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A B S T R A C T

This paper develops a theory for anaphase in cells. After a brief description of microtubules, the mitotic spindle
and the centrosome, a mathematical model for anaphase is introduced and developed in the context of the cell
cytoplasm and liquid crystalline structures. Prophase, prometaphase and metaphase are then briefly described
in order to focus on anaphase, which is the main study of this paper. The entities involved are modelled
in terms of liquid crystal defects and microtubules are represented as defect flux lines. The mathematical
techniques employed make extensive use of energy considerations based on the work that was developed by
Dafermos (1970) from the classical Frank–Oseen nematic liquid crystal energy (Frank, 1958; Oseen, 1933).
With regard to liquid crystal theory we introduce the concept of regions of influence for defects which it is
believed have important implications beyond the subject of this paper. The results of this paper align with
observed biochemical phenomena and are explored in application to HeLa cells and Caenorhabditis elegans.
This unified approach offers the possibility of gaining insight into various consequences of mitotic abnormalities
which may result in Down syndrome, Hodgkin lymphoma, breast, prostate and various other types of cancer.
1. Introduction

Mitosis is an orchestrated series of events which allow the chromo-
somes within the nucleus of all living cells to duplicate and reposition
themselves in readiness for cytokinesis (cell division). Other compo-
nents of the cell, including mitochondria, cytosol etc., are also subject
to analogous processes. The molecular biology of mitosis is extremely
well studied [1]. It has also been observed for well over a century [2]
that the cytoplasm of the cell appears to behave as a nematic liquid
crystal. However it is only within the last fifty years that developments
in the theory of liquid crystals have opened up new ways to begin
to understand the interconnected sequences of events involved in cell
mitosis and cytokinesis. Liquid crystals can be thought of as generally
consisting of elongated rod-like molecules which have a preferred local
average direction. In the nematic liquid crystal phase the long axes
of these constituent molecules align parallel to each other along some
common preferred direction, usually denoted by the unit vector 𝐧(𝐱, 𝑡),
called the director. This direction is often called the anisotropic axis
and is indicative of the alignment of the constituent material at a given
location 𝐱 at time 𝑡. It is such alignment directions that can be linked
to models of aligning materials in cell biology. Examples of alignment
directions are shown in more detail in Figs. 4 and 5 and discussed
below, where they are referred to as ‘flux lines’ which are tangential
to the director 𝐧 within the aligning materials. More details on the
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physics and mathematical descriptions of liquid crystals can be found
in books [3–6] and the reviews in [7,8].

Illustrations of cells and schematics of their structure can be found
in the textbook by Alberts et al. [1]. As a cell contains many different
structures and organelles it is currently impossible to incorporate all
components of a cell in this theory. Instead we concentrate on the
mitotic roles of the main players in anaphase, namely the cytoplasm,
microtubules, chromatids and the centrosome. In Section 2 we briefly
describe these entities and mention the prophase, prometaphase and
metaphase as precursors to the fourth phase of cell mitosis known as
anaphase, which is the main area of focus in this paper. Section 3
provides a description of chromatids, microtubules and the centrosome
in the context of nematic liquid crystal defects and introduces the
concept of regions of influence in relation to these structures; the inter-
pretation of ‘defect’ in this context is briefly highlighted in Section 2.1.
A summary of the construction of the nematic defect interaction energy
using the director 𝐧 is given in Appendix A. This provides the impetus
for the key novel mathematical modelling aspects of anaphase that
are developed in Section 4 with model examples given for HeLa cells
and Caenorhabditis elegans cells (C. elegans) explored in Section 5; we
compare our theoretical results with data obtained from the literature
for these cell types. The paper closes in Section 6 with some conclusions
and future directions.
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Fig. 1. A schematic diagram of a microtubule cylinder based on that presented in [9, p. 564] and [10] with approximate dimensions for its inner and outer radii. The wall of
the microtubule consists of 𝛼 and 𝛽 tubulin heterodimers as shown. The cross-section shows an end view with the standard arrangement of thirteen heterodimers.
Fig. 2. A schematic diagram of the structure of the mitotic spindle which consists of various types of microtubules that are involved in mitosis. This figure is based upon the
representation given in the eBook by O’Connor et al. [11]. The centrosome (see Fig. 3) placed at a spindle pole, kinetochore microtubules connected to the kinetochore and
chromatid contained within the dashed rectangle are related to the three Frank nematic liquid crystal defects pictured in Fig. 4; the bold line connected to the kinetochore can
consist of a single or multiple microtubules aligned parallel to form a kinetochore fibre and the number of such placed microtubules depends on the cell type.
2. Microtubules, mitotic spindle, centrosome, prophase,
prometaphase, metaphase

2.1. Microtubules and the mitotic spindle

Cytoplasm is the material under the cell membrane but exterior to
the cell nucleus and consists of a gel-like substance called cytosol, an
internal substructure of organelles and various cytoplasmic inclusions.
Among these inclusions are microtubules, which are present in the cells
of all multicellular organisms, which are cylinders formed by polymeric
strands of tubulin. To be specific, microtubules are formed by the
polymerisation of dimers of two homologous proteins, 𝛼 and 𝛽 tubulin,
to form heterodimers of approximately 8 nm in length as displayed in
Fig. 1. They occur throughout the cytoplasm of the cell and are major
components of the cell. Microtubules, shown in Fig. 1, are dynamic
and they are continually growing and shrinking. They are crucial in
establishing the mitotic spindle, shown in Fig. 2, and in chromosome
separation. The spindle becomes almost invisible as the microtubules
disintegrate, a property called microtubule ‘catastrophe’. The growth
and shrinkage of a microtubule is dependent on the concentration of
𝛼 and 𝛽 tubulin subunits. To maintain the rate of gain at the 𝛽 end
(plus end) and the erosion of the 𝛼 end (minus end), a process called
‘steady state treadmilling’ is invoked and to maintain this steady state a
constant energy input is required. It is in this context that microtubules,
as we shall see, can be considered as flux lines of liquid crystal defects
(see Appendix A and Figs. 2, 4 and 5).

Note that the term ‘defect’ is a standard terminology throughout the
liquid crystal literature. Despite this, in the context here, the material
2

that occupies the core at the centre of a defect structure, such as a
spindle pole, chromatid, etc., will be considered as an object with mass
that occupies a physical volume of space; in the simplest liquid crystal
defects such structures are presumed to have zero mass at the core, and
the energies used to model them are often modelled by replacing the
actual core by a void of radius 𝑟𝑐 , called the core radius [5], usually
estimated to be of the order of molecular dimensions [4, p. 171]. This
is not required in the model presented here since, for example, we can
absorb and exploit the core mass of a spindle pole as part of the model;
nevertheless, the idea of a core radius remains, the difference being that
here the core is no longer a void.

A cell with its mitotic spindle undergoing mitosis is shown in
Fig. 2 where schematically some chromatids, each with their own
kinetochore drawn as a bold circle which is attached to its associated
kinetochore microtubule drawn as a bold line, are pictured. Each of
the bold lines connected to the kinetochores in Fig. 2 can consist of a
single microtubule or multiple microtubules aligned parallel to form a
kinetochore fibre. The number of such aligned microtubules that make
up each kinetochore fibre is dictated by the cell type. For example, 1
microtubule in budding yeast, 3 or 4 microtubules in fission yeast, up to
20 to 30 microtubules in human cells [12]. The two spindle poles each
consist of a centrosome which is described below in greater detail in
Fig. 3. There are other microtubules involved in mitosis and interpolar
and astral microtubules are also shown schematically for information.
The area within the dashed rectangle in Fig. 2 will be the focus of our
attention as representative of anaphase behaviour that will be occurring
for each such kinetochore fibre and its associated kinetochore and
chromatid. The centrosome at a spindle pole, the kinetochore fibre and
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Fig. 3. The centrosome is composed of two centrioles made up of microtubules as shown. The cross-section shows the nine triplet arrangement of the twenty-seven microtubules
in each centriole.
the chromatid with its kinetochore will be described in terms of liquid
crystal defect structures in Section 3. This will form the basis for the
model of anaphase.

2.2. The centrosome

A central player in mitosis is the centriole which is a cylindrical
organelle composed mainly of tubulin. A centriole is typically made up
of nine sets of short tubulin triplets arranged in the cylindrical structure
shown in Fig. 3.

Before replication of the DNA within the nucleus, the cell contains
two centrioles, a mother centriole and a daughter centriole which are
positioned orthogonally adjacent to one another to form the centro-
some. During the cell division cycle, a new centriole pair grows at
the proximal end of both mother and daughter centrioles. After this
duplication the new centrosome remains attached to the parent until
the onset of prophase.

Within a cell, the centrosome is located outside but near the nucleus.
Its precise positioning is fundamental to the orchestration of the mitotic
process. It has recently been reported [13,14] that the protein Casein
kinase 1a (𝐶𝐾1𝛼) localises to the centriole pair and is required for
its proper positioning and subsequent dynamics. 𝐶𝐾1𝛼 is recruited by
the protein Family with Sequence Similarity 83 Member 𝐷 (𝐹𝐴𝑀83𝐷)
and the absence of 𝐹𝐴𝑀83𝐷 in cells leads to pronounced centriole
positioning which leads to defective mitosis and may be implicated
in pre-leukaemic myelodysplastic syndrome and other cancers. The
dynamic positioning of the centriole will be modelled during anaphase
and we speculate that adapting this model may enable defective mitosis
to be investigated in future work.

2.3. Prophase, prometaphase and metaphase

This subsection describes briefly some elements of mitosis. Further
details can be found in [1].

Prophase is the first stage of mitosis whereby the complex of DNA
and proteins within the nucleus, referred to as chromatin, condenses.
The chromatin coils up and becomes compact resulting in the formation
of chromosomes. Each chromosome is made up of a single strand of
highly organised DNA. The chromosomes then replicate themselves and
have a visibly distinctive X shape and are called sister chromatids.
Chromatids are thus pairs of identical copies of DNA joined at a central
point called the centromere. At the initiation of prophase microtubules
which form part of the cell’s cytoskeleton disassemble to form a pool
of tubulin molecules. These molecules are recruited to form the mitotic
spindle. This microstructure then focuses on the centriole to become
3

the mitotic centre. The centriole together with a radial array of micro-
tubules, known as astral microtubules, is called the aster [1, p. 931].
The astral microtubules have their 𝛼 ends embedded in the centrosome.
The cell’s original aster then replicates to form two asters which push
apart to result in a bipolar mitotic spindle as shown in Fig. 2 with the
asters forming the cores of two spindle poles.

During prometaphase, which is the second stage of mitosis, dynamic
instability allows astral microtubules to search efficiently in space,
probing the spindle volume until they capture chromosomes by binding
to their kinetochores, a search and capture process (see Fig. 2). The
centrosomes move towards the opposite ends of the spindle pole.

