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A B S T R A C T   

The formulation of high-concentration monoclonal antibody (mAb) solutions in low dose volumes for auto-
injector devices poses challenges in manufacturability and patient administration due to elevated solution vis-
cosity. Often many therapeutically potent mAbs are discovered, but their commercial development is stalled by 
unfavourable developability challenges. In this work, we present a systematic experimental framework for the 
computational screening of molecular descriptors to guide the design of 24 mutants with modified viscosity 
profiles accompanied by experimental evaluation. Our experimental observations using a model anti-IL8 mAb 
and eight engineered mutant variants reveal that viscosity reduction is influenced by the location of hydrophobic 
interactions, while targeting positively charged patches significantly increases viscosity in comparison to wild- 
type anti-IL-8 mAb. We conclude that most predicted in silico physicochemical properties exhibit poor correla-
tion with measured experimental parameters for antibodies with suboptimal developability characteristics, 
emphasizing the need for comprehensive case-by-case evaluation of mAbs. This framework combining molecular 
design and triage via computational predictions with experimental evaluation aids the agile and rational design 
of mAbs with tailored solution viscosities, ensuring improved manufacturability and patient convenience in self- 
administration scenarios.   

1. Introduction 

Therapeutic monoclonal antibodies (mAbs) have emerged as indis-
pensable tools in the treatment of chronic diseases such as diabetes, 
cancer, and autoimmune disorders. [1] Empowering patients with 
self-administration regimens, subcutaneous injection is the route of 
administration of choice for the delivery of these life-changing thera-
pies, necessitating formulation design strategies to accommodate small 
injection volumes. [2] However, this pursuit of patient convenience 
presents a formidable challenge: how to achieve high mAb formulation 
concentrations (>100 mg/mL) at low dose volumes (0.5–1 mL) without 
facing developability challenges, a term which refers to the likelihood of 
a mAb molecule to become a suitable candidate in the context of 

manufacturability, safety, and efficacy at a reasonable cost and time-
frame. [3] Developability challenges in the context of mAbs include a 
high risk of aggregation and elevated solution viscosity at dose-relevant 
concentrations, which have implications for quality, safety and efficacy 
throughout the mAb product lifecycle. [4] 

The viscosity of mAb formulations, a critical parameter governing 
dosing and delivery efficacy, is intricately linked to protein-protein in-
teractions arising from the mAb amino acid sequence and formulation 
excipient composition. [5,6] 

High concentration mAb formulations exacerbate these interactions, 
leading to increased aggregation risk and elevated formulation viscosity 
(>30 centipoise). [7] High mAb formulation concentrations result in an 
exponential increase in protein-protein interactions leading to a higher 
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aggregation risk. The diffusion interaction parameter (kD) is used to 
measure protein-protein interactions and colloid stability, with high 
viscosity mAbs generally exhibiting large negative kD values (attrac-
tive). [8–10] 

In this pursuit, various strategies have been employed to modulate 
protein-protein interactions and mitigate mAb solution viscosity. These 
strategies have ranged from the alteration of electrostatic properties by 
changing formulation buffer pH and salt composition, to employing 
viscosity reducing excipients (e.g., amino acids) to increase the solubi-
lity of partially folded and unfolded states. [11–13] Furthermore, ad-
vancements in sequence-based engineering offer a promising avenue for 
targeting solvent-accessible electrostatic patches on the mAb surface, 
with the potential to revolutionize the mAb design landscape. 

In the emerging era of precision medicine, the integration of high 
throughput in silico predictions and molecular triaging approaches holds 
immense potential in streamlining early-stage discovery campaigns. 
[14–16] By elucidating the intricate relationship between mAb molec-
ular descriptors and developability risks, [17] these cutting-edge ap-
proaches empower researchers to more expediently identify candidate 
mAbs with superior physicochemical properties, paving the way for 
more agile drug development pipelines with less attrition. 

Current landscape analyses and models defining optimal develop-
ability for mAbs are based on clinically approved drug products with 
optimal characteristics. However, amidst these advancements, it is 
imperative to broaden our focus beyond clinically approved mAbs and 
encompass those with unknown or sub-optimal developability charac-
teristics. In doing so, we expand our understanding of how to navigate 
high formulation concentration solution viscosity more effectively, ul-
timately enhancing the success rate of mAb drug development en-
deavors. [8] 

In this work, we harness computational molecular descriptors as a 
guiding tool for the design and triage of a mutant mAb panel altering 
solvent-accessible hydrophobic and electrostatic surface patch area 
coverage. Through a combined computational and experimental pipe-
line, we examine the relationship between single-point mutations and 
the biophysical properties of a model antibody, anti-IL-8 mAb. Our 
findings show the site-specific and strategy-dependent impact of muta-
tions based on surface patch composition, offering an insight into 
downstream effects of molecular alterations. We report significant al-
terations in surface potential from single-point mutations in the variable 
region and observe favourable developability characteristics for hy-
drophobic or negative patch-disrupting mutants. We observe correla-
tions between hydrophobicity-based molecular descriptors and colloidal 
parameters in predicting hydrophobicity-driven self-associations, 
impacting solution viscosity at high mAb concentrations. 

2. Results 

The goal of this project was to engineer new mutant variants by 
predicting mutations by modulating antibody electrostatic and hydro-
phobic properties that control mAb conformation and viscosity. 

2.1. Generation of the anti-IL-8 mAb mutant panel 

Using homology models of anti-IL-8 mAb, we compared the impact 
of targeting solvent-accessible hydrophobic and charged patches on 
solution viscosity at high mAb concentration. [18–20] Patch analysis of 
a anti-IL-8 mAb wild-type (WT) IgG1 homology model identified resi-
dues contributing to positive, negative, and hydrophobic patches as 
potential candidates for mutation. We then determined mutant physi-
cochemical molecular descriptors and performed patch analysis. 

2.2. Homology modelling and patch analysis of WT anti-IL-8 mAb 

We constructed homology models of the full anti-IL-8 mAb structure 
and the variable fragment (Fv) of WT anti-IL-8 mAb in the MOE 

molecular modelling suite. [21] Since the fragment antigen-binding 
region (Fab) crystal structure (PDB 5OB5) matched the framework 
and complementarity determining regions (CDRs) perfectly, patch 
analysis was conducted on resulting structures (Fig. 1a). The surface 
potential mapped onto the anti-IL-8 mAb surface (Fig. 1b), shows 
negative, positive, and hydrophobic patch distributions. 

