditions are applied to the system. In these cases, using ROMs
with few DOFs may not capture the system dynamics, being unable to model internal resonances and bifurcation scenarios correctly.

In the literature, many other identification methods for nonlinear systems have been proposed since the 60s; Kerschen, Noël and
ollaborators [40,42] reviewed different methods, providing guidelines for their usage. Between them, the Restoring Force Surface
RFS) method has been identified as one of the most effective methods since its presentation by Masri and Caughey [43]. Authors
ave also proposed different versions of the RFS method and applied it in many examples, which spaces from energy harvesters to
eal satellites. Bonisoli and Vigliani [44] adopted the RFS method to identify experimentally the nonlinear parameters of a passive
agneto-elastic suspension. Cammarano et al. [45] successfully applied the RFS method to extract the nonlinear properties of a

istable vibration energy harvester, while Rizos et al. [46] applied the method to leaf-spring-based tuned mass damper. In a more
omplex real-life scenario, Noël et al. [47] utilised the RFS method for the identification of trilinear characteristics associated with
Wheel Elastomer Mounting System (WEMS) of a small real satellite. The authors demonstrated that the identified system is able

o correctly reproduce the nonlinear behaviour of the WEMS with good accuracy, even in such a complex structure. In another real
ase scenario, Kerschen et al. [10] applied the RFS method to identify the nonlinear characteristics between the aircraft wings and
uel tanks. The author successfully identified the nonlinear properties and adopted them to perform a numerical analysis of the
NMs associated with a ROM. Recently, Anastasio et al. [48] utilised the RFS method to identify the nonlinear stiffness properties
f a Duffing-like negative stiffness oscillator. All these examples demonstrate the good capabilities of the method and its reliability
n the identification of nonlinear properties.

This paper proposes a novel identification procedure for MDOF ROMs representing nonlinear systems. The procedure, named the
onlinear Restoring Force (NLRF) method, represents a modified version of the RFS method [49,50] and it is based on the assumption

hat the restoring force is composed of linear and nonlinear components. This concept is certainly not new to the scientific
iterature [51–53], nonetheless, unlike other methods, the proposed methodology allows obtaining a graphical representation of the
onlinear restoring force, even in the case of MDOF systems. This has the intrinsic advantage of showing the minimal dimensional
pace that fully describes the nonlinear behaviour of the system, i.e., it shows if the nonlinear restoring force depends on the
oordinates of one or more DOFs. In the case of localised nonlinearities, this allows for simplifying the definition of the unknown
onlinear function, reducing its complexity. In addition, thanks to the separation of linear and nonlinear restoring forces, the
roposed method can be interfaced with well-established identification methods for linear systems, paving the way to a more
ntegrated use of nonlinear identification methods in industrial practices. A lightweight structure consisting of lumped masses
nd flexible connectors is experimentally investigated and then used to prove the capabilities of the proposed approach and the
ssociated ROM. To this end, the identified MDOF-ROM is assessed in terms of the capacity to capture and predict the nonlinear
ynamic behaviour of the experimental test rig. Thanks to the graphical nature of the proposed method, the restoring force of
ocalised active nonlinearities is shown to exist in a reduced subspace, providing additional insight into the dynamics of the system.
his information is then used to model the nonlinear contributions of the system and identify the nonlinear dynamic behaviour
f the experimental test rig. The identified ROM is validated against different sets of experimental data, demonstrating that it is
apable of capturing the dynamics of the experimental system in the investigated amplitude–frequency ranges.

. Experimental analysis of the nonlinear multi-degree of freedom system

This section introduces the results of the experimental analysis: firstly, the experimental set-up and the model are described in
etail, and then the results of the experimental campaign are shown and commented. The presented experimental data are available
or download from the following repository [54].

.1. Experimental set-up and test-rig

The experimental test-rig wants to represent a lightweight structure with multiple DOFs subjected to large deformations. It is
onstituted of two parallel slender beams (section 20 mm × 0.5 mm) with a scale that indicates their length, two rigid supports, and
wo main masses. The supports and the masses are made in Poly-Active Lacyd (PLA), a common material adopted for 3D printing,
hile the beams are in stainless steel. The parallel configuration of the beams provides a hardening nonlinear characteristic to the
xperimental system: when the mass is displaced from its resting position, the beams experience both bending and axial deformation.
he latter produces axial stress, which has the effect of increasing the bending stiffness of the beams, providing the nonlinear
estoring force. As shown in Fig. 1, the masses and the beams are kept in the desired position thanks to the force exercised by
he external transparent closure parts in polymethyl methacrylate. These transparent parts allow setting the position of the mass
recisely, exploiting the scale marked on the beams. The longitudinal distances between the masses and the supports adopted in
his study are reported in Table 1. Table 2, instead, reports the dimensions of the main components constituting the experimental
odel in the 𝑋, 𝑌 , and 𝑍 directions as reported in Fig. 1. The experimental model is mounted on a vibrating table, which is excited
3
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Fig. 1. Experimental test rig representing a lightweight nonlinear structure featuring large deformations. The orange arrows represent the direction of excitation
of the vibrating table. A schematic drawing of the considered system is reported in the upper part of the figure.

Table 2
Dimension of the experimental system components. The directions are expressed considering the
triad shown in Fig. 1.
Component Length (𝑥-direction) Width (𝑦-direction) Height (𝑧-direction)

Beam 500 mm 0.5 mm 20 mm.
Mass 50 mm 47.5 mm 50 mm

by a shaker (LDS-V403). The table permits the motion of the system only in the direction transversal to the longitudinal axis of
the model (𝑌 direction according to the reference system reported in Fig. 1). During the measurement campaign, two lasers and an
accelerometer were used to measure the displacement, velocity, and acceleration of different points of the test rig: a single-point laser
vibrometer (Polytec PVD 100) is used to record the velocity of the first mass (𝑀1), while an accelerometer (PCB Piezotronics Model:
352C22) is adopted to measure the acceleration of the second mass (𝑀2). The motion of the vibrating table, instead, is measured
with a single-point optical laser (Micro-Epsilon optoNCDT 1402), which works as a feedback sensor for controlling the amplitude
of displacement of the base. To this end, a feedback control loop is implemented in the test rig by using the control unit dSPACE
(CP1104). The idea is to exploit the control system to remove the dynamics of the shaker from the signal, thus avoiding interferences
that may modify the dynamics of the system [55,56]. A schematic representation of the control architecture is reported in Fig. 2:
the control unit measures the displacement of the vibrating table (𝑑𝑏𝑎𝑠𝑒), the velocity of the first mass (𝑣𝑀1

), and the acceleration of
the second mass (𝑎𝑀2

) which are then displayed as output variables for inspection. The displacement signal is filtered, and a Root
Mean Square (RMS) online function is adopted to control its amplitude: this function provides an estimation of the amplitude of the
fundamental harmonic of sinusoidal-like signals, as the one produced by the vibrating table. By controlling the RMS of the signal,
the control effort is drastically reduced and the comparison with numerical results obtained from perfect sinusoidal excitation is
possible, as demonstrated by previous studies [57,45]. A proportional–integral–derivative controller (PID) controller is then used to
modulate the amplitude signal that will be passed to the shaker and a saturation function defines a limit threshold for the amplitude.
Finally, the signal generator produces a sinusoidal voltage signal at the desired frequency (𝑑𝑓𝑟𝑞) which is passed to the shaker.