Metaphase is the third stage of mitosis in which a lipid bilayer
interface forms along the equatorial plane, a vertical plane that would
be located in the centre of Fig. 2, called the metaphase plate. During
this phase the mitotic spindle becomes fully developed as shown in
Fig. 2.

The fourth phase of mitosis is anaphase. Anaphases A and B are our
main concern and will be investigated in Section 4. In order to proceed,
descriptions of defects in the context of mitosis, and the novel use of
regions of influence, will be introduced in the next section.

3. Defects and regions of influence

The highly concentrated and localised reorientation regions within
the cytoplasm (cf. Fig. 2) can be considered in the context of defects.
Such core defects, represented by central solid circles in Fig. 4 have a
physical location, magnitude and mass. We can represent these cores as
circles of a given fixed radius 𝑟0. A mathematical review of the defects
in Fig. 4, and other classical Frank defects, can be found in [5] and
within the wider general context of defects and textures in [3,4,15].

Throughout the modelling of mitosis and cytokinesis, microtubules
play a fundamental role. For example, in prophase the mitotic spindle
pole may be modelled as a +1 Frank defect (see Fig. 4) which in the
Frank–Oseen theory of nematic liquid crystals has an energy density
𝑤 proportional to the inverse square of the distance 𝑟 from its core
centre. That is, 𝜔 is proportional to 1∕𝑟2 which implies the energy
density is infinite at the centre of the core. However, in our theory
the core 0 ≤ 𝑟 ≤ 𝑟0, for some 𝑟0 > 0, is occupied by the centrosome
or other proteins at the core of a defect and therefore such singular
behaviour is absent in this situation. In addition it is also the case
that the total free energy over a region of radius 𝑅 is proportional
to ln(𝑅∕𝑟0) which again becomes infinite as 𝑅 → ∞, although at a
slow growth rate. When considering the free energy density of the
interaction of two defects, it is usually assumed that interaction occurs
between defects regardless of the inter-core centre distance. This would
imply, for example in prophase, that the microtubules forming the
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Fig. 4. Graphs of ‘flux lines’ which are tangential to the orientation of the aligning
constituents. A central dot in each figure represents the location of a defect core of
index (strength) 𝐼 = 𝑛∕2 where 𝑛 is the classical Frank index. With the exception of the
case for 𝐼3 = +1, the bold lines represent singular radial lines that emanate from the
core, as described in Appendix A together with a description of the alignment angle
𝜃 and polar coordinate angle 𝜙. These three defects are basic to the modelling within
the dashed rectangular box shown in Fig. 2.

mitotic spindle have influence throughout the whole cytoplasm. We
believe this to be unreasonable during anaphase and postulate that
associated with each defect 𝐼𝑗 there is a 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒1 𝛺𝑗 ,
which could be, in two dimensions, an enclosed area of a given shape
that surrounds 𝐼𝑗 . For example, two neighbouring defects 𝐼1 and 𝐼2
could each have a circular region of influence of radii 𝑅1 and 𝑅2,
respectively, and interaction can only occur where 𝑅1 and 𝑅2 overlap
to form a non-empty intersecting region 𝑅𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = 𝑅1 ∩ 𝑅2; this
concept will be developed in greater detail in Section 4. A similar
approach could be taken for rectangles or combinations of regions with
different shapes. In Appendix A, where the interaction energy density is
considered, it is assumed that the constituent regions of influence have
a common intersection. Outside such regions the interaction energy
density is simply the sum of individual densities. In practice, regions
of influence may well be dynamic and evolve with time. Furthermore,
rather than being described by circles, as here, they will adopt different
topologies depending on the types of defect. For simplicity in this
elementary approach we assume circular regions of influence of fixed
radii throughout this paper; time-dependent regions of variable shape
can be accommodated as part of the modelling which is much beyond
the scope of this novel first investigation using regions of influence.

It should be noted that the +1∕2 and −1∕2 Frank defects shown
in Fig. 4 have previously been considered in [17, Fig. 2] for the
patterning and collective motion of neural progenitor cells and in [18]
for a description of active nematic liquid crystals in the context of
cellular arrangements (see also the comments in [19]). It should also
be mentioned that +1 defects in nematic liquid crystals have been
used in [20] for a confined geometry which models centrioles in a
basic description of a cell undergoing cell division, an approach which
necessarily deploys different modelling assumptions to those used in
this paper.

We close this section with some crucially important observations.
Firstly, the three defects shown in Fig. 4 will model the regions focused
around a spindle core. A typical kinetochore microtubule fibre and
its ‘captured’ chromatid is, for example, displayed within the dotted
rectangle in Fig. 2. Such an approach will enable a direct mathematical
description of anaphase that deploys these three key entities within the
mitotic spindle. As detailed in the next section, defects of the same sign
repel each other while defects of opposite sign are attracted to each
other. A schematic of our approach is displayed in Fig. 5. Anaphase A is
modelled as a two-body problem where the 𝐼1 = −1∕2 defect represents

1 This hypothesis may have been in the mind of Isaac Newton who wrote
in his Opticks [16] in Query 31 ‘‘I had rather infer from their cohesian, that
their particles attract one another by some force, which in immediate contact
is exceeding strong, at small distances performs the chymical operations above
mention’d, and reaches not far from the particles with any sensible effect’’.
4

Fig. 5. The main model structures for anaphase A and anaphase B. In anaphase A a
chromatid with its kinetochore and its associated MAP+ are represented as attractive
defects 𝐼1 = −1∕2 and 𝐼2 = +1∕2 of opposite sign with masses 𝑚1 and 𝑚2, respectively.
In anaphase B the centrosome is represented by the defect 𝐼3 = +1 with mass 𝑚3 while
its associated combination of MAP+ and its captured chromatid are represented as a
revised defect structure 𝐼2 = +1∕2 with revised mass 𝑚22 = 𝑚1 +𝑚2; these defects of the
same sign will repel each other and induce the dynamics of anaphase B.

a typical chromatid with a core mass 𝑚1 that is mutually attracted to
a defect 𝐼2 = +1∕2 which represents a MAP+ core of mass 𝑚2 within a
kinetochore fibre (details below in Section 5.1). The force of attraction
between the chromatid and the MAP+ induces the dynamics and this is
what is mathematically modelled Sections 4 and 5. A similar approach
is used to model the dynamics of anaphase B when the centrosome is
modelled as a defect 𝐼3 = +1 with mass 𝑚3 while the combination of the
MAP+ and its captured chromatid are set as a revised defect structure
𝐼2 = +1∕2 with a revised mass 𝑚22 = 𝑚1 + 𝑚2. The repulsive force
between these defects drives their motion. The examples explored in
Section 5 for a HeLa cell and a C. elegans cell will examine anaphase A
followed by anaphase B and discuss the results.

Secondly, schematic figures of liquid crystal defects in two dimen-
sions, such as those depicted in Fig. 5, set within the context of general
cells, can be found in the short review by Mogilner et al. [21] and,
as mentioned above, the descriptions provided by Leoni et al. [20].
Of more direct, and recent, interest to this present article is the short
review on the physics of liquid crystals in cell biology by Doostmoham-
madi and Ladoux [22] where liquid crystal defects of orders −1∕2, +1∕2
and +1 were interpreted in an identical way to those displayed here
in Fig. 5, noting that there are three principal types of +1 defects, as
shown in [5, p. 114]; microtubules are also discussed within the setting
of localised topological liquid crystal defects in [22].

Thirdly, in this article and in all the aforementioned references,
there are some modelling assumptions that allow a two-dimensional
description of liquid crystal defects to be feasible in the modelling of
cells; of course, a three-dimensional model would be ideal, but this is
well beyond the scope of the models used here and in the aforemen-
tioned references. The first basic assumption throughout this common
two-dimensional modelling is that the model reflects a relatively thin
cross-section of a real cell. This assumption has successfully modelled
phenomena in a straightforward way in the work of others in cell
biology and in this article. Moreover, this assumption has been success-
ful and widely deployed in the liquid crystal literature under similar
modelling restrictions and has yielded valuable physical insights [3–7]
which have motivated the use of Frank defects in cell biology and other
areas. A second basic assumption for cell biology is that the defects
are embedded in finite regions; in reality, the infinite regions originally
used in the mathematical modelling approximate distances that reach
beyond the molecular scale. A key novelty in this article is to exploit
the finite range of these defects inside cells under the assumption that
there will be finite regions of influence. Each defect will have its own
finite range of biochemical interaction with nearby defects which also
possess interactive ranges of influence. It is the biochemical interaction
that occurs when these regions overlap that produces the attraction
or repulsion between interacting defects. The size and shape of such

regions of influence and their overlap is approximated here by circles
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in two dimensions with a ‘cylindrical height’ to aid calculations and
modelling with some physical depth. Details on this methodology will
be explored in the following two Sections. The sizes and shapes for
regions of influence and their overlapping interaction areas will clearly
be affected by the available area, or volume, of a confined cell shape
and size. The finite regions of influence adopted below are circular as a
first approximation; such regions and the methodology introduced here
are key novel concepts which, to the best of our knowledge, have not
been defined elsewhere and can be adapted to other differing shapes
and sizes which are open to future exploration and investigation that
is clearly beyond the reach of this first novel approach. How such
regions are selected is yet to be fully investigated, but, as in other areas
of related research in liquid crystals (referred to previously), a first
approximation for them to be circular has been introduced for ease of
exposition and numerical calculation.

4. Anaphase

During anaphase, the sister chromatids separate and move to oppo-
site polar regions of the mitotic spindle. This process is distinguished by
two temporal, possibly overlapping, events referred to as anaphase A
and anaphase B respectively. The onset of anaphase A is marked by
the abrupt and synchronous separation of sister chromatids due to the
sudden degradation of cohesion complexes between sister chromatids.
Daughter chromosomes move to opposite spindle polar regions as
their kinetochore fibres shorten. Individual kinetochores bind multiple
microtubules. Anaphase B is the process whereby opposite spindle poles
move further away from each other.

As can be seen from Appendix A, a disclination (defect) of index 𝐼𝑗
has a general energy density proportional to 𝐼2𝑗 ∕𝑟

2
𝑗 when we choose

to associate with this energy density a circular region of influence
0 < 𝑟𝑗 ≤ 𝑅𝑗 , with 𝑟𝑗 defined in Eq. (A.17). From the result in equation
(A.18) the interaction energy density of two defects of indexes 𝐼1 and
𝐼2 is proportional to the product 𝐼1𝐼2 and inversely proportional to
the product 𝑟1𝑟2. Furthermore, any interaction between defects is only
significant where regions of radius 𝑅1 and 𝑅2 overlap. Outside this
interacting region the total energy of the defects is simply the sum
of the individual defect energies. For defects of the same sign there
is a repulsive force and the defects move apart, for as long as their
respective core regions overlap, while for defects of opposite sign there
is an attractive force and the defects move towards each other. In
modelling anaphase, two avenues may be studied. Firstly, we can model
anaphase A followed sequentially by anaphase B or, secondly, we can
model both anaphase A and anaphase B simultaneously. In the former
case this leads to a pair of two-body problems in which we exploit the
energy contribution 𝜔 defined in Eq. (A.18) while in the latter we would
have a three-body problem in which the form for 𝜔 in Eq. (A.19) can be
employed. Here we shall concentrate on a pair of two-body problems.