Overall, we observed the largest contribution to the surface potential 
of WT anti-IL-8 mAb IgG (Fig. 1b) from hydrophobic (3790 Å2), positive 
(2940 Å2) and negative (2250 Å2) patches, with a net charge of 
+ 22.68 C (pH 6). A similar trend was seen with the anti-IL-8 mAb Fv 
(Fig. 1d and e), with surface area coverage of 520, 160, and 50 Å2 for 
hydrophobic, positive and negative patches, respectively, and a net 
charge of + 0.05 C (pH 6). We then identified mutant residues in the 
anti-IL-8 mAb framework and CDRs that would significantly disrupt 
hydrophobic, positive, and negative patches (Supplementary file 1), 
potentially influencing protein-protein interactions and self-association. 

2.3. Patch analysis of anti-IL-8 mAb mutants 

We explored the effects of single point mutations on the anti-IL-8 
mAb charge and hydrophobic patch distributions, by introducing Fv 
point mutations. Employing strategies targeting positive, hydrophobic, 
and negative patches, we observed changes in electrostatic surface po-
tentials following framework region and CDR mutations (Fig. 2). 
[18–20] The anti-IL-8 mAb Fv carries a net positive charge (+0.05 C, pH 
6.0), with heterogeneous surface charge distribution, resulting in 
asymmetry between heavy and light chain net charges (3.93 C and 
− 1.23 C, respectively). Patch analysis of the WT Fv revealed significant 
hydrophobicity (520 Å2) with prevalent surface coverage by positive 
patches (blue). 

Residues with the highest contributions to positive (blue), negative 
(red), and hydrophobic (green) patches were identified from patch 
analysis of the anti-IL-8 mAb WT Fv homology model. Key residues for 
sequence-based modification included those contributing to positive 
(blue) (e.g., K42, K23, R18, K13, R85 and R70 for the framework region, 
and R53 and K63 for CDRs), negative (red) (e.g., D70, E10, E87, D17 for 
the framework region, and E30A, D56, Q27 and D28 for CDRs) and 
hydrophobic (green) (e.g., F83, L110, V11, V5 for the framework region, 
and W32, Y99, F57 and Y55 for CDRs, Supplementary file 1) patches. 

Global patch analysis of anti-IL-8 mAb Fv mutants (Fig. 2) revealed 
that R→G and K→E mutants (positive patch-targeting [18]) exhibited 
reduced positive patch coverage, while V/W/L/F→Q and F/Y→L mu-
tants (hydrophobic patch-targeting [19]) showed reduced hydrophobic 
patch area coverage. D→N and E→Q mutants (negative patch-targeting 
[20]) displayed a reduction in negative patch area coverage. However, 
these mutations did not exclusively impact the targeted patch, with 
depletion and enhancement of neighbouring patches being observed. 

Next, we computed physicochemical molecular descriptors for all 
candidate mutant Fv homology structures, some of which have shown 
prior positive or negative correlations with viscosity (Supplementary file 
2). [22,23] We found that charge-based mutant Fvs resulted in changes 
in predicted net charge, ensemble charge (ens_charge), zeta potential, 
isoelectric point (pI_seq and pI_3D), and light and heavy chain charge 
imbalance (Fv_chml). Significant differences in hydrophobicity de-
scriptors were observed with mutants targeting hydrophobic patches 
(Supplementary file 2). [19] The therapeutic antibody profiler (TAP) 
[24,25] was used to predict developability risk for each candidate 
mutant (Supplementary file 3). All mutants were amber-flagged for 
hydrophobic patches near CDRs, red-flagged for a positive patch tar-
geting mutant (K42E) and a hydrophobic patch targeting mutant 
(W102Q). We evaluated charge symmetry, with three positive 
patch-targeting mutants (K42E, R18G and R53G) being amber flagged. 
From TAP analyses, we identified specific mutants (W102Q, R18G, 
R53G and K42E) as the ‘least developable’ candidates. 
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2.3.1. Light chain-heavy chain charge separation 
We observed shifts in charge distribution profiles reflected in Fv_chml 

and FvCSP descriptors, which indicate charge imbalances between 
heavy (VH net charge) and light chains (VL net charge). In all cases, VL 
net charge was negative (− 1.23 C for the anti-IL-8 mAb WT) and VH net 
charge was positive (+3.93 C for the anti-IL-8 mAb WT). Since FvCSP is a 
product of VH and VL charges, we noted a larger difference with 
negatively-charged VL mutants. For example, with VL and VH charges at 
− 1 C and − 4 C, respectively, a 1 C drop in VL net charge reduced 
FvCSP from − 4 to − 8 C. A 1 C reduction in VH net charge reduced 
FvCSP from − 4 C to − 3 C. When net charges of either VL or VH chain 
were 0, FvCSP was 0, potentially misinterpreted as no existing charge 
differences between chains. [26] This underscores the importance of 
Fv_chml descriptors, which subtract VL charge from VH charge. 

Mutants targeting negative patches in VL, [20] resulted in a ≤ 0.91 C 
charge increase, with a similar increase seen for VH mutants. For nearly 
all VL D→N mutants, we observed increased FvCSP and reduced Fv_chml, 
suggesting enhanced charge symmetry between VH and VL chains. 
However, VH E→Q mutants showed a reduction in FvCSP and increased 
Fv-chml, indicating increased charge imbalance, absent in Q27N. 

Conversely, mutants targeting positive patches [18] exhibited 
increased VL negative charge (K42E: − 1.9 C), resulting in more negative 
FvCSP and increased Fv_chml descriptors. VH mutants had reduced VH 
charge, approaching VL charge (~3 C), leading to increased FvCSP and 
decreased Fv_chml, reflecting reduced charge imbalance between VL and 
VH. Mutants primarily targeting hydrophobic patches [19] resulted in 
FvCSP and Fv_chml comparable to anti-IL-8 mAb WT. These data 
emphasise that single-point mutations in VL versus VH depend on parent 

WT mAb initial charge symmetry and must be evaluated on a 
case-by-case basis. 

2.3.2. Triage of candidate mutants 
The anti-IL-8 mAb mutant panel was ranked using a summed nor-

malised score, guiding our selection of mutants for expression and 
physicochemical measurements (Supplementary file 5). We selected two 
hydrophobic-targeting mutants, four negative patch-targeting mutants, 
and two positive patch-targeting mutants for expression and subsequent 
formulation at high concentration (>200 mg/mL). We anticipated that 
the W32Q mutant, disrupting hydrophobic patches, would significantly 
reduce viscosity relative to anti-IL-8 mAb WT, while mutants disrupting 
positive patches (R53G and K42E) would likely show increased viscosity 
at high concentrations. 