2.2. Experimental data acquisition

The experimental setup described in Section 2.1 is now used to measure the dynamic response of the system. Firstly, the
underlying linear behaviour of the system is measured by using a signal analyser (Data Physics - Abacus 901). The signal analyser
4
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Fig. 2. Schematic representation of the control architecture adopted in the experimental set-up. Dashed boxes denote the input/output signals of the dSPACE.
Quantities 𝑑𝑓𝑟𝑞 and 𝑑𝑎𝑚𝑝 denote, respectively, the imposed frequency and amplitude.

Fig. 3. Averaged experimental FRF, representing the underlying linear system. The transfer function is obtained with the random low-amplitude input signal
and it is described in terms of amplitude (a) and phase (b). The coherence of the measured signal (c) is also reported for completeness.

adopts a commercial code (SignalCalc 900 Series) and, by converting the data from time to frequency domain, provides an averaged
Frequency Response Function (FRF). In order to identify the underlying linear behaviour, the system is excited with low amplitude
random excitation [58,59], limiting the effect of smooth nonlinearities. At low levels of amplitude, it is not expected to experience
any mode bifurcation [40], therefore the identification of an underlying linear system can be considered to be achievable. Fig. 3(a–
b) shows the underlying linear FRF, expressed as amplitude and phase of the receptance between the motion of the base and the
displacement of the masses. The transfer function shows the presence of the first two modes of the system in the range between
12-20 Hz with the first mode showing the largest amplitude of response: this dynamic response is due to the type of excitation that
mainly excites the first mode. Fig. 3(c), instead, shows the coherence of the measured FRF; high levels of coherence are recorded for
the considered spectrum of excitation, with the minimum values equal to 0.89, for the first mode, and 0.92, for the second mode.
The high coherence in the signals is an indication of the statistical robustness and the repeatability of measurement, demonstrating
that the measured FRF, at this level of excitation, presents very limited nonlinear behaviours only near the resonance peaks.

To trigger the nonlinear behaviour, large amplitude frequency sweeps are applied to the experimental test rig. The response
f the system is measured in the time domain and subsequently post-processed to obtain the Frequency Response Curve (FRC),
.e., the nonlinear response of the system in the frequency domain. The analysis is performed by controlling the amplitude of the
isplacement of the vibrating table and it is repeated for three different excitation levels, namely, 0.03 mm, 0.04 mm, and 0.05 mm.
he frequency range investigated varies from 14.5 Hz to 19.5 Hz. The FRC is measured with a discrete variation of excitation
requency of 0.1 Hz: for each frequency, the excitation signal is maintained for 45 seconds to let the transient response die. The
ime signal is then filtered with a high pass filter (2 Hz) and a low pass filter (150 Hz) and divided into chunks of 45 seconds where
5

he excitation has a well-defined constant frequency. Then, the transient response is removed, and the steady-state signal is used to
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Fig. 4. Experimental frequency response curve of the system in the nonlinear regime. The FRCs are obtained with forward (Fwd) and backward (Bwd) discrete
requency sweeps and they are described in terms of displacement of the first (a) and the second mass (b). Different colours indicate different levels of base
xcitation amplitude, i.e. 0.03 mm (green), 0.04 mm (red), and 0.05 mm (blue).

ompute the amplitude of the response at each frequency. To ensure robustness, the response amplitude is obtained by averaging
he amplitudes associated with each period of the steady-state signal. Fig. 4 shows the FRC of the nonlinear system for the three
nvestigated excitation conditions. The PID controller ensures a smooth and gradual change in the excitation frequency, allowing
he system to be maintained within specific conditions until the jumps between high- and low-amplitude of response occurs. This
esults in the typical hysteresis loop of a nonlinear system that is reported in the details of Figs. 4(a) and 4(b). As expected, the
onlinear behaviour of the system is of the hardening type; this is confirmed by the resonance peaks of the frequency response,
hown to be bent towards higher frequencies. It is worth noting that there is good agreement between the forward and backward
mplitudes of response away from the hysteresis loop, demonstrating the robustness of the experimental analysis.1

Table 3 provides an overview of the accuracy of the controller and reports the mean and the standard deviation of the measured
ibrating table amplitude for each experimental measurement. The mean and standard deviation are obtained from a vector of
mplitudes which can be computed at each excitation frequency with the following expression:

𝐴𝑣𝑡(𝛺) =
√

2

√

√

√

√
1
𝑛

𝑃
∑

𝑖=1
𝑥𝑣𝑡(𝑡𝑖)2, (1)

where 𝐴𝑣𝑡(𝛺) is the amplitude of the vibrating table at a certain frequency, 𝑥𝑣𝑡(𝑡𝑖) represents the 𝑖th component of the associated
time history (displacement), and 𝑃 is the number of elements of the considered time history. In particular, Eq. (1) represents the
amplitude computed as the RMS of a perfect sinusoid which is here utilised to estimate the amplitude of the vibrating table at
a specific frequency of excitation. The computed amplitudes, along the entire sweep, are then utilised to obtain the mean and
standard deviations for each measurement. The results of Table 3 demonstrate that the measured input amplitudes are very close to
the imposed ones (reported in brackets) in all the experiments, confirming the accuracy of the controller. In addition, the standard
deviation is very low, showing that there are small variations of the input amplitude along the different frequency sweeps. It is
worth noting that the forward frequency sweep experiments have a slightly higher standard deviation than the backward ones. This
phenomenon is due to the presence of large amplitudes of response, especially near the jumps, which demand high control effort.

3. Parameters identification via nonlinear restoring force method

This section introduces and applies the proposed identification process to the experimental system. The procedure tries to create
a bridge between the well-established linear identification methods, which already find applications in industrial practices, and
nonlinear methods. A schematic flowchart of the proposed procedure is reported in Fig. 5. In the first phase, the underlying linear
behaviour of the system is experimentally analysed and utilised to select a proper ROM. Then, by utilising well-established linear
identification methods, the linear parameters of the selected system are estimated and optimised. The second phase of the process
aims to identify the nonlinear behaviour of the system; to this end, the NLRF method is introduced and utilised to identify a

1 The computation of confidence bands at 99% of confidence highlighted that the standard deviation is at least 5 orders of magnitude smaller than the mean
6

f the measurements. Given such a high confidence level, the confidence bands are not reported in Fig. 4.
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Table 3
Experimental displacement amplitudes of the vibrating table. The displacement amplitude of the
signal is computed with Eq. (1) and it is reported in terms of mean and standard deviation
considering the entire frequency sweep.
Measurement Mean Standard deviation

Forward sweep (0.03 mm) 3.02 × 10−5 m 1.47 × 10−6 m
Backward sweep (0.03 mm) 3.01 × 10−5 m 2.48 × 10−8 m
Forward sweep (0.04 mm) 4.00 × 10−5 m 1.03 × 10−6 m
Backward sweep (0.04 mm) 4.02 × 10−5 m 3.11 × 10−8 m
Forward sweep (0.05 mm) 5.01 × 10−5 m 6.41 × 10−7 m
Backward sweep (0.05 mm) 5.02 × 10−5 m 3.81 × 10−8 m

Fig. 5. Flowchart of the proposed identification procedure. The two main phases (linear and nonlinear identification) are denoted by different blocks.

polynomial function representing the nonlinear contribution of the system. There, a systematic iterative procedure is followed to
identify the nonlinear restoring force function. The section concludes with a numerical example and the model validation against
different sets of experimental data.