The presence of the microtubule associated protein (MAP), which
governs the shortening of a particular kinetochore binding microtubule,
is represented by a defect of index 𝐼2 = +1∕2 situated within the kineto-
chore microtubule towards the end that is attracted to the kinetochore
at a selected modelling distance that will be set in the examples below,
which is also within the region of the centriole which has index 𝐼3 = +1.
Anaphase A is initiated when the region of influence of the MAP with
index 𝐼2 = +1∕2 overlaps with the region of influence of the kineto-
chore with index 𝐼1 = −1∕2 which results in an attraction between
these two defects until they eventually make contact with each other
and thereby deposit the associated chromatid in the neighbourhood of
the centriole. That is, the kinetochore fibre shortens and the chromatid
bearing defect moves closer towards the vicinity of the centriole. This
process is performed during anaphase A for each daughter chromatid.
While the region of influence of the kinetochore defect is exhausted by
the much larger region of influence of the MAP during this process, the
residual annular region of the MAP defect will still overlap with that
5

of the +1 centriole defect. Since these latter two defects have the same
sign there is a resulting repulsive force which effectively drives then
apart; this leads to the onset of anaphase B. The process of anaphase A
followed by anaphase B, as described here, occurs simultaneously in the
left half and right half of Fig. 2 and ultimately the two pole centrioles
will also move further apart from each other.

Following the notation introduced in Appendix B, the schematic set-
up in Fig. 5 and the mathematical description depicted in Fig. 6, we
choose to set the 𝐼1 = −1∕2 kinetochore defect as particle 𝑃1 with mass
𝑚1 and position vector 𝐫1, the 𝐼2 = +1∕2 MAP defect as particle 𝑃2
with mass 𝑚2 and position vector 𝐫2 and the 𝐼3 = +1 centriole defect
s 𝑃3, with mass 𝑚3 and position vector 𝐫3. For simplicity, it will be
ssumed that these particles can be modelled in two dimensions and
hat the physical core radii of the defects in this instance can each be
pproximated by a circle having the same fixed core radius 𝑟0. Each
efect will also be assumed to have an associated circular region of
nfluence 𝑅𝑖, 𝑖 = 1 to 3, that controls its interaction with other defects

when their regions of influence overlap with it. These regions will be
modelled as corresponding circular areas 𝛺𝑖, 𝑖 = 1 to 3. The core
adii, the masses of these particles and their regions of influence can be
pproximated by the example data presented in Table 1, as appropriate
or the examples that will be investigated.

We begin by modelling anaphase A as the first of the pair of two-
ody problems. Anaphase B will be the second two-body problem that
ollows on sequentially from anaphase A. The notation and equations
hat now follow are given in terms of the interaction between 𝑃1 and
𝑃2; anaphase B will be considered analogously in terms of a modified 𝑃2
and 𝑃3 with similar forms of equations, the key difference in the arising
dynamics being due to the different masses, regions of influence and the
relative signs and magnitudes of the defect indexes.

In Cartesian coordinates, for anaphase A we can set the centres of 𝑃1
and 𝑃2 to be at 𝐫1 = (𝑥1, 0) and 𝐫2 = (𝑥2, 0), respectively, relative to an
arbitrary fixed origin 𝐎 as shown in Fig. 6 and set 𝑑 = 𝑥1 − 𝑥2, where
we can, without loss of generality, assume 𝑥1 > 𝑥2. This corresponds
to setting 𝐫 ≡ 𝐫1 − 𝐫2 = (𝑑, 0) in the notation of Appendix B. A
general schematic of the geometrical set-up is shown in Fig. 6 where the
distances 𝑑1 and 𝑑2 are introduced; additionally, it proves convenient
to define two further distances 𝑑11 and 𝑑12 for ease of notation in
calculations. These distances are defined in terms of 𝑑, the core radius
𝑟0, 𝑅1 and 𝑅2 by

𝑑 = 𝑑1 + 𝑑2, 𝑅2
1 − 𝑅

2
2 = 𝑑21 − 𝑑22 , (1)

and

𝑑1 =
𝑅2
1 − 𝑅

2
2 + 𝑑

2

2𝑑
, 𝑑2 =

𝑅2
2 − 𝑅

2
1 + 𝑑

2

2𝑑
, (2)

𝑑11 =
−𝑅2

1 + 𝑟
2
0 + 𝑑

2

2𝑑
, 𝑑12 =

−𝑅2
2 + 𝑟

2
0 + 𝑑

2

2𝑑
. (3)

The internal energy is that arising from the energy for two inter-
cting defects based on the model introduced by Dafermos [23] and
he results presented in [24] for general liquid crystal defects known
s disclinations, as described in Appendix A. The corresponding defect
nteraction energy per unit depth in the 𝑧-direction is given by

= 1
2
𝐾 ∫𝛺

𝜔𝑑𝑥𝑑𝑦, (4)

where 𝐾 > 0 is a Frank elastic constant and 𝛺 = 𝛺1 ∩ 𝛺2 is the
rea of the intersection of the two regions of influence of the defects,
hich clearly depends on the locations of 𝑃1 and 𝑃2 as they interact,
s pictured in Fig. 6. The contribution 𝜔 to this integrand is given in
eneral by Eq. (A.18) in Appendix A. In this instance, we have

=
𝐼21
𝑟21

+
𝐼22
𝑟22

+
2𝐼1𝐼2
𝑟1𝑟2

cos(𝜒1 − 𝜒2), (5)

where

𝑟2 = (𝑥 − 𝑥 )2 + 𝑦2, 𝑖 = 1, 2, (6)
𝑖 𝑖
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Fig. 6. A schematic diagram of the geometrical construction for the location of two
defects 𝑃1 and 𝑃2 with centres of mass at positions (𝑥1 , 0) and (𝑥2 , 0), respectively, rela-
ive to a fixed origin 𝐎 and at a separation distance 𝑑 as shown. (a) The corresponding
ircular regions of influence, 𝛺1 and 𝛺2 with radii 𝑅1 and 𝑅2, respectively, as discussed

in the text are displayed; their overlapping region is 𝛺 = 𝛺1 ∩ 𝛺2 = 𝐴1 ∪ 𝐴2 for the
segments 𝐴1 and 𝐴2, as shown in the Figure. The distances 𝑑1 and 𝑑2 are introduced

here 𝑑 = 𝑑1 + 𝑑2. (b) The distances 𝑑11 and 𝑑12 are introduced for the calculations
ecessary in the evaluation of the interaction energy integrals as region 𝛺1 overlaps
2. The distance 𝑑12 arises as 𝛺2 overlaps with the core defect in 𝛺1. The dashed circle

epresents the situation when 𝑑 reduces further as 𝛺1 begins to overlap with the core
efect in 𝛺2, leading to the introduction of the distance 𝑑11.

nd, from the definition in Eq. (A.17),

os(𝜒1 − 𝜒2) = 1
𝑟1𝑟2

(

(𝑥 − 𝑥1)(𝑥 − 𝑥2) + 𝑦2
)

. (7)

Since 𝑥2 = 𝑥1 − 𝑑, we can then write 𝜔 explicitly as

𝜔 =
𝐼21

(𝑥 − 𝑥1)2 + 𝑦2
+

𝐼22
(𝑥 − 𝑥1 + 𝑑)2 + 𝑦2

+
2𝐼1𝐼2

(

(𝑥 − 𝑥1)(𝑥 − 𝑥1 + 𝑑) + 𝑦2
)

(

(𝑥 − 𝑥1)2 + 𝑦2
) (

(𝑥 − 𝑥1 + 𝑑)2 + 𝑦2
) . (8)

We remark here that the third expression in Eq. (8) coincides with that
discussed in [25, Eqn.(10.97)] in the special case when 𝑥1 = 𝑥0 and
𝑥2 = −𝑥0 with 𝑑 = 2𝑥0 > 0 and the region of integration was taken as
an infinite strip in the 𝑥𝑦-plane.

Before investigating examples in the next section we record here the
integrations that will be carried out to evaluate the interaction energy
which is crucial for the evaluation of the driving force 𝐅int

1 that will
e introduced below. The integration limits will be given in terms of a
ectangular Cartesian coordinate system so that they can be adapted
or regions that are not necessarily circular, although a special case
hich has an exact integral for an annular region will be given in
olar coordinates in Appendix C as an example that will be deployed
n some evaluations. To simplify the integrations for a demonstration
f the general techniques it will be assumed that 2𝑅1 + 𝑟0 < 𝑅2, which
s an assumption that will also fit with the example anaphase models
roposed below for HeLa and C. elegans cells. This restriction allows us
6

to consider the case when the region 𝛺1 can be completely contained
within 𝛺2 with no overlap with the central core region in 𝛺2. There is
merit in considering this from the mathematical modelling perspective
because this situation incorporates the possibility of obtaining an exact
integral for the interaction energy when 𝑅1 + 𝑟0 ≤ 𝑑 ≤ 𝑅2 − 𝑅1 which
reveals its explicit behaviour and the consequent explicit force of inter-
action which can be used to compare the numerical derivations which
have to be generally employed when 𝛺1 is not necessarily completely
embedded within 𝛺2 or overlaps with the core region in 𝛺2 (cf. for
example, Eqs. (26), (27), Figs. 7, 9 and Appendix C). The restriction
can of course be removed and the integrals calculated numerically,
however, with this restriction, the energy in Eq. (4) is a function of
𝑑 and can be written as

𝑊 (𝑑) =

{

𝐴1(𝑑) + 𝐴2(𝑑), if 𝑅2 − 𝑅1 ≤ 𝑑 ≤ 𝑅1 + 𝑅2,
𝐴3(𝑑), if 2𝑟0 ≤ 𝑑 < 𝑅2 − 𝑅1,

(9)

here, by symmetry in 𝑦 and the notation introduced for the overlap-
ing annular regions and segments described in Fig. 6,

1(𝑑) = 𝐾∫

𝑑−𝑑1(𝑑)

𝑑−min{𝑅1 ,𝑑−𝑑11(𝑑)} ∫

𝑈1(𝑥,𝑑)

𝐿(𝑥,𝑑)
𝜔𝑑𝑦𝑑𝑥 , (10)

2(𝑑) = 𝐾∫

min{𝑅2 ,𝑑−𝑑12(𝑑)}

𝑑−𝑑1(𝑑)
∫

𝑈2(𝑥)

𝐿(𝑥,𝑑)
𝜔𝑑𝑦𝑑𝑥 , (11)

3(𝑑) = 𝐾∫

𝑑+𝑅1

𝑑−min{𝑅1 ,𝑑−𝑑11(𝑑)} ∫

𝑈1(𝑥,𝑑)

𝐿(𝑥,𝑑)
𝜔𝑑𝑦𝑑𝑥 , (12)

nd we have set

1(𝑥, 𝑑) =
√

𝑅2
1 − (𝑥 − 𝑑)2, (13)

𝑈2(𝑥) =
√

𝑅2
2 − 𝑥

2, (14)

𝐿(𝑥, 𝑑) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

𝑟20 − 𝑥
2, if |𝑥| < 𝑟0,

√

𝑟20 − (𝑥 − 𝑑)2, if |𝑥 − 𝑑| < 𝑟0,

0, otherwise.