2.4. Biophysical parameters of the expressed mutant panel 

We aimed to establish a comprehensive measurement pipeline for 
the expressed anti-IL-8 mAb mutant panel, correlating these observa-
tions with predicted physicochemical descriptors and viscosity-related 
parameters to understand factors underlying elevated viscosity in 
high-concentration antibody formulations. We confirmed the sequence 
identity and post-translational modifications of WT and mutant anti-IL-8 
mAb via mass spectrometry-based peptide mapping (Supplementary file 
6). Additionally, all mutants met the monomeric purity threshold by 
aSEC (analytical size-exclusion chromatography≥ 95 %,) (Supplemen-
tary file 6). Apart from W32Q (CDRH2 mutant), mutants retained an-
tigen binding affinity and kinetics equivalent to WT anti-IL-8 mAb 

Fig. 1. Homology models of anti-IL-8 mAb. a, the full IgG structure was modelled using the PDB 5OB5 template for the Fab region and IgG model in the MOE 
platform The Fc (grey), constant light chain 1 and heavy chain 1 (blue), variable heavy chain (dark green) variable light chain (light green), heavy chain CDRs (red) 
and light chain CDRs (purple) were labelled using Kabat annotation. b, the hydrophobic (green), positive (blue), and negative (red) patches applied onto the full IgG1 
homology model to demonstrate the exposed surface charges and accessible non-polar regions as potential sites for promoting protein-protein interactions. c, su-
perimposition, and alignment of the anti-IL-8 mAb WT full IgG homology model (pink) onto the template 1IGY PDB IgG1 structure (blue) to model the Fc structure. d, 
the Fv region was modelled separately and used for most molecular descriptor calculations. e, patch analysis of the Fv to aid identification of candidate sites for 
single-point mutation. f, superimposition and alignment of the anti-IL-8 mAb WT Fv homology construct (pink) onto the template 5OB5 PDB fAb structure (blue) that 
was in complex with the GroBeta ligand (green). 
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(Supplementary file 6). Next, we analysed the mutants for their hydro-
phobic, colloidal, electrostatic, and conformational properties. 

2.4.1. Electrostatic properties of the anti-IL-8 mAb mutant panel and the 
correlation between predicted and experimental parameters 

Therapeutic antibodies are typically formulated at high concentra-
tions in the pH 5.2–6.3 range, where the constant regions exhibit a 
positive net charge, driving repulsive interactions. Variations in charges 
within the variable region can influence viscosity at high concentra-
tions. [23,27] 

Two strategies were employed to generate mutants, targeting posi-
tive and negative patches. Therefore, we evaluated electrostatic prop-
erties of the mutant anti-IL-8 mAb panel and correlated them with 
viscosity-concentration profiles. Predicted net charge, isoelectric point 
(pI), and zeta-potential based on anti-IL-8 mAb Fv (Supplementary file 
2) were compared with experimental measurements (Fig. 3). 

Spatial charge distributions of mutants were visualised with two- 
dimensional maps (Supplementary file 4) to track changes resulting 

from single point mutations. For example, the D17N mutation led to the 
loss of a 30 Å2 negative patch and a similarly sized hydrophobic patch, 
with adjacent positive patch surface distributions shifting (WT 2D map 
numbers 9 and 18 → D17N 2D map numbers 10 and 6). Changes in 
measured isoelectric point (pI) were observed, with increased charge for 
negative patch disrupting mutants, decreased charge for positive patch 
disrupting mutants, and no significant changes for hydrophobic patch 
disrupting mutants. (Fig. 3e). The majority of anti-IL-8 mAb molecules 
displayed a negative zeta potential (Fig. 3f), except for W32Q and D56N, 
which had a positive zeta potential. D17N and R53G showed significant 
increases in zeta potential, while K42E (a positive patch-disrupting 
mutant) exhibited a reduced zeta potential relative to the WT. 

We correlated experimental charge data with predicted in silico zeta 
potential and pI descriptors using linear regression(Fig. 3g). While no 
correlation was found between the predicted and experimental zeta 
potential (Pearson correlation coefficient, R =0.47), a strong positive 
correlation was observed for sequence- and structure-based pI de-
scriptors and measured pI (R=0.99 and 0.94, respectively). 

Fig. 2. Patch analysis of WT (a) and mutant Fv homology models disrupting hydrophobic patches (green- c-b), negative patches (red- d, f), and positive 
patches (blue- e, g). VL (light green), VH (dark green), heavy chain CDRs (red), and light chain CDRs (purple) are shown. The WT (left) and corresponding mutant 
(right) are represented for each molecule. Arrows show the location of the single point mutation. Dashed lines represent residues behind the field of view. 
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Fig. 3. Negative and positive patch disrupting mutants show a strong correlation between predicted and measured PI. a, Poisson-Boltzmann surfaces were 
mapped onto all anti-IL-8 mAb mutant Fv models, categorised by location, demonstrating the impact of single-point mutations on electrostatic distributions around 
the mutation site (marked by an arrow). b-f, Charge-based profiling of anti-IL-8 mAb mutant panel with cIEF (N = 2) g, correlation analyses of zeta-potential showed 
a weak corelation between the in silico descriptor and experimental zeta-potential (N = 3) (R=0.47). Strong positive correlations were observed for pI_seq and pI_3D 
(sequence and structure based isoelectric point predictions) with the experimental isoelectric points (R=0.99 and 0.94, respectively). A one-way ANOVA with 
Dunnett’s comparison test was used to compare anti-IL-8 mAb mutants with the WT. * ** denotes a P < 0.001, * * P < 0.01. Non-significant differences are not 
represented. R values were computed from simple linear regression of in silico molecular descriptors and experimental values. 
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2.4.2. Hydrophobicity of the mutant anti-IL-8 mAb panel and the 
correlation between predicted and measured parameters 

As stated above, protein-protein interactions and self-association at 
high formulation concentrations, potentially lead to elevated viscosity. 
Here, we explored the role of alterations in hydrophobic surface area 
coverage as a strategy to reduce viscosity, correlating predicted hydro-
phobicity descriptors with experimental measures. [19] 

Using Hydrophobic Interaction Chromatography (HIC), we probed 
changes in hydrophobicity among the anti-IL-8 mAb mutant panel. We 
anticipated reduced hydrophobicity for mutants targeting hydrophobic 
patches, and smaller changes for those targeting charged patches (Fig. 4 
and Supplementary file 4). Indeed, we observed a shorter retention time 
for W32Q, consistent with predicted reduction in hydrophobicity. Un-
expectedly, D70N also showed reduced retention time compared to WT, 
contrary to predictions. Interestingly, V5Q, predicted to have reduced 
hydrophobicity, exhibited longer retention time. However, this contra-
dicted predictions, possibly due to differences in targeted hydrophobic 
patch sizes. Mutants in the CDRL region (D28N, D56N and R53G) 
showed longer retention times, correlating with spatial hydrophobicity 

profiles (Supplementary file 2 and 6). Using correlation analysis, we 
found a strong potential correlation (R=0.87) between normalised hy-
drophobicity score and summed residue contributions to hydrophobic 
patch area (res _hyd), offering insights into ranking the hydrophobicity 
of anti-IL-8 mAb mutants. 