3.1. Identification of the underlying linear system

The identification of a ROM representing the underlying linear behaviour of the system is performed with well-established
dentification techniques, which are typically used for the identification of linear systems (e.g., 3 dB method, circle fit method [58]):
he advantage of these methods consists in the fact that they are simple, reliable, commonly available and accessible, and very
ell-known in industrial procedures. Often, similar methods are already implemented in commercial software for signal processing
nd, thus, they are easily applicable to both simple and complex structures. The selection of an appropriate ROM is a critical
hoice in every system identification procedure, even when the nonlinear behaviour of the investigated mechanical structure can
e neglected [58]. In experimental modal analysis, stabilisation diagrams may help to identify a suitable ROM for the measured
RFs, distinguishing between physical and fictitious modes. Nonetheless, the final choice of the ROM is ultimately delegated to
he practitioner. In this study, we utilise a straightforward practical approach: the experimental analysis, described in Section 2
as shown the presence of two modes in the frequency range 0–40 Hz, hence, a two-DOFs system is selected as a ROM for the
dentification procedure. This is motivated by the fact that the linear identification will provide two natural frequencies and two
amping ratios. The model is schematically represented in Fig. 6 where 𝑚 represent the mass, 𝑘1, 𝑘2, 𝑘3 are the linear stiffness

coefficients, 𝑐1, 𝑐2, 𝑐3 denote the linear damping coefficients, while 𝜇1, 𝜇2, 𝜇3 and 𝛿1, 𝛿2, 𝛿3 are the nonlinear stiffness and damping
coefficients. This system wants to be as general as possible, and it can be mathematically represented by the following set of ODEs:

𝑚�̈�1 + 𝑐1�̇�1 + 𝑐2(�̇�1 − �̇�2) + 𝑘1𝑧1 + 𝑘2(𝑧1 − 𝑧2) +𝑁𝑅𝐹 ,1(𝑧1, 𝑧2, �̇�1, �̇�2) = −𝑚�̈� (2a)

𝑚�̈�2 + 𝑐3�̇�2 − 𝑐2(�̇�1 − �̇�2) + 𝑘3𝑧2 − 𝑘2(𝑧1 − 𝑧2) +𝑁𝑅𝐹 ,2(𝑧1, 𝑧2, �̇�1, �̇�2) = −𝑚�̈� (2b)

where 𝑦 represents the base displacement, 𝑧 = 𝑥 − 𝑦 indicates the relative displacement between the base and the masses, and
𝑁𝑅𝐹 ,1 and 𝑁𝑅𝐹 ,2, instead, define the nonlinear restoring terms associated with the first and second DOF. The identification of the
linear coefficients of Eq. (2) is performed by exploiting the experimental linear transfer functions represented in Fig. 3; the natural
frequencies 𝜔𝑛, modal damping ratios 𝜁 , and the modal matrix 𝛹 of MDOF mechanical systems are extracted with the previously
cited methods [58]. The obtained modal properties can be then organised in a matrix form as follows:

𝐃 =
[

2𝜁1𝜔𝑛,1 0
]

(3a)
7

0 2𝜁2𝜔𝑛,2
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Fig. 6. Reduced order model with two degrees of freedom representing the experimental model of Fig. 1. The arrows indicate the presence of nonlinear behaviour
in the connecting element.

Table 4
Linear coefficients identified from the experimental linear transfer function. The first line denotes the linear coefficients obtained
from Eq. (4) (established identification methods) while the second line represents the linear coefficients obtained after the
optimisation procedure.
Coefficients 𝑐1 [Ns/m] 𝑐2 [Ns/m] 𝑐3 [Ns/m] 𝑘1 [N/m] 𝑘2 [N/m] 𝑘3 [N/m]

Estimated 0.0727 0.0256 0.0750 1235.8 225.3 1256.3
Optimised 0.0582 0.0205 0.0600 1232.9 225.1 1261.9

𝐖𝑛 =

[

𝜔2
𝑛,1 0
0 𝜔2

𝑛,2

]

(3b)

where 𝐃 and 𝐖𝑛 are the matrices of the damping ratios and natural frequencies. The modal matrices are then converted into physical
matrices by using the procedure outlined in previous works [55] and here reported for completeness. The mass matrix 𝐌 can be
represented with a diagonal matrix composed of the masses of 𝑀1 and 𝑀2 which have been experimentally measured equal to
0.1365 kg. Then, the damping 𝐂, and stiffness 𝐊 matrices can be obtained with following mathematical expressions:

𝐂 =
[

𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2 + 𝑐3

]

= (𝜳 𝑇 )−1(𝜳 𝑇𝐌𝜳𝐃)(𝜳 )−1 (4a)

𝐊 =
[

𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2 + 𝑘3

]

= (𝜳 𝑇 )−1(𝜳 𝑇𝐌𝜳𝐖𝑛)(𝜳 )−1 (4b)

Eq. (4) allows obtaining an estimation of the coefficients representing the underlying linear system, as illustrated in phase I of
Fig. 5. Nonetheless, such an estimation requires improvement. For this reason, an iterative optimisation procedure is adopted, and
the estimated linear coefficients are used as an initial guess. An optimisation algorithm aims at minimising the difference between
the experimental and the analytical transfer functions in terms of amplitude and phase. This helps to mitigate the errors that the
identification of the modal matrix of the underlying linear system may introduce. The outlined identification process adopts the
MATLAB minimisation function named: lsqnonlin, this function implements the classical Levenberg–Marquardt algorithm which
is suitable for similar minimisation problems. In this work, the receptance is adopted as a reference transfer function for the
minimisation procedure, and its analytical representation can be expressed as follows:

𝐻1 =
𝑋1

𝑌
=

𝑋2 𝑘2 −
𝑌 𝑘1
𝛺2 +𝛺𝑋2 𝑐2 𝑖 −

𝑌 𝑐1 𝑖
𝛺

𝑌
(

𝑘1 + 𝑘2 −𝛺2 𝑚 +𝛺
(

𝑐1 + 𝑐2
)

𝑖
) (5a)

𝐻2 =
𝑋2

𝑌
=

𝑋1 𝑘2 −
𝑌 𝑘3
𝛺2 +𝛺𝑋1 𝑐2 𝑖 −

𝑌 𝑐3 𝑖
𝛺

𝑌
(

𝑘2 + 𝑘3 −𝛺2 𝑚 +𝛺
(

𝑐2 + 𝑐3
)

𝑖
) (5b)

where, 𝑋1 and 𝑋2 are the complex amplitudes of the absolute displacements of 𝑀1 and 𝑀2, 𝑌 represents the complex amplitude of
the acceleration input, and 𝛺 denotes the forcing frequency of the excitation. The results of the optimisation procedure are reported
in Table 4: the first line describes the linear coefficients obtained with the circle fit and half power methods while the second
line reports the optimised coefficients. The optimisation process led to the refinement of coefficients, resulting in a more precise
representation of the measured dynamic behaviour. Although these coefficients differ slightly from the original ones, the similarity
demonstrates the ability of classical methods to provide a good estimate of such parameters. Fig. 7 compares the experimental and
analytically optimised transfer functions. The response of the first DOF is reported in the left panels, while the right panels describe
the behaviour of the second DOF. The upper panels describe the amplitude response along the investigated frequency range, instead,
the lower panels illustrate the phase associated with the considered degree of freedom. The analytical results show a good fitting
with the experimental data, demonstrating that the optimised coefficients and the selected ROM capture the dynamic behaviour of
the experimental system in the linear regime.