(15)

he integrals 𝐴1(𝑑) and 𝐴2(𝑑) are integrals over the area segments 𝐴1
nd 𝐴2, respectively, as pictured in Fig. 6. The integral 𝐴3 is evaluated
henever the region 𝛺1 is contained entirely within the region 𝛺2. If
𝑅1 + 𝑟0 ≥ 𝑅2 then the integrals require modified integration limits;
evertheless, similar problems are tractable in such cases by adapting
he methods presented here.

In Appendix B it is shown that the resulting internal force exerted
y 𝑃2 on 𝑃1 is 𝐅int

1 and is given by, with �̂� set as the basis vector for the
-direction,

int
1 = −d𝑊

d𝑑
�̂� . (16)

his follows the usual derivation of force as discussed in [26], [15, p.
27], and [3, p. 122]. We note from Appendix B that 𝐅int

2 = −𝐅int
1 . In

his problem, there will also be additional drag forces acting on the
efects during their motion as they are attracted to each other, which
an be written, respectively for 𝑃1 and 𝑃2, as
ext
1 = −𝜉1�̇�1, 𝐅ext

2 = −𝜉2�̇�2, (17)

here a superposed dot represents the derivative with respect to time
nd 𝜉1 and 𝜉2 are the corresponding coefficients with dimensions of
ass divided by time.

This particular two-particle system can be transformed to a simpli-
ied system of two governing equations as outlined in Appendix B. The
irst is an equation for the motion of the centre of mass of the system
ocated at 𝐑(𝑡) defined by (B.3) in Appendix B as

= 1
𝑚

(

𝑚1𝐫1 + 𝑚2𝐫2
)

, (18)

where we have set 𝑚 = 𝑚1 + 𝑚2. The second is for the motion of a

fictitious particle with position 𝐫(𝑡) = 𝐫1 − 𝐫2 and of reduced mass 𝜇,
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defined in Eq. (22), under the influence of the internal force 𝐅int (which
urns out to be identical to that acting on 𝑃1, namely, 𝐅int

1 ) and the
external drag force 𝐅ext acting on the particle of reduced mass. Under
the approximating assumptions in Appendix B, the drag force acting on
this fictitious particle is

𝐅ext = −𝜉�̇�, (19)

where 𝜉 is the reduced coefficient defined in (22) below. Following the
notation and details in Appendix B, the resulting equations from (B.12)
and (B.13) are

�̈� = −𝜆1�̇� , (20)
�̈� = 𝐅int

1 − 𝜉�̇� , (21)

here we write

𝜆1 =
𝜉1
𝑚1
, 𝜇 =

𝑚1𝑚2
𝑚

, 𝜉 ≡
𝑚2
𝑚
𝜉1 =

𝑚1
𝑚
𝜉2 . (22)

Eq. (21) is a version of Newton’s second law of motion for a particle of
reduced mass 𝜇. A general review of drag forces experienced by nematic
liquid crystal defects can be found in [15, §11.5].

In this approach to the problem it will be assumed that the initial
velocities of the defects are each equal to zero, that is,

�̇�1 = 𝟎 , �̇�2 = 𝟎 . (23)

It then follows from the solution (B.14) in Appendix B to Eq. (20) that
the centre of mass of the reduced system remains fixed at its original
position 𝐑(0) given by

(0) = 1
𝑚

(

𝑚1𝐫1(0) + 𝑚2𝐫2(0)
)

, (24)

and therefore it only remains to solve Eq. (21) for 𝐫(𝑡) with prescribed
initial conditions, where the initial locations of the defects are set at
𝐫1(0) and 𝐫2(0).

It sometimes proves convenient to work in polar coordinates centred
at 𝑃1 as in Appendix C relative to a fixed origin at 𝐎 for the purposes of
calculating the interaction energy explicitly, namely, 𝑥 = 𝑟 cos 𝜃+𝑥1, 𝑦 =
𝑟 sin 𝜃. From (C.2) and (C.3) it follows that

𝜔 =
𝐼21
𝑟2

+
𝐼22

𝑟2 + 2𝑟𝑑 cos 𝜃 + 𝑑2
+

2𝐼1𝐼2(𝑟 + 𝑑 cos 𝜃)
𝑟(𝑟2 + 2𝑟𝑑 cos 𝜃 + 𝑑2)

. (25)

For example, if 𝑅1 + 𝑟0 ≤ 𝑟 ≤ 𝑅2 − 𝑅1 then region 𝛺1 lies entirely
ithin region 𝛺2 and an exact integral is available for the energy 𝑊 (𝑑)

n Eq. (4) as derived in Appendix C, namely,

(𝑑) = 𝜋𝐾𝐼21 ln
(

𝑅1
𝑟0

)

− 1
2
𝐾𝜋𝐼22 ln

(

𝑑2 − 𝑅2
1

𝑑2 − 𝑟20

)

, (26)

which gives the energy per unit depth in the 𝑧-direction. In all other
cases it is more convenient to calculate the overlapping energies nu-
merically. This result can also be used to verify the accuracy of the
numerical evaluation of 𝑊 (𝑑) for the relevant restricted range of 𝑑 for
which it is valid, as will be shown in Figs. 7(a),(c) and 9(a),(c). The
integration limits in Eqs. (10) to (15) can also be adapted to other forms
of regions of influence, for example rectangles or infinite strips in the
plane. In this frame of reference the force 𝐹 int

1 that arises between the
two defects is therefore

𝐹 int
1 = −d𝑊

d𝑑 = −𝐾𝜋𝐼22
𝑑(𝑅2

1 − 𝑟
2
0)

(𝑅2
1 − 𝑑

2)(𝑑2 − 𝑟20)
, (27)

hich is clearly valid for 𝑅1 + 𝑟0 ≤ 𝑑 ≤ 𝑅2 − 𝑅1. This force is positive,
hich indicates a repulsion between the two defects (cf. [3, p. 122]).
his is not surprising given the overall forms of the energies for the
xamples investigated below in Figs. 7(a) and 9(a) where the exact
nteraction energy is displayed for physical parameters corresponding
o the range of values for 𝑑 discussed here; when 𝐼1 and 𝐼2 have
pposite signs then the energy must rise as 𝑑 decreases in order to
chieve a sufficient energy level to initiate an attraction at which point
7

he force changes sign and the defect with index 𝐼1 is then attracted to
he defect with index 𝐼2 in the geometry of Fig. 6. This can occur as the
verlap in the regions of influence increases with a consequent increase
n energy until the defects are ‘captured’ at a critical distance 𝑑𝑐 for an
ttractive interaction that initiates anaphase A. In anaphase the sizes of
hese regions are a proxy for the influence of the biochemical processes
nd for the examples explored below the critical distance in anaphase A
ill always be less than the values of 𝑑 that are valid for the results
vailable in Eqs. (26) and (27).

The aforementioned details are given for the two-body problem in
naphase A. They apply equally to the two-body problem in anaphase B
ith a simple change throughout of the suffixes 1 and 2 to 2 and 3,

espectively. However, in anaphase B the indexes 𝐼2 and 𝐼3 have the
ame sign and so there is always a repulsion between the defects and,
f desired, the exact derivation of the force in (27) can be deployed in
alculations; we will not require to use it explicitly here for the basic
anges of 𝑑 selected in the modelling for anaphase B, although the result
ill be of use for estimating the approximate magnitudes of the forces

hat are involved in the interactions.

. Examples

We now explore two examples to demonstrate the model in rela-
ion to physical data: the HeLa cell and C. elegans. The energies in
hese examples have been evaluated using Eqs. (9) to (15) and the
tandard integration package available in Maple 2021 [27]. The final
esults have been prepared for presentation in the graphics package
riginPro 2021 [28].

.1. HeLa cell

A typical length for a HeLa cell chromatid can be estimated as half
f that for an average human chromosome of around 120 Mb (mega
ase pairs), and so we select a chromatid length of 60Mb. Each base
air can be estimated as having a mass2 of 650Da ≈ 1.079×10−9 pg and
o the mass of a typical HeLa chromatid can be approximated as 6.47×
0−2 pg, which can be set as 𝑚1; this is in line with the chromosome
asses reported in [29]. Such a chromatid can be identified as a −1∕2

inetochore defect located at 𝑃1 (cf. Figs. 2 and 4).
An average microtubule is made up of around 1600 𝛼∕𝛽-tubulin

eterodimers per μm, with each heterodimer having a mass of around
00 kDa [1, p. 925] and therefore each microtubule has a mass of
pproximately 16 × 104 kDa per μm (cf. [30, pp. 64–65]). In the HeLa
ell during anaphase A a microtubule has an average length of around
μm [31,32] which leads to a microtubule of mass 1.06 × 10−3 pg.
owever, this microtubule is connected in parallel to a large collection
f nearby similar microtubules that form the kinetochore fibre (the
old lines in Fig. 2). We propose, for modelling purposes, that the
AP within the kinetochore fibre can be identified as a +1∕2 defect

cf. Figs. 2, 4 and 5) that is located within this connected body of
icrotubules which form the kinetochore fibre with a combined mass

f approximately 30 microtubules [12,33], and therefore we set 𝑚2 =
.18 × 10−2 pg and denote this combined body as MAP+. The location
2 is identified as the position of this +1∕2 MAP defect within the
inetochore fibre which is then taken as the centre of its mass for
odelling purposes. This location is selected as a modelling parameter
hich is set in the examples that follow; modifications to this position
re possible and the general modelling procedure remains unchanged.
he kinetochore fibre associated with each chromatid is therefore
pproximated at 4 μm in length with the MAP located near the fibre
nd that is closer to the kinetochore; the MAP location is set explicitly
n the examples below.

2 1Da ≑ 1.660539066 × 10−24 g.
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The spindle pole (cf. Figs. 2 and 3) consists of two centrioles
(a mother centriole and a daughter centriole) each made up of 27
microtubules and can be identified as a +1 defect (cf. Fig. 4) located
at the position 𝑃3. Each microtubule in the spindle pole has a length
of approximately 0.5 μm and, from the previous calculations, a micro-
tubule has a mass of 16 × 104 kDa per μm and so the spindle pole has a
mass of 4.32 × 106 kDa which we can set as 𝑚3 = 7.17 × 10−3 pg.