2.4.3. Conformational stability of the mutant anti-IL-8 mAb panel 
We employed intrinsic fluorescence DSF to measure the effects of 

single-point mutations on anti-IL-8 mAb conformational stability. We 
used first derivative 350/330 nm ratio traces and scattering traces were 
used to calculate the unfolding onset temperature (Tonset), melting 
temperatures, and the temperature of aggregation onset (Tagg). Overall, 
mutants showed comparable thermal stability, except for W32Q and 
R53G (Supplementary file 6). W32Q (hydrophobic patch-targeting) 
exhibited decreased Tonset, Tagg and Tm1, suggesting reduced thermal 
stability. This reduction may stem from the disruption of a large hy-
drophobic patch (150 Å2), critical for stabilising the CDRH2 domain 
secondary/tertiary structure. R53G (positive patch-disrupting mutant), 
also showed reduced thermal stability (decreased Tonset). 

Fig. 4. Hydrophobic Interaction Chromatography (HIC) of the WT and mutant anti-IL-8 mAb panel and correlation with predicted hydrophobicity molecular de-
scriptors. a, protein patch surface maps are depicted for all anti-IL-8 mAb mutants, filtered for hydrophobic patches (green). b, HIC retention time and c, corre-
sponding HIC peak widths for the anti-IL-8 mAb mutants (N = 2). Statistical significance was assessed with a one-way ANOVA with Dunnett’s comparison test to WT 
(*** denotes a P < 0.001, * P < 0.1). Non-significant differences are not represented. d, correlation analysis between in silico hydrophobicity descriptors and 
experimental retention time for anti-IL-8 mAb mutants. Strong correlations (R ≥±0.8) are labelled in white. e, scatterplots showing linear correlations for anti-IL-8 
mAb mutants with P = 0.95 bivariate density ellipses. All antibodies are colour-coded according to mutants targeting positive (red), negative (blue), and hydrophobic 
(green) patches. 
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2.4.4. Propensity for interactions promoting self-association 
AC-SINS and high throughput diffusion self-interaction parameters 

(kD) were used to determine diffusion coefficients (Supplementary file 6) 
as surrogate measures of propensity for protein-protein interactions 
(Fig. 5). 

AC-SINS detects self-association by red shifts in UV-Vis spectra 
(Fig. 5a), indicating increased particle size. Compared to the anti-IL-8 
mAb WT, D70N and W32Q mutants showed reduced red shift in 
absorbance measurements (Fig. 5b, d), suggesting decreased self- 
association propensity. 

The kD parameter, indicative of protein-protein interaction risk, was 
comparable to WT for all mutants except W32Q, which, although not 
statistically significant, had a notably less negative kD, signifying 

reduced short-range attractive self-interactions. [28] (Fig. 5 h). This was 
consistent with a less negative second virial coefficient (B22) for W32Q 
(Supplementary file 6). Overall, both AC-SINS and kD data suggest a 
reduced aggregation risk for W32Q. 

TANGO aggregation propensity scores, serving as in silico predictors 
of aggregation, negatively correlated with kD, soluble aggregates (-high 
molecular weight species, %HMwS) and hydrodynamic diameter (Z- 
Ave) (Fig. 5j), indicating solvent exposure plays a key role in driving 
mAb self-association. [29] 

2.4.5. Viscosity-concentration profiles of anti-IL-8 mAb mutants 
We evaluated the viscosity of the anti-IL-8 mAb panel at various 

concentrations using microfluidic rheometry and compared their 

Fig. 5. WT and mutant anti-IL-8 mAb panel propensity for self-association as measured with AC-SINS and self-interaction parameter (kD), categorised by mutation 
location, and coloured by mutation strategy. All antibodies are colour-coded according to mutants targeting positive (red), negative (blue), and hydrophobic (green) 
patches. a-d, corresponding AC-SINS data (N = 4) e-h, the self-interaction parameter calculated from analysis of diffusion coefficients (N = 3) measured by DLS 
(1–30 mg/mL). A dotted line at − 15 mL/g represents an arbitrary threshold for kD. A one-way ANOVA with Dunnett’s comparison test to WT Non-significant 
differences are not represented. No significant differences were identified for kD values between mutants and WT, but W32Q showed a less negative mean kD. i, 
colloidal interaction experimental results (kD and mean red shift) and hydrodynamic size (Z_ave) and the % high molecular weight species (soluble aggregates) were 
cross-correlated with in silico molecular descriptors describing the structural accessibility (Res-ASA and BSA_LC_HC), the charge/hydrophobicity ratios, and the 
aggregation propensity scores. These were selected describe the intrinsic biophysical profile of the anti-IL-8 mAb mutants and their self-interaction propensity. Strong 
correlations (R ≥ ± 0.8) are labelled in white. 
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viscosity profiles to the WT molecule. Non-Newtonian behaviours were 
not observed across shear sweep experiments (data not shown), so 
average apparent viscosities were determined with exponential growth 
fits (Fig. 6a). Among the mutants, D70N (negative patch-disrupting 
FWRL) and W32Q (hydrophobic patch-disrupting CDRH), showed 
reduced viscosity compared to WT. 

2.4.6. Correlating in silico descriptors with biophysical characterisations 
We correlated all molecular descriptors used for designing anti-IL-8 

mAb mutants with their biophysical characteristics (Fig. 6b). For 
charge-based in silico descriptors, the strongest correlations were 
observed with mean experimental pI (Fig. 3). Weak negative correlations 
were noted between net charge and pI_seq and the mean apparent viscosity 
(R= − 0.6). A strong negative correlation was found between 
patch_cdr_pos area and the mean hydrodynamic diameter (R= − 0.85). 