The simple design used in the test rig allows for the direct measurement of the masses. When this is not possible, an alternative
approach consists in evaluating the system mass by assessing the changes in the natural frequencies caused by adding known mass
8
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Fig. 7. Comparison between the experimental (black continuous line) and the analytical optimised (red dotted line) transfer functions. The transfer functions
are plotted in terms of the amplitude (a–b) and the phase (c–d) for the two degrees of freedom.

in strategic locations (see Appendix B for a practical example). When this technique is impractical, dedicated methodologies for the
estimation of modal mass are also available in the literature [58,60].

3.2. Nonlinear restoring force method: application to a ROM

Once the underlying linear behaviour is identified, it is possible to focus the attention on the nonlinear response of the system.
he knowledge of the underlying linear system can be exploited to compute the nonlinear restoring force and the associated surfaces.
he NLRF method can be applied by manipulating the general equation of motion of a n-DOF reduced-order mechanical system in
atrix form, resulting in the following equation:

𝐍𝑅𝐹 = 𝐍(�̇�, 𝐱) = 𝐅 −𝐌�̈� − 𝐂�̇� −𝐊𝐱 (6)

where 𝐱 ∈ R𝑛×1 is the displacement vector, 𝐌, 𝐂, and 𝐊 ∈ R𝑛×𝑛, represent the mass, damping, and stiffness matrices of the linear
system, while 𝐍(�̇�, 𝐱) and 𝐅 ∈ R𝑛×1 are the nonlinear contribution and forcing function. Eq. (6) shows that the nonlinear restoring
force 𝐍𝑅𝐹 represents the nonlinear contribution of the system which is exactly what the proposed method wants to identify. The
method assumes that a previous identification of the underlying linear system has been performed, as shown in Section 3.1, thus the
left-hand side of Eq. (6) is considered to be known for each measured time instant. This allows us to plot an NLRF surface for each
degree of freedom. It is important to note two facts: firstly, the method needs to define a reduced-order model for its application.
This limits the number of NLRF surfaces and the complexity of the subsequent identification process. Secondly, the method utilises
physical coordinates. This decision is driven by the straightforward nature of these coordinates, which enables easy integration
with experimental sensors and facilitates a clear understanding of the resulting surfaces in a physical context. Furthermore, in their
study, Marsi et al. [49] highlighted that modal coordinates tend to converge faster than physical coordinates when dealing with
high-order systems. However, the method proposed here is based on the adoption of ROMs, which significantly decreases the model
order, effectively mitigating the convergence issue.

The nonlinear restoring force vector 𝐍𝑅𝐹 of Eq. (6) contains all the nonlinear terms that must be identified. Originally, the
classical RFS method adopted Chebyshev series [43] for the identification process, but simple polynomial expansions have been
demonstrated to be superior in terms of simplicity, accuracy, and speed of parameters estimation of the nonlinear contributions [40].
Nonetheless, one should be careful in the utilisation of such polynomials without prior knowledge of the system, as the restoring
force may not be governed by integer-power polynomials (e.g., in the case of rubber, non-integer polynomials provide a good
approximation of the nonlinear functional [61]) or could be accurately modelled by non-smooth functions. In this work, we have
focused the attention on lightweight structures with geometric nonlinearities for which an integer-order polynomial is found to be
a good approximation, as shown in other works [32,31,35]. This is also confirmed by prior successful identification of a similar
nonlinear system [55], where a polynomial integer order is adopted. Considering different time instants, 𝐍 is matrix 𝑛×𝑚, where
9
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𝑛 represents the number of reduced-DOF while 𝑚 indicates the time instant at which the restoring force is measured. Mathematically,
a least mean square problem can be formulated for each degree of freedom, as follows:

𝐍𝑅𝐹 ,𝑛 = 𝐩(𝐱, �̇�, 𝑎1,… , 𝑎𝑘) = 𝐀(𝐱, �̇�)𝐛 (7)

where 𝐍𝑅𝐹 ,𝑛 is a vector with dimensions m × 1, which varies in time and represents the nonlinear restoring force of a single DOF,
𝐩 is a vector representing the values of a polynomial which depends on the coefficients 𝑎𝑘 and the displacement/velocities of each
DOF, 𝐴 is a squared matrix with dimensions 𝑚 × 𝑘, and 𝐛 = [𝑎1,… , 𝑎𝑘] is a vector 𝑘 × 1. By solving Eq. (7), it is possible to get an
estimation of the coefficients contained in 𝐛, which corresponds to the estimation outlined in phase II of Fig. 5. The coefficients
obtained are then used as a starting point for a minimisation procedure which uses the following objective function 𝐆:

𝐆(𝐛) = 𝐍𝑅𝐹 ,𝑛 − 𝐩(𝐱, �̇�,𝐛) (8)

s for the linear identification procedure, the MATLAB minimisation function lsqnonlin is used to perform the numerical optimisation
rocedure. Now, by considering the ROM of Eq. (2), the nonlinear restoring force vector 𝐍𝑅𝐹 can be reduced to the following
xpression:

𝐍𝑅𝐹 =

{

𝑁𝑅𝐹 ,1(𝑧1, 𝑧2, �̇�1, �̇�2) = −𝑚�̈�1 − 𝑐1�̇�1 − 𝑐2(�̇�1 − �̇�2) − 𝑘1𝑧1 − 𝑘2(𝑧1 − 𝑧2)
𝑁𝑅𝐹 ,2(𝑧1, 𝑧2, �̇�1, �̇�2) = −𝑚�̈�2 − 𝑐3�̇�2 + 𝑐2(�̇�1 − �̇�2) − 𝑘3𝑧2 + 𝑘2(𝑧1 − 𝑧2)

(9)

hus, the polynomial that we are seeking depends on the following general form:

𝑝(𝑧1, 𝑧2, �̇�1, �̇�2, 𝑎1,… , 𝑎𝑘) = 𝑎1𝑧
2
1 + 𝑎2𝑧

2
2 + 𝑎3�̇�

2
1 + 𝑎4�̇�

2
2 + 𝑎5𝑧1𝑧2 +⋯ + 𝑎11𝑧

3
1 + 𝑎12𝑧

3
2 + 𝑎13�̇�

3
1 + 𝑎14�̇�

3
2 +⋯ (10)

here 𝑘 represents the number of coefficients and, having removed the linear contribution, the second degree is the lowest power
n the polynomial expansion.