Anaphase occurs when the three bodies located at 𝑃1, 𝑃2 and 𝑃3
utually interact and is often observed as having a first interaction

ollowed by a second interaction, labelled anaphase A and anaphase B,
espectively [32], as mentioned above, and in this elementary approach
ill be treated as a pair of two-body problems under the presumption

hat there are distinct observations of anaphase B occurring directly
fter anaphase A, as observed in [31,34] for HeLa cells. The first,
naphase A, will model the attractive interaction between the −1∕2

and +1∕2 defects at positions 𝑃1 and 𝑃2, respectively. The second,
anaphase B, will consider the repulsive interaction between the +1∕2
and +1 defects at 𝑃2 and 𝑃3 where there will be a revised mass for
the defect core located at 𝑃2, due to it being attached to the −1∕2
defect (chromatid) after the anaphase A interaction. The core radii of
the three defects will be set equal to 𝑟0 = 0.1 μm, as we again follow
the illustration in Fig. 6. Note that each microtubule has a diameter
of 24 nm (see Fig. 1) and so the end of the kinetochore fibre, which
contains the ends of 30 microtubules in this model, may be accommo-
dated on a kinetochore surface because the diameter of each core is
assumed to be 2𝑟0 = 200nm. Anaphases A and B will be considered
in turn and then the results will be combined for the model of the
full anaphase. This model aligns with the summary information in the
review article [32] for general timescales and data for anaphase A and
anaphase B in human cells driven by force-generating mechanisms.

Anaphase A
It will be supposed that the region of influence for the −1∕2 kineto-

chore defect at 𝑃1 is smaller than that for the +1∕2 MAP defect located
at 𝑃2 and choose to set 𝑅1 = 5 μm and 𝑅2 = 11 μm and that the core
radii of the two defects are set equal to 𝑟0 = 0.1 μm, as illustrated in
Fig. 6. During anaphase A it is assumed that the spindle pole at 𝑃3 can
be modelled as stationary. It is the MAP within the microtubule that is
crucial in the anaphase A process as it evolves, which is why it is the
focus of the dynamics via its position at 𝑃2. Accordingly, we can set, in
he notation of Fig. 6,

1(𝑡) = (𝑥1(𝑡), 0), 𝐫2(𝑡) = (𝑥2(𝑡), 0), (28)
𝐫(𝑡) = 𝐫1(𝑡) − 𝐫2(𝑡) = (𝑑(𝑡), 0), (29)

where

𝑑(𝑡) = 𝑥1(𝑡) − 𝑥2(𝑡) . (30)

The fixed centre of mass for the reduced system is given by (24). The
resulting dynamic equation in this geometry for the interaction of the
defects is then, from (19) and (21),

𝜇𝑑 = 𝐹 int
1 − 𝜉�̇�. (31)

The force of interaction as defined in Eq. (16) is a function of 𝑑 given
by

𝐹 int
1 = −d𝑊

d𝑑
, (32)

nd the initial conditions for the differential equation in 𝑑(𝑡) are

̇(0) = 0, 𝑑(0) = 𝑥1(0) − 𝑥2(0), (33)

ue to the assumption (23) that the initial velocities can be set to zero
n a first investigation, which means that the centre of mass 𝐑(𝑡) of the
educed system remains fixed at 𝐑(0) given by (24). From the notation
n Eqs. (28) to (30) and the results from Eqs. (B.15) and (B.16) in
ppendix B it is seen that the solutions for 𝑥1(𝑡) and 𝑥2(𝑡) are given

by

𝑥 (𝑡) = 𝑅(0) +
𝑚2 𝑑(𝑡), (34)
8

1 𝑚
𝑥2(𝑡) = 𝑅(0) −
𝑚1
𝑚
𝑑(𝑡), (35)

here, from Eq. (24), the initial position for the reduced system, 𝑅(0),
is given by

𝑅(0) = 1
𝑚

(

𝑚1𝑥1(0) + 𝑚2𝑥2(0)
)

. (36)

Further, from Eqs. (34), (35) and the definitions of 𝜉1 and 𝜉2 in Eq. (22),
he drag forces acting on each defect satisfy the equalities

𝜉�̇�(𝑡) = −𝜉1�̇�1(𝑡) = 𝜉2�̇�2(𝑡) . (37)

here are obvious analogues to Eqs. (28) to (37) for the two-body
roblem in terms of the defects located at 𝑃2 and 𝑃3. Consequently,
he magnitude of the average drag force, denoted by 𝐹 d

𝐴, is given by

̂d
𝐴 ≡ 𝜉

𝑡𝐴

|

|

|

|

|

∫

𝑡𝐴

0
�̇�(𝑠) 𝑑𝑠

|

|

|

|

|

=
𝜉
𝑡𝐴

|

|

𝑑(𝑡𝐴) − 𝑑(0)|| , (38)

here 𝑡𝐴 is the corresponding timescale for anaphase A (similarly for
he average drag force 𝐹 d

𝐵 for anaphase B in terms of 𝑡𝐵).
The elastic constant in the Dafermos interaction energy (4) can

e approximated as 𝐾 = 5pN [5] from data known for anisotropic
aterials. The corresponding energy 𝑊 (𝑑), in picojoules (pJ), for the

iven regions of influence and parameters listed in Table 1 is shown
n Fig. 7(a). This energy is valid for 0.2 μm = 2𝑟0 ≤ 𝑑 ≤ 𝑅1 +
2 = 16 μm. The numerically derived energy is plotted over this
ntire available range of 𝑑 using the results in Eqs. (9) to (15) and
tandard integration available in Maple 2021 while the exact energy
as been plotted using Eq. (26) over the restricted range of 𝑑 for which
t is valid, namely, 𝑅1 + 𝑟0 ≤ 𝑟 ≤ 𝑅2 − 𝑅1. Since 𝑊 represents the

energy per unit depth in the 𝑧-direction, the calculated energy has
additionally been multiplied by a typical depth commensurate with the
scale of the smaller regions of influence, set throughout the examples
in this section at 2 μm. Other depths can be chosen and the model will
remain valid within the constraints of a two-dimensional description
although it is anticipated that depths beyond the scale of the regions
of influence would really require a revised three-dimensional model,
which is beyond the scope of this present work. This selected depth can
enable meaningful comparisons with data in the literature, for example
when calculating forces. As mentioned after Eq. (27), the consequent
force of interaction becomes attractive only when 𝑑 is at a suitably close
distance less than the critical distance 𝑑𝑐 where the force changes sign,
as can be deduced from Fig. 7(a) and the definition of the force 𝐹 int

1
n Eq. (32). In this example, 𝑑𝑐 ≑ 4.14 μm and we therefore choose to set
he initial data, for illustrative purposes that will become clear below,
s

1(0) = 14 μm, 𝑥2(0) = 10 μm, �̇�1(0) = 0, �̇�2(0) = 0, (39)

hich leads to the initial conditions

(0) = 4 μm, �̇�(0) = 0. (40)

The solution 𝑑(𝑡) to the dynamic equation (31) with initial condi-
ions (40) can then be determined numerically using the dsolve package
ithin Maple 2021, noting that the reduced mass for anaphase A in

his problem is, by the definition in (22), 𝜇 = 2.13 × 10−2 pg. The only
nknown that is required to obtain a solution is the value of the reduced
oefficient 𝜉. This can be estimated by knowing the duration times that
re observed from experiments for anaphases A and B. From the data
n [34] it is know that for many HeLa cells the timescales for both
naphase A and anaphase B are very similar at around 3 min for each
n observations. This leads, in these experiments, to a total anaphase
imescale of around 6 min. This timescale is determined by 𝜉 and, by
umerical investigations for differing values of 𝜉, a solution can be
btained that leads to such a timescale for anaphase A. We choose to
et 𝜉𝐴 as the calculated value that leads to the timescale of 𝑡𝐴 = 180 s

for the duration of anaphase A where, given the core size of the defects,
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Table 1
Approximate material parameters and their values. They have been derived from the
experimental observations cited in the text: principally from [31,32,34] for the HeLa
cell and [35–39] for C. elegans. The MAP+ mass for anaphase B, 𝑚22, has been set
equal to 𝑚1 + 𝑚2.

Parameter Symbol HeLa C. elegans

Elastic constant 𝐾 5 pN 5 pN
Core radius 𝑟0 0.1 μm 0.1 μm
Chromatid defect 𝐼1 − 1

2
− 1

2

MAP+ defect 𝐼2 + 1
2

+ 1
2

Spindle pole defect 𝐼3 +1 +1

Chromatid region of influence 𝑅1 5 μm 2.5 μm

MAP+ region of influence (anaphase A) 𝑅2 11 μm 6 μm

MAP+ region of influence (anaphase B) 𝑅22 1 μm 1 μm

Spindle pole region of influence 𝑅3 5 μm 5 μm

Chromatid mass 𝑚1 6.47 × 10−2 pg 8.25 × 10−3 pg
MAP+ mass (anaphase A) 𝑚2 3.18 × 10−2 pg 1.06 × 10−2 pg
MAP+ mass (anaphase B) 𝑚22 9.65 × 10−2 pg 1.89 × 10−2 pg
Spindle pole mass 𝑚3 7.17 × 10−3 pg 7.17 × 10−3 pg

𝑑(𝑡𝐴) = 2𝑟0 when the two cores meet. In this particular example, it was
etermined that

𝐴 = 2.61 × 10−1 g s−1, 𝑡𝐴 = 180 s, (41)

with corresponding coefficients given via (22) and consequently, in an
obvious notation corresponding to the solutions for 𝑥1(𝑡) and 𝑥2(𝑡),

𝐴1
= 7.91 × 10−1 g s−1, 𝜉𝐴2

= 3.89 × 10−1 g s−1. (42)

oreover, the magnitude of the average drag force defined by Eq. (38)
s

̂d
𝐴 = 5.51pN. (43)

summary of the modelling parameters is given in Table 2 and the
olution for 𝑑(𝑡) is shown in Fig. 7(b). The final solutions for 𝑥1(𝑡) and
2(𝑡) are recovered via 𝑑(𝑡) and the relations in Eqs. (34), (35), (36) and
39) and these are displayed in Fig. 8(a).

The point 𝑥+2 (0) is defined to be the initial position in anaphase B
f the combined MAP+ and chromatid which is set to be the point of
ontact of the two cores in anaphase A which is given by

+
2 (0) =

1
2
(

𝑥1(𝑡𝐴) + 𝑥2(𝑡𝐴)
)

. (44)

The constant value assumed for the spindle pole throughout anaphase A
is set to be the initial point 𝑥3(0) in anaphase B, which is given by

3(0) = 𝑥+2 (0) − 𝑑(0), (45)

with 𝑑(0) set at an appropriate value for anaphase B that will be given
below in Eq. (48).