Regarding hydrophobicity-based descriptors, strong correlations 
were observed with HIC retention time (Fig. 4), affinity (KD), AC-SINS red 
shift and the self-association parameter kD. Some strong correlations 
were also noted between res _hyd (R=0.89), normalised hydrophobicity 
scores (R=0.88), and hydrophobic patch counts (Fv and near CDRs) 
(R=− 0.94 and − 0.79, respectively) with the Tm1 unfolding temperatures, 
suggesting the influence of exposed hydrophobic patches on confor-
mational stability of these anti-IL-8 mAb mutants. The number of hy-
drophobic patches near CDRs was correlated with the temperature of 
aggregation onset (Tagg). Additionally, a correlation was observed 

between the number of hydrophobic patches and the % high molecular 
weight species from the aSEC analysis (R=0.86), aligning with hypotheses 
on the impact of hydrophobic interactions in the mechanism for ag-
gregation. [30,31] Strong correlations were observed with the TANGO 
aggregation propensity scores to hydrodynamic diameter (R=0.94), HIC 
retention time (R=0.83) and kD (R=− 0.8). Finally, strong negative 
correlations were seen with Tomar and Sharma viscosity models, and 
experimental pIs (− 0.98), which is expected as these models are pri-
marily based on charge-related parameters. 

3. Discussion 

In this study using a combination of computational and experimental 
approaches we assess how single-point mutations affect surface exposed 
electrostatic parameters, hydrophobicity, colloidal, and viscosity 
behaviour at high formulation concentration in an anti-IL-8 model 
antibody. We applied three sequence-structure based strategies to 
design mutants based on targeting charged (positive and negative) and 
hydrophobic patches, so that we could compare their effectiveness in 
predicting developability issues. [32,33] We were particularly inter-
ested in controlling protein-protein interactions known to govern 
elevated solution viscosity at high formulation concentrations. 

Our in silico predictions of anti-IL-8 mAb physicochemical de-
scriptors revealed notable changes in surface-exposed charged and hy-
drophobic patches. Mutations in the CDR have previously been shown to 

Fig. 6. anti-IL-8 mAb mutant panel viscosity correlation heatmap. a, Mean apparent viscosity-concentration profiles measured at 25 ◦C for all anti-IL-8 mAb 
variants (<120 mg/mL). Dotted grey line at 30 cP represents ‘acceptable viscosity’. All measurement data were fitted to exponential growth equations through a least 
squares fitting method. b, correlation heat map values are reported with strong correlations (R > ± 0.8) in white font. 
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reduce mAb viscosity and antigen affinity loss, so we expanded our 
screening to include mutants in the anti-IL-8 mAb heavy and light chain 
framework regions (Supplementary file 6) [10,34] Except for W32Q (a 
CDRH mutation), seven mutants (87.5 %) maintained binding affinities 
for IL-8 equivalent to the WT anti-IL-8 mAb (3.9 nM). W32Q, however, 
exhibited a five-fold reduction in hydrophobic patch area coverage, 
suggesting a critical role for tryptophan in antigen binding. This 
observation aligns with prior studies, where substituting the tryptophan 
with non-polar and polar amino acids retained binding affinity for 
phenylalanine mutants, emphasising the importance of the aromatic 
ring in antigen binding. [4] 

The monomeric purity and aggregation status were acceptable for all 
anti-IL-8 mAb mutants and equivalent to the WT. Overall, point muta-
tions in the anti-IL-8 mAb positive and negative patches significantly 
altered surface potential, inferred colloidal stability, charge heteroge-
neity and net charge (Fig. 3). 

3.1. Charge-disrupting mutants do not mitigate for elevated viscosity at 
high-concentration 

Adjusting the electrostatic surface potential of mAbs is routinely 
explored during formulation development, focusing on buffer compo-
sition, which alters the excluded volume of the protein in solution (the 
electroviscous effect). [35,36] Chow et al. [18] demonstrated viscosity 
reductions in an IgG4 Fab fragment by reducing charge imbalance across 
the Fv (R→G and K→E mutants), indicating the impact of positive patch 
disruption on protein-protein interactions. Conversely, Apgar et al. [20] 
observed viscosity reduction in mAbs by reducing negative charge, as 
evidenced by viscosity reduction for D→E to N→Q mutants. [32] 

In this study, the anti-IL-8 mAb WT Fv homology construct exhibited 
a high proportion of positive patches, indicating a potentially high 
baseline electrostatic potential with developability risks. We used 
various in silico molecular descriptors (supplementary information) to 
assess developability risks arising from anti-IL-8 mAb electrostatic 
properties. We found negative patch-disrupting mutants reduced charge 
imbalance [23], increased net charge, [37] and ensemble charges, [26] 
which have previously been correlated with viscosity reduction. These 
mutants also exhibited higher pIs, potentially enhancing anti-IL-8 mAb 
colloidal stability. Conversely, positive patch-disrupting mutants 
showed reduced ensemble charges and significantly decreased pIs, 
suggesting diminished colloidal stability. 

Contrary to the predicted net charges and surfaces charges, Zeta 
potential valuesfor most anti-IL-8 mAb mutants (except W32Q and 
D56N which had positive zeta potentials) revealed predominantly 
negative zeta potential values at pH 6.0, consistent with a net negative 
surface charge observed in the WT anti-IL-8 mAb The discrepancies 
between computed predicted charges (+22.68 C for WT Fv at pH 6) and 
the negative measured zeta potentials can be attributed to multiple 
factors. One is a lack of accurate modelling of buffer components, 
affecting surface bound ions. Another is not accounting for other po-
tential species in the system, such as aggregates or fragments carrying 
different surface charges. Furthermore, charge computations did not 
account for multiple molecules in the system and thereby neglected 
electrostatic effects from protein-protein interactions. These factors may 
also explain the lack of correlation to isoelectric points, which were 
measured at a much lower concentration (0.4 mg/mL versus 5 mg/mL 
for cIEF and zeta potential, respectively). The positive patch disrupting 
mutant, R53G, had more positive zeta potential but the second-lowest pI 
value in the mutant panel. Potential clustering of this mutant even at 
5 mg/mL could be increasing the surface charge in this instance. 
Conversely, the K42E mutant exhibited a significantly lower zeta po-
tential compared to the WT, supporting the notion that mutants dis-
rupting positive patches tend to have more negative zeta potentials. 