.3. Nonlinear restoring force method: numerical example

A numerical example is now presented to illustrate the application of the NLRF method to a generic ROM. In particular, the
umerical example wants to show how the NLRF surfaces are used to simplify the identification procedure, obtaining additional
nformation on the nonlinear dynamics of the system. This enables engineering considerations that simplify the polynomial
epresentation of the nonlinear restoring force. To provide parallelism with the considered experimental model, the MDOF nonlinear
scillator of Eq. (2) is considered in two different versions: the first version (case A) considers the presence of nonlinearities only
etween the support and the masses. The second one (case B), instead, considers a full nonlinear system. Table 5 resumes the
roperty utilised in the two numerical examples and shows that only cubic stiffnesses are applied to the model. The equation of
otion can be rewritten as:

𝑚�̈�1 + 𝑐1�̇�1 + 𝑐2(�̇�1 − �̇�2) + 𝑘1𝑧1 + 𝑘2(𝑧1 − 𝑧2) + 𝜇1𝑧
3
1 + 𝜇2(𝑧1 − 𝑧2)3 = −𝑚�̈� (11a)

𝑚�̈�2 + 𝑐3�̇�2 − 𝑐2(�̇�1 − �̇�2) + 𝑘3𝑧2 − 𝑘2(𝑧1 − 𝑧2) + 𝜇3𝑧
3
2 − 𝜇2(𝑧1 − 𝑧2)3 = −𝑚�̈� (11b)

The numerical data are obtained by solving Eq. (11) with the function ode45, a Runge–Kutta numerical integration scheme
mplemented in MATLAB. The data collection procedure emulates the procedure used to acquire the experimental data: a forward
requency sweep with a step of 0.16 Hz from 15.5 to 23.5 Hz is performed and the entire time histories of the two masses are saved
n a vector form. Fig. 8 shows the absolute displacements of the two masses for case A. The figure displays the presence of two
ent resonance peaks just after the natural frequencies of the system, which feature the typical jumping phenomena of nonlinear
tructures. Although nonlinearities are applied only on external elements, the time-history representation is not able to tell where
he nonlinearities are applied to the system, as the jumps are present in both peaks of the two recorded signals. On the other hand,
sing the NLRF surfaces, it is possible to obtain additional information on the system dynamics. Fig. 9 represents the surfaces for
he two considered numerical examples in two different reduced nonlinear spaces, i.e. 𝑧1 and �̇�1 for 𝑁𝑅𝐹 ,1 and 𝑧2 and �̇�2 for 𝑁𝑅𝐹 ,2.
anels (g–h) of Fig. 9 represent the NLRF surfaces associated with a full nonlinear system (case B). In this case, the NLRF surfaces
re not a function in the considered 3D space, i.e., they are hyper-surfaces2 as the nonlinear contribution on each mass depends
n more than one mechanical DOF. This is clearly shown by the lateral views in the panels (e–f), where it is shown that for some
lements of the nonlinear domain, there exists more than one value of the NLRF surface. Panels(c–d) and the associated lateral
iew of Fig. 9(a–b) show the NLRF surfaces of case A; they demonstrate that all the nonlinear orbits are laying on a surface that
s graphically representable in a 3D space. This is possible because, in this case, the nonlinearities are localised only between the
asses and the supports. Therefore, having eliminated the linear contributions of the restoring force, it is possible to obtain a unique

elationship between the points of the nonlinear domain and the NLRF surface, hence we can represent the NLRF as a function in a
D space. It is important to note that, given a mechanical MDOF system, the classical definition of the restoring force, with linear
nd nonlinear contributions, leads to a hyper-surface. This is logical, as the minimal mechanical MDOF system is characterised by
wo mechanical DOFs that possess two states each, a displacement and a velocity. Nonetheless, moving to a space dominated by only

2 For hyper-surface it is intended a surface function that depends on a number of parameters larger than two, hence that is not representable as a function
10

n a 3D space. On the contrary, surfaces are a function of two parameters which enables the representation in a 3D space.
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Table 5
Linear and nonlinear parameters adopted in the numerical example.

Case 𝑚 [kg] 𝑘1 [N/m] 𝑘2 [N/m] 𝑘3 [N/m] 𝑐1 [Ns/m] 𝑐2 [Ns/m] 𝑐3 [Ns/m] 𝜇1 [N/m3] 𝜇2 [N/m3] 𝜇3 [N/m3] 𝑌 [mm]

A 1.0 × 10−1 1.5 × 103 2.5 × 102 1.0 × 103 3.0 × 10−2 2.5 × 10−2 6.5 × 10−2 5.0 × 106 0.0 2.8 × 106 5.0 × 10−2

B 1.0 × 10−1 1.5 × 103 2.5 × 102 1.0 × 103 3.0 × 10−2 2.5 × 10−2 6.5 × 10−2 5.0 × 106 1.0 × 106 2.8 × 106 5.0 × 10−2

Table 6
Nonlinear coefficients identified in the numerical test (case A). To improve the readability, the computer zero values are denoted
by ∅. For each restoring force surface, a different polynomial is used.
Monomial (𝑀1) Coefficient Value Monomial (𝑀2) Coefficient Value

𝑧21 𝑎1 ∅ 𝑧22 𝑏1 ∅
𝑧1 �̇�1 𝑎2 ∅ 𝑧2 �̇�2 𝑏2 ∅
�̇�21 𝑎3 ∅ �̇�22 𝑏3 ∅
𝑧31 𝑎4 5.00 × 106 N∕m3 𝑧32 𝑏4 2.80 × 106 N∕m3

�̇�31 𝑎5 ∅ �̇�32 𝑏5 ∅
𝑧1 �̇�21 𝑎6 ∅ 𝑧2 �̇�22 𝑏6 ∅
𝑧21 �̇�1 𝑎7 ∅ 𝑧22 �̇�2 𝑏7 ∅

Fig. 8. Numerical time history of the first (a) and second (b) DOF. The numerical results are obtained with the reduced order model described by Eq. (11),
using the parameters reported in Table 5 (only case A).

the nonlinear contribution of the restoring force, it is possible to represent the restoring force surfaces as a function in a 3D space if
the above-mentioned conditions apply. This fact has important consequences for systems characterised by localised nonlinearities.
In case A, it is possible to assume a simplified version of the polynomial which considers a single mechanical DOF, reducing Eq. (10)
to the following:

𝐍𝑅𝐹 =

{

𝑁𝑅𝐹 ,1(𝑧1, �̇�1) = 𝑎1𝑧21 + 𝑎2�̇�21 + 𝑎3𝑧1�̇�1 + 𝑎4𝑧31 + 𝑎5�̇�31 + 𝑎6𝑧21�̇�1 +⋯

𝑁𝑅𝐹 ,2(𝑧2, �̇�2) = 𝑏1𝑧22 + 𝑏2�̇�22 + 𝑏3𝑧2�̇�2 + 𝑏4𝑧32 + 𝑏5�̇�32 + 𝑏6𝑧22�̇�2 +⋯
(12)

At this point, knowing the linear matrices, it is possible to identify the nonlinear contributions by using Eqs. (7) and (8). For
he sake of simplicity, the identification is performed only for case A and the identified parameters are reported in Table 6 for a
ull third-order polynomial. The table shows that the nonlinear coefficients are correctly identified and the absence of noise allows
eaching a perfect match between the assumed polynomials and the numerical data. The numerical test has served as a simple
xample to demonstrate how the method works and how the NLRF surfaces are used to simplify the assumed polynomials in a
onlinear ROM.

.4. Experimental identification of the nonlinear system and model validation

The NLRF method is now employed to identify the nonlinear contribution of the experimental system depicted in Fig. 1. Although
aving a direct measure of the displacement, velocity, and acceleration for each measurement point would be ideal [62], numerical
ntegration and differentiation procedures have been demonstrated to produce reliable RFS [45]. In this work, the accelerometer and
ibrometer signals are integrated numerically, while the velocity of the vibrating table is obtained with numerical differentiation.
he time data are then filtered with a high-pass filter (5 Hz) and a low-pass filter (75 Hz) to obtain smooth surfaces.