Anaphase B
To model anaphase B as a two-body problem we assume that the

chromatid and the microtubule with its link to MAP+ form one body
and that this combined +1∕2 defect, with position denoted by 𝑥+2 (𝑡),
hen interacts with the spindle pole, which is modelled as a +1 defect.

e therefore introduce a revised mass for the combination of the MAP+

nd chromatid and set it as 𝑚22 = 𝑚1+𝑚2. We can follow the procedures
sed in anaphase A and again use the geometry in Fig. 6 with the
ositions of 𝑥2 and 𝑥1 replaced, respectively, by 𝑥3 and 𝑥+2 , with 𝐼2
eplaced by 𝐼3 and 𝐼1 replaced by 𝐼2 accordingly. We also choose to
et a revised radius for the region of influence around the +1∕2 defect
s 𝑅22 = 1 μm and set 𝑅3 = 5 μm, with the distance between the
wo defects being 𝑑(𝑡) = 𝑥+2 (𝑡) − 𝑥3(𝑡). The interaction energy density
n (25) and interaction energy 𝑊 in (4) can be adapted accordingly,
s can Eqs. (28) to (33). The numerically derived energy is plotted
9

n Fig. 7(c) for the data listed in Table 1 over the interactive range a
Table 2
Numerical modelling parameters for a HeLa cell. The coefficients 𝜉𝐴 and 𝜉𝐵 are the
basic numerical modelling parameters and are selected to achieve the typical physical
timescales reported in [34]. The material parameters used in numerical calculations
are those listed in Table 1.

Parameter Symbol Value

HeLa cell Anaphase A

Reduced mass 𝜇 2.13 × 10−2 pg
Reduced coefficient 𝜉𝐴 2.61 × 10−1 g s−1

Effective coefficient for chromatid 𝜉𝐴1
7.91 × 10−1 g s−1

Effective coefficient for MAP+ 𝜉𝐴2
3.89 × 10−1 g s−1

Anaphase A duration time 𝑡𝐴 180 s
magnitude of average drag force 𝐹 d

𝐴 5.51 pN

HeLa cell Anaphase B

Reduced mass 𝜇 6.67 × 10−3 pg
Reduced coefficient 𝜉𝐵 9.14 × 10−1 g s−1

Effective coefficient for MAP+ 𝜉𝐵2
13.21 g s−1

Effective coefficient for spindle pole 𝜉𝐵3
9.81 × 10−1 g s−1

Anaphase B duration time 𝑡𝐵 180 s
magnitude of average drag force 𝐹 d

𝐵 20.31 pN

1.1 μm = 𝑅22 + 𝑟0 ≤ 𝑑 ≤ 𝑅22 +𝑅3 = 6 μm, with the exact energy plotted
over its entire domain of validity 𝑅22 + 𝑟0 ≤ 𝑑 ≤ 𝑅3 − 𝑅22.

The governing differential equation and force of interaction are
given in this case by Eqs. (31) and (32) where 𝑊 is replaced by the
energy for anaphase B. It is clear from Fig. 7(c) that the force 𝐹 int

1
is always positive and that these defects of the same sign therefore
always repel in anaphase B, as mentioned previously. The calculations
in anaphase B are similar to those in anaphase A with given initial
positions for 𝑥+2 (0) and 𝑥3(0), evaluated by suitably adapting the results
in (9) to (15) in the context of the data for anaphase B. We choose to
set the initial conditions as

𝑥+2 (0) =
1
2
(

𝑥1(𝑡𝐴) + 𝑥2(𝑡𝐴)
)

, 𝑥3(0) = 𝑥+2 (0) − 𝑑(0), (46)

�̇�+2 (0) = 0, �̇�3(0) = 0, (47)

ith 𝑑(0) = 𝑅3 − 𝑅22 in this case, chosen so that the displacement
f the spindle pole in anaphase B approximates that observed in the
xperimental data of [34]. Note that the overlap for the interactive
nergy ceases when 𝑑 > 𝑅22 + 𝑅3. The initial conditions for Eq. (31)
re therefore

(0) = 𝑅3 − 𝑅22 = 4 μm, �̇�(0) = 0. (48)

he region of influence 𝛺2 around 𝑥2 initially lies completely inside
he region of influence 𝛺3 around 𝑥3, and so the initial overlap area
s completely within the 𝛺3 region. The reduced mass for anaphase B
s, by the definition (22) in terms of 𝑚22 and 𝑚3, 𝜇 = 6.47 × 10−3 pg.
imilarly, we set 𝜉𝐵 to be the calculated value that leads to the
imescale of 𝑡𝐵 for the same duration of anaphase A, that is, 3 min and
ote that in this case 𝑑(𝑡𝐵) = 𝑅22 + 𝑅3. It was determined that

𝐵 = 9.14 × 10−1 g s−1, 𝑡𝐵 = 180 s, (49)

ith corresponding coefficients given via (22) to find that

𝐵2
= 13.21 × g s−1, 𝜉𝐵3

= 9.81 × 10−1 g s−1. (50)

The magnitude of the average drag force is, by the analogue of Eq. (38),

𝐹 d
𝐵 = 20.31pN. (51)

The solution to Eq. (31) for 𝑑(𝑡) in terms of the energy for anaphase B
is shown in Fig. 7(d) and a summary of the parameters is presented in
Table 2. The solutions displayed in Fig. 8(a) have been determined from
𝑑(𝑡) via the analogues of Eqs. (34) to (36) and the initial conditions (46)
nd are labelled as 𝑥+(𝑡) and 𝑥 (𝑡). Recall that the plus index indicates
2 3
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Fig. 7. (a) The interaction energy for the chromatid (𝐼1 = −1∕2) and the MAP+ (𝐼2 = +1∕2) as a function of the distance 𝑑 between these two defects in the model of anaphase A
discussed in the text. (b) The solution 𝑑(𝑡) of the governing dynamic Eq. (31) for anaphase A for the energy shown in (a) for the initial conditions (40). (c) The interaction energy
for the MAP+ and the spindle pole (𝐼3 = +1) as a function of the distance 𝑑 between them in the model for anaphase B. (d) The solution 𝑑(𝑡) of the governing Eq. (31) for
anaphase B for the energy shown in (c) for the initial conditions (48). In both (a) and (c) the bold curves have been calculated numerically and the circles are points calculated
from the exact energy formula given in (26) over the domain for which it is valid, details in the text.

Fig. 8. Anaphase for a HeLa cell obtained from calculations based on the material parameters in Table 1 and the reduced coefficients 𝜉𝐴 and 𝜉𝐵 as key modelling parameters
given in Table 2. The timescales presented here are in line with the experimental times reported in [34]. (a) Anaphase A is modelled first as a two-body problem for the chromatid
and the MAP+ being attracted while the spindle pole is presumed fixed. Anaphase A has a duration of 𝑡𝐴 = 180 s. Anaphase B follows the cessation of anaphase A as the MAP+

and the spindle pole repel each other; it is assumed that the MAP+ and chromatid move together as one joined body for the duration of anaphase B with a duration of 𝑡𝐵 = 180 s
which then leads to a total duration time of 360 s for anaphase A followed by anaphase B. (b) A kymograph obtained by the method outlined in the text of the chromatids and
spindle poles relative to the original cell central mid-plane which can be used to compare with the kymograph data available, for example, in [31].
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that the path modelled is that of the combined chromatid and MAP+

which means that the solution for the chromatid, 𝑥1(𝑡), is presumed to
coincide with 𝑥+2 (𝑡) during anaphase B. There is also an obvious linear
time shift for the anaphase B solutions for display purposes with the
initial and final times set to 180 s and 360 s, respectively.

The final solutions for anaphases A and B are shown in Fig. 8(a);
the corresponding kymograph is in Fig. 8(b) which can more readily
be compared to those obtained from experimental studies of HeLa cells
in the literature, for example those available in [31]. The kymograph
is obtained from the solutions in Fig. 8(a) by linearly translating the
initial data to the locations shown in Fig. 8(b) with the centre of the cell
located at 𝑥 = 0, supplemented by the right half of the cell behaviour
which occurs simultaneously and is assumed to be identical to that
obtained for the left half with, of course, movement in the opposite
direction. The kymograph reflects the time-dependent evolution of
anaphase and is effectively tracking the movement of the centrioles,
kinetochores and chromatids: Fig. 2 is a schematic example of one
snapshot in time of their locations in the kymograph.

Some discussion of drag forces in mitosis has been made in [40].
These authors modelled a chromosome as a cylinder and their initial
estimate for the coefficient in the drag force is 𝜉 ≈ 5.5 × 10−2 g s−1
which resulted in an estimate for the drag force of 𝐹 d ≈ 0.9pN when
the speed of the chromosome was estimated at 16nm s−1. In the HeLa
example presented here for the motion of the chromatid in anaphase A,
represented as the defect with index 𝐼1 = −1∕2, the coefficient in
the drag force was found to be 𝜉𝐴 = 2.61 × 10−1 g s−1, the average
drag force was 𝐹 d

𝐴 = 5.51pN and the average speed of the chromatid
was approximately 7 nm s−1. Although not used directly to derive the
solutions in this HeLa example because the validity of its range was
outside the relevant applicable data used here, it is worth noting that
the magnitude of the average of the force given explicitly by Eq. (27)
can be evaluated for the HeLa data in Table 1 to find 𝐹 int

1 = 9.00pN in
anaphase A and 𝐹 int

1 = 9.09pN in anaphase B. The results presented
here are generally within an order of magnitude of those estimated
in [40] and there is clearly more that can be explored by varying the
material parameters and regions of influence in our model.

5.2. C. elegans

An average C. elegans chromatid can be identified as a −1∕2 kine-
tochore defect located at 𝑃1 and its mass needs to be determined. From
the experimental results in [39] it is known that a C. elegans haploid
genome is expected to contain 8 × 107 base pairs with a mass of 8.8 ×
10−14 g. This results in each base pair having a mass of approximately
1.1×10−21 g. From the results reviewed in [38] an average chromosome
in C. elegans consists of approximately 15Mb (mega base pairs) and so
a chromatid can be estimated as having 7.5 Mb which equates to a mass
of 8.25 × 10−3 pg, which can be set as 𝑚1.

In C. elegans the microtubule has a length of around 5 μm when
anaphase A begins [37, Fig. 4]. By similar calculations to those de-
scribed above for the HeLa cell, this gives a mass of 8 × 105 kDa which
is approximately 1.33 × 10−3 pg for a single microtubule. However, it is
known [35] that the kinetochore fibres for C. elegans each consist of
around 8 microtubules and therefore, for reasons similar to those for
the HeLa example, we can be set 𝑚2 = 1.06 × 10−2 pg. As before, the
MAP will be contained within this kinetochore fibre. The MAP defect
including the kinetochore fibre is again denoted by MAP+.