Therapeutic antibody profiler (TAP) predictions provide charge- 
based metrics for the anti-IL-8 mAb mutants, with flags indicating 
charge symmetry primarily in R53G and K42E positive patch targeting 

mutants (Supplementary file 1). However, all TAP scores for both pos-
itive and negative disrupting mutants fell within an ‘acceptable’ range, 
suggesting limited discriminatory power of TAP. This lack of differen-
tiation in TAP scores has been noted in previous studies, highlighting 
potential limitations in its applicability for comprehensive mAb char-
acterization. [8] 

3.2. Mutants targeting hydrophobic patches exhibit altered viscosity 

Research strategies have explored strategies beyond neutralising 
charged patches to reduce hydrophobic interactions, for mitigating high 
concentration mAb stability and viscosity risks. [19] We computed 
hydrophobicity-based descriptors for correlation with viscosity and 
developability, and compared these with HIC retention times (Fig. 4). 
Our analyses revealed a reduced hydrophobicity for W32Q, consistent 
with its predicted decrease in solvent-accessible hydrophobic patch 
area. However, smaller changes in hydrophobic patch area coverage 
were undetectable via HIC. Mutants with the lowest HIC retention times 
demonstrated lower solution viscosities (Fig. 6), indicating a significant 
role for hydrophobic interactions in driving self-association. Strong 
correlations were observed between hydrophobic-based in silico de-
scriptors and the observed HIC retention times for the anti-IL-8 mAb 
mutant panel, highlighting the predictive power of these descriptors in 
understanding viscosity behaviour. 

Various research efforts have explored colloidal self-interaction as 
part of early mAb developability assessments. [38] The B22 or A2 sec-
ond virial coefficient and the self-interaction parameter, kD, are key 
metrics capturing the thermodynamic effects of self-associating mAbs at 
dilute mAb concentrations. [39] Negative values for B22 and kD indicate 
attractive protein-protein interactions, associated with decreased 
formulation stability and increased solution viscosity at high concen-
trations. [14,18,40] In this study, all anti-IL-8 mAb mutants exhibited 
negative kD values, with the W32Q mutant showing a less negative kD, 
aligning with its reduced hydrophobicity. The AC-SINS assay further 
supported reduced self-association propensity for W32Q, consistent with 
the measured kD (Fig. 5). Trends were observed between colloidal pa-
rameters measured at lower anti-IL-8 mAb concentrations and 
viscosity-concentration profiles (<120 mg/mL), indicating reduced 
self-association propensities and viscosities for D70N and W32Q. 

Most mutants showed similar unfolding temperatures to the WT, 
except for W32Q, suggesting a critical role for tryptophan in maintain-
ing a large hydrophobic patch in the CDRH2, which impart stability 
which is lost upon mutation (Supplementary file 6). This reduced ther-
mal stability also aligns with the observed reduction in antigen binding 
for W32Q. . 

This is the first study that enables comparison of predictive and 
empirical approaches to understand the role of electrostatic and hy-
drophobic patch targeting in altering viscosity in the same mAb mole-
cule. While our findings offer valuable insight into these strategies, there 
are associated limitations. Unlike previous reports, [15] we did not 
observe specific trends in viscosity reduction based on mutation site 
(CDR versus FWR) in the anti-IL-8 mAb scaffold. Given the variability in 
charge and non-polar patch distribution among individual mAbs, 
generalised approaches to reduce molecular interactions driving 
self-associations may not be suitable and require a systematic 
design-build-test-learn approach. While we explored single-point mu-
tations, sequence engineering may require multiple mutation sites for 
improved developability. Previous studies have shown enhanced vis-
cosity reduction through combined substitutions in both VH and VL 
regions. [41] Our computational simulations focused on Fv models and 
did not consider the influence of hinge and constant domains on bio-
physical characteristics such as charge and hydrophobicity. Also, addi-
tional investigations are required to ascertain the impacts of non-CDR 
mutations on downstream biological properties of mutant mAbs (e.g., 
immunogenicity, half-life). 

Early-stage assessment of pharmaceutical candidates is crucial for 
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guiding decisions on clinical translation. Various industry-wide criteria 
are used to triage lead biomolecules, and the use of data-driven 
sequence-engineering strategies to optimise lead candidates represents 
a growing field. Our investigation shows that trends observed from 
molecular descriptors to biophysical properties have a strong depen-
dence on the mutation strategy employed. We find that mutations with 
significant reductions in hydrophobic patches significantly improved 
mAb solution viscosity, suggesting the predictive power of hydrophobic- 
based descriptors. However, mutations altering electrostatic patch 
coverage alone were insufficient to impact viscosity, irrespective of 
mutation site. Integrating deep learning approaches holds promise for 
deeper mechanistic insights into mAb developability, yet challenges 
such as wider data availability in the pre-competitive research landscape 

remain. Our study highlights the importance of considering both 
sequence-based and structural alterations in optimising mAb develop-
ability characteristics. 

4. Materials and methods 

4.1. Computational methods 

In silico homology modelling and antibody molecular descriptor 
calculations were performed in the Molecular Operating Environment 
(MOE) software, version 2020.0901 (Chemical Computing Group, 
Montreal, Canada). 

Overall trends for each anti-IL-8 mAb molecule in relation to in silico physicochemical descriptors and 
experimental parameters correlated with developability. Kingsbury et al.8 correlated multiple in silico parameters 

with opalescence and viscosity for a dataset of 59 commercial mAbs and observed significant clustering with 
measured pI, effective charge and charge imbalances related to solution behaviour. Overall, we summarise the

WT and anti-IL-8 mAb rankings across in silico and experimental molecular descriptors in Figure 7.  

Fig. 7. Ranking matrix for the anti-IL-8 mAb mutant panel A colour-coded from min-max ranking in order of decreasing developability and categorised by 
experimental parameters and molecular descriptors. 
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4.1.1. Homology modelling 
Full sequences of the heavy and light chains of an immunoglobulin 

G1 (IgG1) wild-type (WT) molecule were inputted as FASTA format into 
the MOE sequence editor and annotated with a Kabat numbering scheme. 
The Antibody modeller in MOE (version 2020.0901) was used to search 
for similar sequences with solved antibody structures as a template for 
homology constructs. The variable fragment (Fv) of anti-IL-8 mAb is 
published as PDB ID: 5OB5 (fAb complex with GroBeta). Fv fragments 
and full IgG structures were modelled by selecting ‘variable domain’ and 
‘immunoglobulin’ model types, respectively. The immunoglobulin 
model type uses the 1IGY PDB structure as a template to model the Fc 
region. A refinement gradient limit value of 1 was applied, and C-termini 
were capped with neutral residues, and superimposed to confirm 
alignment of structures. Partial charges were added to all atoms, and 
energy minimization performed using the AMBER10:EHT default 
forcefield. The Protein Silo (PSILO) database was used to locate sites of 
hydrogen bonding and other potential interactions with the GroBeta 
ligand in complex with the Fv. 