Based on the considered ROM, Eq. (9) can be used to obtain the experimental nonlinear restoring force by leveraging the
nowledge of the system linear behaviour and the experimental measures. Like for the considered numerical cases, the first NLRF
11
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Fig. 9. Numerical nonlinear restoring force surfaces for case A (𝜇1 = 5.0𝑒6 N/m3, 𝜇2 = 0.0 N/m3, and 𝜇3 = 2.8𝑒6 N/m3) (a–d) and case B (𝜇1 = 5.0𝑒6 N/m3,
𝜇2 = 1.0𝑒6 N/m3 , and 𝜇3 = 2.8𝑒6 N/m3) (e–h). Zooms in the plane relative displacement-nonlinear restoring force are reported for each diagram. The numerical
results are obtained with the reduced order model described by Eq. (11) and the parameters reported in Table 5.

surface (Fig. 10(a)) is plotted in the space of the coordinates of the first mass, i.e. 𝑧1 and �̇�1 while the second one (Fig. 10(b)) is
plotted in the space 𝑧2 and �̇�2. The figure demonstrates that, in those spaces, the restoring force surfaces generated by the nonlinear
orbits, can be represented as a function in a 3D space. Thus, it is possible to deduce that the nonlinear behaviour of each mass
can be fully described with only the local mechanical DOF, e.g., 𝑁𝑅𝐹 ,1 is fully described by 𝑧1 and �̇�1. In other words, the external
beams between the masses and the supports provide the majority of the nonlinear restoring contribution. This does not imply that
beams in the between of the two masses have a pure linear behaviour, but that their nonlinear contribution is negligible, hence
their nonlinearity is inactivated. The authors want to stress this aspect and highlight that this has important consequences on the
identification of nonlinear structures, as inactivated nonlinearities can remain hidden until adequate excitation conditions are met.
Nonetheless, a complete analysis of the effect of the forcing conditions on the identification process is out of the scope of this paper,
therefore the experimental analysis and the subsequent validation will be limited to the excitation conditions described in Section 2.
12
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Fig. 10. Experimental NLRF surfaces of the first (a) and second mass (b) obtained from the measurement: forward frequency sweep with excitation amplitude
equal to 0.05 mm.

Fig. 11. Iterative procedure for the definition of the polynomial order. The identification of the polynomial coefficients is performed with one experimental data
set, namely the forward frequency sweep at 0.05 mm of displacement amplitude, while the validation of the identified data is performed with three experimental
data sets, i.e. the forward frequency sweep at 0.05, 0.04, and 0.03 mm of displacement amplitude.

Table 7
Experimental nonlinear coefficients, identified from the nonlinear restoring force surfaces. For each restoring force surface, i.e. for
each degree of freedom, a different polynomial is adopted as prescribed in the table. For graphical representation, unused lines
are denoted by −.
Monomial (𝑀1) Coefficient Value Monomial (𝑀2) Coefficient Value

𝑧21 𝑎1 −8.4608 × 103 N∕m2 𝑧22 𝑏1 −8.3989 × 103 N∕m2

𝑧1 �̇�1 𝑎2 5.3189Ns∕m2 𝑧2 �̇�2 𝑏2 −4.8546Ns∕m2

�̇�21 𝑎3 0.9055Ns2∕m2 �̇�22 𝑏3 0.9047Ns2∕m2

𝑧31 𝑎4 1.1237 × 107 N∕m3 𝑧32 𝑏4 1.1231 × 107 N∕m3

�̇�31 𝑎5 1.9777Ns3∕m3 �̇�52 𝑏5 −8.0214Ns5∕m5

𝑧1 �̇�21 𝑎6 −1.3876 × 102 Ns2∕m3 – − –
𝑧21 �̇�1 𝑎7 1.0495 × 104 Ns∕m3 – − −

In order to validate the model, only one experimental FRC is used to create the nonlinear restoring force surface and to identify
the polynomial. To this end, the measurement conducted at a base amplitude equal to 0.05 mm is adopted in the identification
process, while the model prediction capabilities are tested against the experimental measurements obtained with different excitation
amplitudes, namely 0.04 and 0.03 mm.

Different polynomials are tested to identify the experimental nonlinear restoring force surfaces correctly: as the classical restoring
force surface method for MDOF systems [49], the proposed method suffers from the exponential increase of unknowns. Indeed, by
increasing the dimension of the polynomial, i.e., the number of variables and maximum order, the number of unknowns increases
exponentially, leading to computationally expensive calculations. By using the proposed method, the number of variables for each
polynomial can be considerately reduced by exploiting the evidence provided by the experimental data, i.e., by the NLRF surfaces
of Fig. 10(a–b), which, as explained, suggest the presence of localised nonlinearities between the two masses and the external
supports. This permits the use of two sets of variables, namely 𝑧1, �̇�1 for the first surface and 𝑧2, and �̇�2 for the second one, enabling
the usage of Eq. (12) to represent the nonlinear polynomials. The polynomial order, instead, is chosen with the iterative procedure
13



Mechanical Systems and Signal Processing 218 (2024) 111532C. Martinelli et al.
Fig. 12. Comparison between the identified (red and blue) and the experimental (black) nonlinear restoring force surfaces. The experimental data are obtained
from the forward frequency sweep with excitation amplitude equal to 0.05 mm. The left panels describe the NLRF surfaces of the first mass (a, c, e), while the
right panels illustrate the surfaces associated with the second mass (b, d, f). Different views are reported: panels (a) and (b) report the isometric view, panels
(c) and (d) illustrate the lateral view, and panels (e) and (f) show the frontal view.

Fig. 13. Time histories comparison between the experimental data (black line) and the numerical results (coloured lines) for excitation amplitudes equal to:
0.05 mm (a) (blue line), 0.04 mm (b) (red line), and 0.03 mm (c) (green line). Zooms in correspondence of the first and second resonance are reported for each
case.

schematically reported in Fig. 5 and proposed in Fig. 11 with additional details: firstly a polynomial is assumed, then the associated
coefficients are identified with an LMS and optimisation procedures, and finally, the numerical predictions of the identified model
are compared against sets of experimental data that are different from the one adopted in the identification process. In detail, the
14
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polynomial coefficients are identified by using the experimental restoring force generated with an excitation amplitude of 0.05 mm,
while the validation is performed against the experimental time histories measured at the excitation amplitudes of 0.03, 0.04, and
0.05 mm. The numerical time histories are generated via numerical integration procedures by using perfect sinusoidal excitation
and the MATLAB function ode45 and the same discrete frequency sweep adopted in the experimental measurements. This allows to
iscover at which frequency the jumps occur in the three different numerical simulations. If the jumps occur at the same frequency
s the associated experimental data then the polynomial can be considered validated. Otherwise, the polynomial is modified by
ncreasing the order and removing each monomial with a low contribution, until the correct jumps are identified. It should be
oted that the usage of ideal sinusoidal excitation and a ROM allows for performing inexpensive numerical simulations and testing
any different polynomials in a short time.