The separation between anaphase A and anaphase B in C. elegans is
often difficult to detect. For example, [36] do not detect anaphase A in
C. elegans and [37] report that the duration of anaphase A is relatively
short. Nevertheless, in this basic investigation it will be assumed that
anaphase B occurs after anaphase A and we will be motivated by the
data presented in Fig. 4 in [37] which displays a sequence of events,
each occurring over time intervals of around 70 s. To accomplish this
we again consider a pair of two-body problems and model anaphases A
and B separately. However, as the key modelling parameters for the
11

p

timescales are directly linked to the corresponding reduced coefficients
𝜉𝐴 and 𝜉𝐵 , we choose to set these values by numerical experimentation
so that the timescale for the duration of anaphases A and B are both
70 s; if required, the same technique can be used to produce a shorter
timescale for anaphase A by determining numerically an appropriate
corresponding value for 𝜉𝐴.

Anaphase A
We set the core radii of the two defects to be equal to 𝑟0 = 0.1 μm,

as previously set for the HeLa cell example. It will be supposed that the
region of influence for the −1∕2 kinetochore defect at 𝑃1 is smaller than
that for the +1∕2 MAP defect located at 𝑃2 and choose in this example
to set 𝑅1 = 2.5 μm and 𝑅2 = 6 μm. As before, during anaphase A
the spindle pole at 𝑃3 can be modelled as stationary. We adopt the
notation and formulation in Eqs. (28) to (33) and assume that the initial
velocities of the defects are zero as proposed in (23). The consequent
energy 𝑊 (𝑑) has been calculated via Eqs. (9) to (15) and multiplied
by a typical depth of 2 μm to enable data comparisons, as previously
carried out for the HeLa cell example. The result for the data prescribed
in Table 1 is presented in Fig. 9(a), which also includes a plot of the
exact energy for its available range 𝑅1 + 𝑟0 ≤ 𝑑 ≤ 𝑅2 − 𝑅1. Analogous
to the previous example, the consequent force of interaction in this
instance becomes attractive only if 𝑑 is less than the critical distance
𝑑𝑐 ≑ 2.05 μm where the force changes sign and therefore we can choose
the initial data for this C. elegans example for illustrative purposes to
be

𝑥1(0) = 14 μm, 𝑥2(0) = 12 μm, �̇�1(0) = 0, �̇�2(0) = 0, (52)

which leads to the initial conditions

𝑑(0) = 2 μm, �̇�(0) = 0. (53)

The relevant reduced mass for anaphase A is, by the definition in (22),
𝜇 = 4.65 × 10−2 pg. Eq. (31) subject to the initial conditions (53) is
solved numerically to obtain 𝑑(𝑡). As previously, the solution requires
the identification of a suitable reduced coefficient 𝜉 for this problem
by exploring data from experiments and making comparisons with
the numerically derived solutions. For the data presented above, and
summarised in Table 1, the duration of anaphase A, 𝑡𝐴, was set to 70 s,
which is when the two cores make contact and 𝑑(𝑡𝐴) = 2𝑟0. It was
determined that

𝜉𝐴 = 3.26 × 10−1 g s−1, 𝑡𝐴 = 70 s, (54)

and the other relevant coefficients determined via (22) as

𝜉𝐴1
= 5.79 × 10−1 g s−1, 𝜉𝐴2

= 7.74 × 10−1 g s−2. (55)

The magnitude of the average drag force, from Eq. (38), is

𝐹 d
𝐴 = 8.38pN. (56)

These results for anaphase A are summarised in Table 3. The solution
for 𝑑(𝑡) is shown in Fig. 9(b) and the solutions for 𝑥1(𝑡) and 𝑥2(𝑡), which
re recovered from 𝑑(𝑡) via Eqs. (34) to (36) and the initial data (52),
re displayed in Fig. 10(a).

As in the HeLa example, we can define, in terms of the solutions
or anaphase A for C. elegans, the initial position of the combined
AP+ and chromatid in anaphase B as 𝑥+2 (0) given by Eq. (44) and the

onstant position assumed for the spindle pole throughout anaphase A
an be set as 𝑥3(0) = 𝑥+2 (0) − 𝑑(0), as defined in Eq. (45), with 𝑑(0) to
e set at an appropriate value for anaphase B, as discussed below.

naphase B
To model anaphase B we assume, as for the HeLa cell, that the

hromatid and the microtubule form one body that constitutes the +1∕2
efect with position 𝑥+2 (𝑡) which then interacts with the +1 spindle pole
efect located at 𝑥3(𝑡). A revised mass for the combination of the MAP+

nd chromatid is introduced as 𝑚22 = 𝑚1 +𝑚2. The mass of the spindle
ole is taken to be the same as in the HeLa cell given above and so
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Fig. 9. (a) The interaction energy for the chromatid (𝐼1 = −1∕2) and the MAP+ (𝐼2 = +1∕2) as a function of the distance 𝑑 between these two defects in the model of anaphase A
discussed in the text for C. elegans. (b) The solution 𝑑(𝑡) of the governing dynamic Eq. (31) for anaphase A for the energy shown in (a) for the initial conditions (53). (c) The
interaction energy for the MAP+ and the spindle pole (𝐼3 = +1) as a function of the distance 𝑑 between them in the model for anaphase B. (d) The solution 𝑑(𝑡) of the governing
Eq. (31) for anaphase B for the energy shown in (c) for the initial conditions (48). The bold curves in (a) and (c) were calculated numerically and the circles are points evaluated
from the exact energy in (26) over its range of validity.
Fig. 10. Anaphase for a C. elegans cell. Calculations are based on the material parameters in Table 1 and the reduced coefficients 𝜉𝐴 and 𝜉𝐵 as key modelling parameters given
in Table 3. (a) Anaphase A is modelled as a two-body problem for the chromatid and the MAP+ being attracted while the spindle pole is presumed fixed. Anaphase A has a
presumed duration of 𝑡𝐴 = 70 s which determines the value of 𝜉𝐴. Anaphase B is presumed to occur after anaphase A, as discussed in the text, with a time duration 𝑡𝐵 = 70 s,

hich determines 𝜉𝐵 . These timescales are in line with the experimental times reported in [36,37]. (b) Kymograph of the chromatids and spindle poles relative to the original cell
entral mid-plane which can be used to compare with the kymograph data available in [36] and the experimental observations made in [37].
b
i
𝑊

3 = 7.17 × 10−3 pg. The reduced mass for anaphase B is then, by the
nalogous definition in (22) in terms of 𝑚22 and 𝑚3, 𝜇 = 5.20 × 10−2 pg.

The procedures used in anaphase A can be used again in the
eometry of Fig. 6 with the positions 𝑥 and 𝑥 replaced, respectively,
12

2 1 t
y 𝑥3 and 𝑥+2 and with 𝐼2 replaced by 𝐼3 and 𝐼1 replaced by 𝐼2. The
nteraction energy density contribution 𝜔 in (25) and interaction energy
(𝑑) in Eqs. (4) and (28) to (33) can then be adapted accordingly. In

his instance we select 𝑅 = 1μm, 𝑅 = 5μm and, for the purposes
22 3
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Table 3
Numerical modelling parameters for C. elegans. The coefficients 𝜉𝐴 and 𝜉𝐵 are the
asic numerical modelling parameters and are selected to achieve the typical physical
imescales reported in [37] and [36]. The material parameters used in numerical
alculations are those listed in Table 1.
Parameter Symbol Value

C. elegans Anaphase A

Reduced mass 𝜇 4.65 × 10−3 pg
Reduced coefficient 𝜉𝐴 3.26 × 10−1 g s−1

Effective coefficient for chromatid 𝜉𝐴1
5.79 × 10−1 g s−1

Effective coefficient for MAP+ 𝜉𝐴2
7.47 × 10−1 g s−1

Anaphase A duration time 𝑡𝐴 70 s
magnitude of average drag force 𝐹 d

𝐴 8.38 pN.

C. elegans Anaphase B

Reduced mass 𝜇 5.20 × 10−3 pg
Reduced coefficient 𝜉𝐵 7.10 × 10−2 g s−1

Effective coefficient for MAP+ 𝜉𝐵2
2.58 × 10−1 g s−1

Effective coefficient for spindle pole 𝜉𝐵3
9.79 × 10−2 g s−1

Anaphase B duration time 𝑡𝐵 70 s
Magnitude of average drag force 𝐹 d

𝐵 4.06 pN.

of modelling the interaction energy and the dynamics of the distance
𝑑(𝑡) between 𝑥+2 (𝑡) and 𝑥3(𝑡), set the initial conditions to be those
set at Eqs. (46) and (47), but in the context of this example. The
dynamic equation to be solved for 𝑑(𝑡) is then Eq. (31) with the initial
conditions (48), observing that in this example 𝑑(0) = 𝑅3 − 𝑅22 also
equals 4 μm. Note, as before, that the revised region of influence 𝛺2 has
radius 𝑅22 = 1 μm around 𝑥+2 so that initially it lies completely inside
the region of influence 𝛺3 centred at 𝑥3. The energy 𝑊 (𝑑) for the data
prescribed in Table 1 is presented in Fig. 9(c), which also includes a
plot of the exact energy available for the range 𝑅22+ 𝑟0 ≤ 𝑑 ≤ 𝑅3−𝑅22.

Eq. (31), with 𝐹 int
1 given by (32) in terms of the energy 𝑊 (𝑑)

for anaphase B, subject to the initial conditions (48) can be solved
numerically to obtain 𝑑(𝑡), which leads to the final solutions for 𝑥+2 (𝑡)
and 𝑥3(𝑡) recovered from 𝑑(𝑡) via the obvious analogues of Eqs. (34) to
(36) with initial data (46) in the context of anaphase B in this example.
To ensure that 𝑡𝐵 = 70 s, noting that 𝑑(𝑡𝐵) = 𝑅22+𝑅3, it was found that

𝜉𝐵 = 7.10 × 10−2 g s−1, 𝑡𝐵 = 70 s, (57)

with the other relevant coefficients determined from (22) as

𝜉𝐵2
= 2.58 × 10−1 g s−1, 𝜉𝐵3

= 9.79 × 10−2 g s−1. (58)

The magnitude of the average drag force is, from Eq. (38),

𝐹 d
𝐵 = 4.06pN. (59)

These results are summarised for anaphase B in Table 3. The solution
for 𝑑(𝑡) is shown in Fig. 9(d) and the solutions for 𝑥+2 (𝑡) and 𝑥3(𝑡) are
displayed in Fig. 10(a). Similar to the HeLa cell example, 𝑥+2 (𝑡) is the
ath for the combined chromatid and MAP+ and the solution for the
hromatid, 𝑥1(𝑡), is presumed to coincide with 𝑥+2 (𝑡) during anaphase B.

A linear time shift for the anaphase B solutions has also been made for
display purposes with the initial and final times set to 70 s and 140 s,
respectively.

The final solutions for anaphases A and B are also shown in
Fig. 10(b) in the corresponding kymograph obtained by the method
outlined above for the HeLa cell. This can be compared to those
available in the experimental literature, for example in the sequence
of picture frames from in vivo live imaging for C. elegans in Fig. 4A
in [37]; see also the kymograph results reported in [36].