4.1.2. Patch analysis and identification of the mutant panel 
The protein patch tool in MOE was applied to the WT Fv homology 

construct to identify electrostatic and hydrophobic surface patches. To 
aid visualisation of smaller surface patches, we set the following 
parameter thresholds: hydrophobic cut-off: ≥ 0.09 kcal/mol, hydro-
phobic min area: ≥ 30 Å2, charge cut-off: ≥ 30 kcal/mol/C, charge min 
area: ≥ 30 Å2, probe sphere radius: 1.8 Å. The residue contribution to 
the surface patches was analyzed using the Protein Properties tool, 
selecting the ‘res _hyd’, ‘res _pos’ and ‘res _neg’ descriptors. The top 
scoring residues were then selected as candidate residues for mutations, 
excluding terminal residues (Supplementary file 1). Three approaches 
were implemented to alter solvent-accessible charged patches, by i) 
substituting aromatic hydrophobic residues to leucine or glutamine (L or 
Q), [19] and ii) substituting positively-charged residues (e.g., N or R) to 
glutamic acid or glycine (E or G), [18] and iii) substituting 
negatively-charged glutamic acid or aspartic acid (E or D) to positive 
residues (e.g., N). [20] We used Residue Scan in MOE to introduce point 
mutations in the WT anti-IL-8 mAb Fv IgG1 sequence. 

Predicted physicochemical descriptors. We computed a range of 
physicochemical descriptors (Supplementary file 2) for each Fv model 
using the MOE Protein Properties tool. A NaCl concentration of 0.1 M 
was used to mimic the ionic strength of the formulation buffer (pH 6). 
Hydrophobic imbalance and buried surface area, Fv_chml values were 
generated through BioMOE (version 2021–11-18, Chemical Computing 
Group, Montreal, Canada) for models protonated to pH 6 using the 
QuickPrep tool. 

TANGO aggregation propensity (http://tango.crg.es/tango.jsp). 
[42,43] TANGO aggregation was used to predict the sequence-based 
propensity for beta-sheet formation for all mutants. 

Ranking anti-IL-8 mAb mutants. Candidate anti-IL-8 mAb mutant 
variants were ranked using a min-max normalisation method to triage 
mutants for further investigation. Physicochemical descriptors were 
selected based on prior correlations with viscosity and weighted evenly. 
Hydrophobic index, TANGO aggregation propensity, the normalised 
hydrophobic score (proportion of exposed hydrophobic areas (Res_hyd) 
to the total exposed surface area (Res_ASA)), zeta potential, buried 
surface area between heavy and light chains (BSA) and the ensemble 
charge (ens_charge) were parameters used for ranking. Descriptor values 
were normalised between 0–1 (Eq. 3). 

NDV =
x − xmin

(xmax − xmin)
(3) 

Where NDV is the normalised value for a mutant, x is the actual 
descriptor value for a mutant, and xmin and xmax are the minimum and 
maximum values found in the mutant panel for that descriptor. 

A normalised score was calculated by summing each normalised 
descriptor value (Equation 4 A), or summing 1- normalised descriptor 

value for descriptors correlating negatively with elevated viscosity (Eq. 
4B). Therefore, a lower normalised score overall represented a reduced 
hypothetical viscosity. 

Normalised score =SUM(NDVHI + NDVTANGO + NDVTomar

+NDVSharma +NDVNormalised hydrophobic score)
(4A)  

Normalised score = SUM((1 − NDVzeta) + (1 − NDVBSA) + (1

− NDVens charge)) (4B) 

DeepSCM (https://github.com/Lailabcode/DeepSCM). [32] We 
used the spatial charge map to rank mutants by calculating the charge of 
side chain atoms of exposed residues of a homology Fv model over 
molecular dynamics simulations. [32,44] We inputted anti-IL-8 mAb IgG 
Fv sequences as separate heavy and light chain FASTA files and the code 
was ran in a terminal. 

4.2. Protein Expression and Purification 

Chinese Hamster Ovary (CHO) K1 GS-KO (glutamine-synthetase- 
knockout) cells were used for expression of the anti-IL-8 mAb panel. 
Sequences for anti-IL-8 mAb variants underwent codon optimisation and 
plasmid generation by Atum Biosciences (Newark, California, USA). The 
heavy and light chain genes were inserted into Leap-in Transposase® 
pD2500 vectors with the CMV promoter including glutamine synthetase 
(for selection) and heavy and light chain insertions were nucleofected 
into CHO cells. Cells were maintained under selection conditions as 
stable pooled cultures. A fed-batch production process was employed 
over 15 days, with glucose and supplementary amino acid feeds added at 
various intervals. Expression media were harvested and the supernatant 
clarified by centrifugation at 4 ◦C (4000 g for 20 min) and sterile- 
filtered. Protein L chromatography on an ÄKTA Avant 150 system 
(Cytiva, Danaher, USA) was used for purification, followed by a cation 
exchange polishing step to achieve ≥ 95 % monomeric purity. The pu-
rified mAbs were concentrated, diafiltered and buffer exchanged into 
formulation buffer containing histidine, trehalose, and arginine (pH 6) 
to a final concentration of ≥ 100 mg/mL using the Ambr Crossflow 
system (Sartorius, Germany). All mutants showed full solubility at 25 ◦C 
with no liquid-liquid phase separation observations. 

4.3. Analysis of the WT and mutant anti-IL-8 mAb panel biophysical 
parameters 

4.3.1. Analysis of anti-IL-8 mAb identity and purity 
Peptide mapping was used to confirm the full sequence identity for 

the anti-IL-8 mAb WT and mutant panel. The monomeric purity of WT 
and mutant anti-IL-8 mAb variants was analysed by analytical size 
exclusion chromatography (aSEC) with UV detection (supplementary 
information). 

4.3.2. Hydrophobic interaction chromatography 
Hydrophobicity of the anti-IL-8 mAb panel was assessed via hydro-

phobic interaction chromatography (HIC) with UV detection. A PolyLC 
PolyPROPUL 4.6×100 mm column was used on an Agilent 1260 series 
HPLC (Agilent, California, US). The mobile phase A contained high salt 
(1.3 M ammonium sulfate) in a potassium phosphate buffer (50 mM, pH 
7), with stepwise gradient segments. All samples were analysed at a 
concentration of 1 mg/mL (with a 5 μL injection) at a flow rate of 
0.7 mL/min and detected at 214 and 280 nm wavelengths. 