The final results are reported in Table 7: it is clear that the first polynomial is correctly identified with a full polynomial
f order 3. Instead, the polynomial associated with the second surface needs some changes: in particular the third-order mixed
erms and the third-order damping terms do not allow to achieve correct jumps in the numerical simulations. Thus, following the
forementioned iterative procedure, they are removed and substituted with a fifth-order damping term. Fig. 12 shows the comparison
etween numerical and experimental NLRF surfaces for the two DOFs. Different views are proposed with the left and right panels
howing, respectively, the surface associated with the first and second mass. The numerical and experimental data exhibit a good
atch, providing the necessary accuracy to the selected polynomial. Fig. 13 shows the comparison between the numerical and

he experimental time histories for the first mass at the three different levels of excitation, i.e., 0.05 mm (Fig. 13(a)), 0.04 mm
Fig. 13(b)), and 0.03 mm (Fig. 13(c)). Overall, there is a very good match between the numerical and experimental dynamic
esponses at all the considered excitation levels, in terms of amplitude and frequency at which the jumps occur. To show the good
rediction capabilities of the identified model, zooms are reported in Fig. 13 near the resonances. The passage from high- to low-
mplitude of response in the second resonance peak (around 17.5–17.8 Hz) is perfectly caught by the numerical model. On the
ontrary, very small discrepancies between the experimental data and numerical predictions are found at the first jump, with the
umerical jump occurring prematurely. This is due to the experimental control system which needs time to move from high- to
ow-amplitude response. Such a delay is not accounted for in the numerical simulations, leading to premature jumps.

In order to fully validate the identified model, the experimental and numerical nonlinear FRCs are compared. The displacement
mplitude is selected for comparison because the experimental restoring force surfaces indicate the hardening stiffness characteristics
s the predominant nonlinear behaviour. The numerical FRCs are computed with numerical continuation procedures at the three
ifferent levels of excitation. These procedures allow the continuation of limit cycles with respect to one or more parameters [63,64];
hus, the FRCs are obtained by continuing stable orbits with respect to the excitation frequency 𝛺. Different numerical continuation

toolboxes are available in the literature; in this work, the toolbox COCO [65] is used to compute the complete FRCs of the identified
system. In order to perform the numerical continuation, the following autonomous version of the identified ROM is used:

�̇�1 = 𝑤1 (13a)

�̇�1 = −
𝑐1
𝑚
𝑤1 −

𝑘1
𝑚
𝑧1 −

𝑐2
𝑚
(𝑤1 −𝑤2) −

𝑘2
𝑚
(𝑧1 − 𝑧2) −

1
𝑚
𝑁𝑅𝐹 ,1 − 𝑌 𝑢 (13b)

�̇�2 = 𝑤2 (13c)

�̇�2 = −
𝑐3
𝑚
𝑤2 −

𝑘3
𝑚
𝑧2 +

𝑐2
𝑚
(𝑤1 −𝑤2) +

𝑘2
𝑚
(𝑧1 − 𝑧2) −

1
𝑚
𝑁𝑅𝐹 ,2 − 𝑌 𝑢 (13d)

�̇� = −𝛺𝑣 + 𝑢(1 − 𝑢2 − 𝑣2) (13e)

�̇� = 𝛺𝑢 + 𝑣(1 − 𝑢2 − 𝑣2) (13f)

where 𝑢, 𝑣, and 𝑤 are additional states that are necessary to reach a first-order autonomous formulation of the system. It should
be noted that the acceleration amplitude 𝑌 can be computed from the measured displacement amplitude 𝑌 with the following
expression: 𝑌 = −𝛺2𝑌 . The nonlinear terms 𝑁𝑅𝐹 ,1 and 𝑁𝑅𝐹 ,2, instead, are obtained from the previous identification process and
precisely are:

{

𝑁𝑅𝐹 ,1 = 𝑎1𝑧21 + 𝑎2𝑧1𝑤1 + 𝑎3𝑤2
1 + 𝑎4𝑧31 + 𝑎5𝑤3

1 + 𝑎6𝑧1𝑤2
1 + 𝑎7𝑧21𝑤1;

𝑁𝑅𝐹 ,2 = 𝑏1𝑧22 + 𝑏2𝑧2𝑤2 + 𝑏3𝑤2
2 + 𝑏4𝑧32 + 𝑏5𝑤5

2;
(14)

where the coefficients 𝑎 and 𝑏 can be found in Table 7. Fig. 14 shows the comparison between the FRCs: the panels in each row
represent the comparison between numerical and experimental FRCs obtained with a certain excitation amplitude, equal to 0.05 mm
(upper row), 0.04 mm (middle row), and 0.03 mm (lower row). The columns, instead, divide the FRCs associated with the first
mass (left panels) and the second mass (right panels). All the numerical simulations are in good agreement with the experimental
data: in particular, the identified model is able to reproduce with a good level of accuracy the FRCs of the two masses at all the
considered excitation levels. Moreover, the model effectively scales the amplitude of the response and the jumps in accordance with
the varying levels of excitation. The good match between numerical and experimental FRCs demonstrates that the chosen ROM is
able to correctly catch the complex nonlinear behaviour of the experimental test rig, characterised by the presence of stiffness and
damping nonlinear properties. It is worth noting that the considered experimental system incorporates quasi-real interfaces, i.e., it
has complex interfaces between the different components; this introduces additional complexities in the dynamic response at large
amplitude, e.g., friction, imperfect symmetries, imperfect clamping, and contacts. Nonetheless, it is demonstrated that a simplified
ROM with two DOFs can describe its full dynamics, even when large displacements are achieved.
15
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Fig. 14. Comparison between the numerically continued (coloured continuous line) and experimental (black markers) FRCs. The numerical FRCs are obtained
from the identified ROM and the results are compared with the experiments for input amplitude equal to: 0.05 mm (a–b), 0.04 mm (c–d), and 0.03 mm (e–f).
The left panels describe the FRCs associated with the displacement of the first mass (a, c, e), while the right panels illustrate the FRCs obtained from the second
mass displacement (b, d, f). FP prescribes the presence of a fold point.

Fig. 15 shows the numerical FRCs in the same plot for the first (left panel) and second mass (right panel). The first peak reaches
arger response amplitudes, showing the typical saturation effect and the presence of unstable solutions (dashed line) in all three
evels of excitation. The second peak, instead, remains in the linear regime mostly, therefore, no unstable solutions are found. The
ooms of the first peak show the presence of fold points, which define where the limit cycles change their stability, passing from
table to unstable and vice versa. The middle grey continuous line prescribes the backbone curve which represents the undamped
nforced dynamic response of the system in the frequency-amplitude plot. The continuation of the conservative periodic solutions
an be achieved as suggested by Doedel et al. [66,54] and the full derivation of the modified equations of motion with the unfolding
arameter is reported in the Appendix A. Both the backbone curves have a hardening effect, bending towards higher frequencies
hen large amplitudes of responses are reached. Therefore they have the expected behaviour, confirming the correctness of the

dentified model. Finally, thanks to the presence of only trivially resonant terms,3 no bifurcation points or flipping solutions are
found in the backbones curves which testifies to the absence of internal resonances in the considered range of amplitude of response.