4.3.3. Electrophoretic light scattering 
A Malvern Zetasizer (Malvern Panalytical, Malvern, UK) with a 

633 nm laser was used to measure zeta potential of all samples at 5 mg/ 
mL by electrophoretic light scattering. The default settings included an 
equilibration time of 120 s, automatic attenuation and 10–100 mea-
surement runs. A 60-second pause was added between measurements 
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and three technical replicate measurements were performed. Both the 
WT and mutant anti-IL-8 mAb molecules were prepared in formulation 
buffer and filtered prior to analysis. 

4.3.4. Diffusion self-interaction parameter 
We used a stunner (Unchained Labs, CA, USA) dynamic light scat-

tering setup to measure hydrodynamic size, polydispersity, and the 
diffusion coefficient for each anti-IL-8 mAb mutant. Data were analysed 
using the Lunatic & Stunner Client software (version 8.1.0.254). The 
measurement temperature was set as 25 ℃ and five, 10-second mea-
surements were acquired with a corresponding 1 % extinction coeffi-
cient of 1.55 AU*L/(g*cm) for all samples. Custom dispersant settings 
were applied (viscosity 1.26 cP and refractive index 1.33 at 20 ◦C) and 
all mAbs were prepared in formulation buffer (0.5–20 mg/mL) for WT 
and mutant variants. The Lunatic & Stunner software (v8.1.0.244) were 
used for data export, and corresponding diffusion coefficients were used 
to calculate interaction parameters (kD) using linear regression plots 
(Eq. 5). 

Dapp = D0(1+ kDc) (5) 

Where Dapp refers to the apparent diffusion coefficient, D0 the self- 
diffusion coefficient at infinite dilution, and kD the interaction 
parameter. 

4.3.5. Analysis of anti-IL-8 mAb charge distribution profile 
We used the iCE3 capillary isoelectric focusing instrument with a 

PrinCE autosampler (Protein Simple) to measure charge distribution 
profiles. A range of pI markers (pI 3.85–8.77) were used to capture all 
main and impurity isoforms for each sample (Bio-Teche, Protein Simple, 
USA). To minimise self-association, we used 2 M urea and ampholytes 
(Bio-Teche, Protein Simple, USA) in the pH 3.0–10.0 and 8.0–10.5 
ranges at a 1:1 ratio in the buffer mix. All samples were diluted to 1 mg/ 
mL in deionised water prior to a final dilution to 0.4 mg/mL in analyte 
buffer. The iCE3 instrument was set to the following parameters: a pre- 
focus voltage of 1500 V; a 10–12-minute focus voltage of 3000 V; an 
autosampler and transfer capillary temperature of 15 ◦C; UV detection 
at 280 nm; a sample injection pressure of 2000 mbar; a pre-focus time of 
1 min; and a focus time of 10–12 min. All data were imported to the 
Empower 3 software (v4, Waters, US) for analysis. 

4.3.6. Analysis of anti-IL-8 mAb self-interaction 
We used Affinity-Capture Self-Interaction Nanoparticle Spectroscopy 

(AC-SINS) to assess self-association propensity in the anti-IL-8 mAb 
panel. [45] Goat anti-human Fc and whole goat IgG antibodies (Jackson 
ImmunoResearch, PA, USA) were prepared in 20 mM acetate buffer (pH 
4.3) and diluted to achieve final concentrations of 320 µg anti-Fc IgG 
and 80 µg goat whole IgG, then mixed with 20 nM colloidal gold 
nanoparticle suspension (Ted Pella Inc., CA, USA, concentration 
7.0×1011 particles /mL). After incubation and centrifugation, anti-IL-8 
mAb test samples were prepared at 50 μg/mL in phosphate-buffered 
saline (Gibco, Thermo Fisher Scientific, MA, USA). Aliquots (99 μL) of 
each sample were added to wells of a 96-well plate, with 11 μL of gold 
nanoparticle suspension added to each well, resulting in a final solution 
concentration of 50 µg/mL test mAb, 10x bead:anti-Fc conjugate and 
0.02 mg/mL PEG2000. All samples were mixed, incubated for 90 min 
and gently centrifuged to remove air bubbles. Following incubation, the 
absorbance spectra (450–650 nm) of the antibody-gold conjugates and 
analysed using a Pherastar FSX (BMG Labtech Ltd., Germany) plate 
reader. The spectra were analysed with MARS software (v3.32, BMG 
Labtech Ltd., Germany), applying smoothing to the best fit curves and 
the difference in plasmon wavelengths for each sample was calculated. 
Experimental cutoffs included a < 535 nm wavelength for negative 
controls (i.e., buffer), and a red shift of > 10 nm was flagged as a 
candidate at high risk of self-association. 

4.3.7. Analysis of unfolding temperatures 
Thermal differential scanning fluorimetry (DSF) measurements were 

performed using a Prometheus NT.48 (NanoTemper Technologies, 
Germany) equipped with back-reflection technology for high- 
throughput analysis of unfolding temperature (Tm), calculated from 
the intrinsic fluorescence intensity ratio of tyrosine and tryptophan 
(350/330 nm). [46] Prior to each experiment, the excitation power was 
set to achieve ≥ 5000 counts in the discovery scan. Corresponding 
profiles were analysed in Prometheus NT.48 and the first derivative 
calculated. A temperature ramp of 2 ◦C/minute from 20–95 ◦C was 
performed for each set of capillaries. Drop lines were assessed and 
corrected, to determine first-derivative peaks, marking the unfolding 
temperatures of antibody domains (Tm1 to Tm3) and the unfolding onset 
(Tonset). The first derivative peak of the scattering profile marked the 
aggregation temperature (Tagg) values. 

4.3.8. Viscosity measurement 
Viscosity curves were generated using the VROC Initium (Rheosense, 

United States). The protocol was optimised to measure viscosity samples 
using the ‘Auto’ shear rate function and fixed shear rates ranging from 
100–2000 s− 1. The resulting data were filtered based on specific criteria, 
including the exclusion of priming segments, ensuring the percent full 
scale fell within the 5–95 % range, maintaining an R2 fit of the pressure 
sensor position of ≥ 0.998, and steady plateaus with no drift in transient 
curves. Exponential-growth decay fits were applied to each viscosity- 
concentration curve, with the equation; 

η = Y0ekC (6) 

Where η is the dynamic viscosity (cP), Y0 the intercept (cP), k the rate 
constant (mg/mL− 1), and c is the concentration (mg/mL. 

Statistical approaches. GraphPad Prism (v5.04) was used for 
plotting scatter plots and bar graphs, and ANOVA statistical analysis to 
determine significant differences in experimental data. JMP Pro 
(v16.0.0, 2021) was used for the multivariate analyses of computational 
and experimental data to establish existing correlations. 
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