4. Conclusion

This study presented a novel procedure for the identification of MDOF-ROMs representing lightweight structures featuring large
deformations. The proposed method, named the NLRF method, wants to pave the way towards more systematic use of nonlinear

3 For a formal definition of resonant, trivially resonant, and non-resonant terms, the interested reader should refer to [17].
16
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Fig. 15. Frequency response curves obtained from the numerical continuation of the identified model, in terms of displacement of first (a) and second (b) mass.
The frequency response is reported for different excitation amplitudes, namely 0.03 mm (green line), 0.04 mm (red line), and 0.05 mm (blue line). Backbone
curves (grey line) are shown for the two considered modes.

dynamic models in the identification procedures adopted in industry. To this end, the NLRF method is built on existing identification
methods and is based on separating the restoring force in linear and nonlinear components. Thanks to this separation, the
representation of the nonlinear restoring force surface is shown to exist in a reduced sub-space when the nonlinearities are localised
in a single portion of the system. This results in a simplified modelisation of the associated ROM, whose nonlinear contributions can
be described in a reduced form. More importantly, the proposed method represents a natural extension of the current identification
practices in the industrial environment as the identification of the nonlinear contributions is considered as a second stage after
the identification of the linear behaviour of the system. To validate the identified MDOF-ROM, a lightweight structure featuring
lumped masses and elastic nonlinear connections is experimentally investigated. Numerical time histories and FRCs are compared
with experimental measurements obtained from forward/backward frequency sweeps. In particular, the validation is performed
against sets of experimental data obtained at excitation conditions different from the one used during the identification process.
The results show a good match between the numerical and experimental data at all the considered excitation levels in terms of both
amplitude and jumps, showing the effectiveness of the proposed identification procedure and demonstrating that MDOF-ROMs can
correctly catch the complex dynamics of lightweight structures in nonlinear regimes.
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Fig. 16. SDOF (a) and MDOF (b) models utilised in the outlined mass estimation procedure.

Appendix A

In order to study the conservative behaviour of the system, the excitation and damping terms are removed from the equation of
motion. The following expression represents the undamped unforced behaviour of the ROM:

�̇�1 = 𝑤1 (15a)

�̇�1 = −
𝑘1
𝑚
𝑧1 −

𝑘2
𝑚
(𝑧1 − 𝑧2) −

1
𝑚
𝑁𝑅𝐹 ,1(𝑧1) (15b)

�̇�2 = 𝑤2 (15c)

�̇�2 = −
𝑘3
𝑚
𝑧2 +

𝑘2
𝑚
(𝑧1 − 𝑧2) −

1
𝑚
𝑁𝑅𝐹 ,2(𝑧2) (15d)

where 𝑁𝑅𝐹 ,1(𝑧1) and 𝑁𝑅𝐹 ,2(𝑧2) denote the nonlinear restoring forces purified by the nonlinear damping terms. In particular, these
terms can be expressed as follows:

{

𝑁𝑅𝐹 ,1 = 𝑎1𝑧21 + 𝑎4𝑧31;
𝑁𝑅𝐹 ,2 = 𝑏1𝑧22 + 𝑏4𝑧32;

(16)

The calculation of the conserved mechanical energy is straightforward with the kinetic 𝐸𝑘 and potential 𝐸𝑝 energy denoted by:

𝐸𝑘 = 1
2
𝑤2

1 +
1
2
𝑤2

2 (17a)

𝐸𝑝 =
1
2
𝑘1
𝑚
𝑧21 +

1
3
𝑎1
𝑚
𝑧31 +

1
4
𝑎4
𝑚
𝑧41 +

1
2
𝑘3
𝑚
𝑧22 +

1
3
𝑏1
𝑚
𝑧32 +

1
4
𝑏4
𝑚
𝑧42 +

1
2
𝑘2
𝑚
(𝑧1 − 𝑧2)2 (17b)

Following the procedure outlined in Ref. [66] it is possible to continue periodic orbits of conservative systems by introducing the
nfolding parameter 𝜆. A term 𝜆𝑤 is added to the system, in Eqs. (15b) and (15c), to allow the continuation procedure. Then, a fixed
oint of the system, i.e. an equilibrium position at zero velocity and zero displacements, is continued with respect to the unfolding
arameter which is initialised with a negative value. At 𝜆 = 0 a Hopf bifurcation of the system is found; this bifurcation generates
he periodic oscillations of the conservative system which can be continued with respect to unfolding parameter 𝜆. It is worth
oting that the introduced parameter 𝜆 represents a damping element which is kept null during the whole continuation procedure.
onetheless, to reduce the numerical oscillation of the unfolding parameter is possible to introduce the additional stabilising terms
s suggested in Ref. [66]:

�̇�1 = 𝑤1 + 𝜆 𝜕𝐸
𝜕𝑧1

(18a)

�̇�1 = −
𝑘1
𝑚
𝑧1 −

𝑘2
𝑚
(𝑧1 − 𝑧2) −

𝑎1
𝑚
𝑧21 −

𝑎4
𝑚
𝑧31 + 𝜆 𝜕𝐸

𝜕𝑤1
(18b)

�̇�2 = 𝑤2 + 𝜆 𝜕𝐸
𝜕𝑧2

(18c)

�̇�2 = −
𝑘3
𝑚
𝑧2 +

𝑘2
𝑚
(𝑧1 − 𝑧2) −

𝑏1
𝑚
𝑧22 −

𝑏4
𝑚
𝑧32 + 𝜆 𝜕𝐸

𝜕𝑤2
(18d)

where 𝐸 = 𝐸𝑘 + 𝐸𝑝 represents the total conserved energy. By computing the partial derivatives, Eq. (18) can be transformed into
the final set of equations which is used to compute the backbone curves.

Appendix B

The mass of a mechanical oscillator can be estimated by measuring the change in natural frequencies induced by adding known
mass to the system, as schematically shown in Fig. 16. For example, in the case of an SDOF system, the natural frequency is
𝜔𝑛 =

√

𝑘∕𝑚. If 𝜔∗
𝑛 =

√

𝑘∕(𝑚 + 𝛥𝑚) represents the natural frequency when an additional mass 𝛥𝑚 is applied to the system, the
original mass 𝑚 of the system can be evaluated by knowing 𝛥𝑚, 𝜔𝑛, and 𝜔∗

𝑛:

𝑚 =
𝛥𝑚𝜔∗

𝑛
2

2 ∗2
(19)
18

𝜔𝑛 − 𝜔𝑛
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This expression is derived by imposing that the stiffness 𝑘 of the oscillator does not change when the additional mass is considered.
Experimentally, the natural frequencies 𝜔𝑛 and 𝜔∗

𝑛 can be estimated using experimental modal analysis techniques and the added
mass 𝛥𝑚 can be directly measured. The outlined procedure is also applicable to the MDOF system investigated in this paper. In this
case, two additional masses 𝛥𝑚 should be applied to the system as shown in Fig. 16 (b). The squared natural frequencies of the
system are:

𝜔2
𝑛,1 =

𝑘1 + 2𝑘2 + 𝑘3 −
√

𝑘21 − 2𝑘1𝑘3 + 4𝑘22 + 𝑘23
2𝑚

(20a)

𝜔2
𝑛,2 =

𝑘1 + 2𝑘2 + 𝑘3 +
√

𝑘21 − 2𝑘1𝑘3 + 4𝑘22 + 𝑘23
2𝑚

(20b)

The sum of the squared natural frequencies becomes 𝜔2
𝑛,1 +𝜔2

𝑛,2 = (𝑘1 + 2𝑘2 + 𝑘3)∕𝑚 and it can be expressed in the same form as an
SDOF system, i.e. as 𝜔2

𝑒𝑞 = 𝑘𝑒𝑞∕𝑚. Thus, 𝑚 can be identified using the following expression:

𝑚 =
𝛥𝑚𝜔∗

𝑒𝑞
2

𝜔2
𝑒𝑞 − 𝜔∗

𝑒𝑞
2

(21)

Using numerical procedures, this approach can be extended to the case when the values of the masses are different.
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