6. Conclusions and future directions

In this paper anaphase in the mitosis of cells has been modelled
in terms of liquid crystals. In particular, fundamental elements such
as microtubules are modelled as flux lines of liquid crystal alignments
13
which also model the various proteins associated with the key phases of
cell mitosis. Anaphase A and anaphase B have been investigated based
on the theory developed by Frank [24] and Oseen [41] combined with
the interaction energy considerations of Dafermos [23]. Our theory has
been exploited in application to HeLa and C. elegans cells and agrees
well with the cited experimental results.

A more detailed study of the regions of influence introduced here
is reserved for future investigations. Nevertheless, it is natural at this
point to make one small observation. Each mitotic spindle pole can be
modelled as a +1 defect as shown in Figs. 4 and 5 with an aster at its
centre. If (𝑟𝑖, 𝜒 𝑖), 𝑖 = 1, 2 denotes the position of each mitotic spindle as
described in Appendix A, with overlapping regions of influence, then
the contribution 𝜔 towards the energy density is given by Eq. (A.18) as

𝜔 = 1
𝑟12

+ 1
𝑟22

+ 2
𝑟1𝑟2

cos(𝜒1 − 𝜒2). (60)

t is known that defects of the same sign repel. Clearly, this energy
s minimised when 𝜒1 − 𝜒2 = 𝜋 and 𝑟1 = 𝑟2, which is precisely the
ipolar mitotic spindle observed and displayed in Fig. 2. Furthermore,
he minimum energy is zero and is attained along the equatorial line
isecting the bipolar mitotic spindle axis. In [10,42,43] the dynamics
f centriole movement is considered from the point of view of 𝐐-tensor
heory. The approach adopted here, which is based on the classical
rank–Oseen energy model [24,41] and the subsequent development
y Dafermos in [23], therefore appears as an alternative direct way for
dentifying the equilibrium locations of the spindle poles as part of the
itotic spindle.

Recall that the sister chromatids separate during anaphase and
ove to opposite polar regions of the mitotic spindle. This process is
istinguished by the two temporal events of anaphase A and anaphase
. Anaphase A modelled in terms of the two-body energy (A.18) is
arked by the abrupt and synchronous separation of sister chromatids
ue to the sudden degradation of cohesion complexes between sister
hromatids. Daughter chromosomes move to opposite spindle polar re-
ions as their kinetochore fibres shorten. Individual kinetochores bind
ultiple microtubules. Anaphase B is modelled in a similar manner

ut in combination with the kinetochore and centriole which both
ave positive defect indexes whereby opposite spindle poles will also
aturally move further away from each other because defects with
ndexes of the same sign repel. It may be the case for some cells, for
xample C. elegans, that anaphase A and anaphase B are overlapping
vents or that anaphase A is absent or of very short duration, as
entioned in the C. elegans example above. In this case the modelling

hould involve a three-body problem (see Eq. (A.19)) that combines the
hromatid and kinetochore, MAP and centriole.

Throughout this work we have made the underlying assumption
hat the cells are spherical and because of this symmetry the two-
imensional defects we considered, which have regions of influence
hat are modelled as thin cylindrical discs sitting within the cell,
rovide an appropriate approximate modelling environment. However,
ormal eukaryotic cells are not spherical and although the ideas devel-
ped here are applicable to such cells it would be necessary to examine
n extended theory applicable to three dimensional defects. Examples
oncerning the topology of defects in droplets can be found in [44].
he use of spherical micro-droplets of the nematic liquid crystal 5CB
hich contain central core point defects has been reviewed in [45] for
se in the detection of keratin forming cell tumour line Type B (kB)
ancer cells. These droplets interact with the KB cells (see [45, Fig. 5])
nd the work we have presented here will be of value in exploring such
nteractions.
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Appendix A. Defects and the interaction energy

The following is a précis of the form of interaction energy density
for defects developed by Dafermos [23]. For convenience we use the
standard notation (𝑥1, 𝑥2) for Cartesian coordinates throughout this
Appendix which derives the crucial polar coordinate forms of the inter-
action energies in Eqs. (A.18) and (A.19) below; it is especially (A.18)
that we deploy in polar coordinates and so there should be no confusion
between the final form of the energy used in Sections 4 and 5 and the
notation for the time-dependent locations of the defects at 𝐫1 = (𝑥1(𝑡), 0)
and 𝐫2 = (0, 𝑥2(𝑡)).

The director 𝐧 is

= (cos 𝜃, sin 𝜃), 𝜃 = 𝜃(𝑥1, 𝑥2). (A.1)

Under the one-constant approximation, the Frank–Oseen energy 𝑊
from Eq. (4) per unit depth in 𝑧 is given by

= 1
2
𝐾 ∫𝛺

(

𝜃2𝑥1 + 𝜃
2
𝑥2

)

𝑑𝑥1𝑑𝑥2, (A.2)

and the corresponding Euler–Lagrange equation for equilibrium is

𝜃𝑥1𝑥1 + 𝜃𝑥2𝑥2 = 0. (A.3)

From (A.3) we see that the director alignment angle 𝜃(𝑥1, 𝑥2) sat-
isfies Laplace’s equation which when written in terms of the polar
coordinates 𝑥1 = 𝑟 cos𝜙 and 𝑥2 = 𝑟 sin𝜙 becomes

𝜃𝑟𝑟 +
1
𝑟
𝜃𝑟 +

1
𝑟2
𝜃𝜙𝜙 = 0. (A.4)

For axial defects 𝜃 is independent of 𝑟 and so

𝜃 = 𝑛
2
𝜙 + 𝜙0, (A.5)

where 𝜙0 is an arbitrary constant angle and 𝑛, necessarily an integer
by the symmetry of the director, is the Frank index of the defect. It
is common to define the index 𝐼 of the defect by 𝐼 ≡ 𝑛∕2 ; 𝐼 is also
called the strength of the defect and is often denoted by 𝑠 in the general
literature.

Flux lines are determined from geometric considerations as solutions
of the nonlinear ordinary differential equation, in polar coordinates,
given by (see [5,7] for details)
1
𝑟
𝑑𝑟
𝑑𝜙

= cot(𝜃 − 𝜙). (A.6)

It is known that there are singular radial flux lines emanating from the
origin and having direction determined by the relation

𝜃 − 𝜙 = 𝜇𝜋, 𝜇 an integer. (A.7)
14
Employing the solution (A.5) for 𝜃, the singular radial lines originate
from the origin whenever

𝜙 = 2
𝜇𝜋 − 𝜙0
𝑛 − 2

, 𝑛 ≠ 2, 𝜇 an integer. (A.8)

he number of such lines is clearly |𝑛 − 2|, that is, |2(𝐼 − 1)|; there are
herefore no singular radial lines when 𝐼 = +1. For the case 𝑛 = 2, (A.6)

is easily solved to give the one parameter family

𝑟 = 𝑐 exp(𝜙 cot 𝜙0), 𝑐 a constant. (A.9)

For 𝑛 ≠ 2 Eq. (A.6) can be solved to obtain the one parameter family
𝑛
2−1 = 𝐶 sin

(( 𝑛
2
− 1

)

𝜙 + 𝜙0

)

, 𝐶 a constant. (A.10)

Examples of defects and flux lines for 𝐼 equal to +1 and +1∕2 at 𝜙0 = 0
and for 𝐼 equal to −1∕2 at 𝜙0 = 𝜋∕2 are shown in Fig. 4. Further details,
and a derivation and interpretation of the Frank index, can be found
in [4,5,24].

We assume the cytoplasm 𝛺 is smooth and simply connected and
that on the boundary 𝜕𝛺, 𝜃(𝑥1, 𝑥2) = 𝜃0(𝑥1, 𝑥2) and follow the derivation
in [23]. If the index 𝐧0(𝑥1, 𝑥2) = 𝐼 ≠ 0, then 𝜃0(𝑥1, 𝑥2) has a jump
f 2𝜋𝐼 at a point of 𝜕𝛺. Let 𝐲1,… , 𝐲𝑁 be a set of defect points in

and 𝜃 = 𝜃(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ) be an orientation pattern satisfying
A.3) on 𝛺 − {𝐲1,… , 𝐲𝑁} and the boundary condition and contains a

disinclination of index 𝐼𝑖 at 𝐲𝑖, 𝑖 = 1,… , 𝑁 . We note here, in the context
of multiple defects, that Dafermos sets

𝐼 =
𝑁
∑

𝑖=1
𝐼𝑖 . (A.11)

rite

(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ) =
𝑁
∑

𝑖=1
𝜓 𝑖(𝑥1, 𝑥2; 𝐲𝑖) + 𝜙(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ), (A.12)

here

𝑖(𝑥1, 𝑥2; 𝐲𝑖) ≡ 𝐼𝑖 tan−1
(

𝑥2 − 𝑦𝑖2
𝑥1 − 𝑦𝑖1

)

, (A.13)

nd therefore 𝜙(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ) is harmonic on 𝛺 − {𝐲1,… , 𝐲𝑁}; for
notational consistency with the other cited reviews in this paper, we
have interchanged the notation for 𝜃 and 𝜙 that was originally used
in [23]. As in [23], we can then write

𝜃(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ) = 𝜓 𝑖(𝑥1, 𝑥2; 𝐲𝑖) + 𝜉𝑖(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ), (A.14)

𝑖(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ) =
∑

𝑗≠𝑖
𝜓 𝑗 (𝑥1, 𝑥2; 𝐲𝑗 ) + 𝜙(𝑥1, 𝑥2; 𝐲1,… , 𝐲𝑁 ). (A.15)

Then from (A.2) the energy density is 1
2𝐾𝜔 where

𝜔 = 𝐼2𝑖 𝑟
−2
𝑖 + 2𝐼𝑖𝑟−1𝑖 𝜉𝑖,2 cos𝜒

𝑖 − 2𝐼𝑖𝑟−1𝑖 𝜉𝑖,1 sin𝜒
𝑖 + (𝜉𝑖,1)

2 + (𝜉𝑖,2)
2, (A.16)

with a comma denoting partial differentiation with respect to the
variable 𝑥𝑖, 𝑖 = 1, 2 and, adopting the usual summation convention on
𝑗 from 1 to 2,

𝑟2𝑖 ≡ (𝑥𝑗 − 𝑦𝑖𝑗 )(𝑥𝑗 − 𝑦
𝑖
𝑗 ), 𝜒 𝑖 ≡ tan−1

(

𝑥2 − 𝑦𝑖2
𝑥1 − 𝑦𝑖1

)

, 𝑖 = 1, 2..., 𝑁. (A.17)

The important example of (A.16) used extensively in this paper is for
two defects when 𝑁 = 2, given by

𝜔 =
𝐼21
𝑟21

+
𝐼22
𝑟22

+
2𝐼1𝐼2
𝑟1𝑟2

cos(𝜒1 − 𝜒2), (A.18)

when harmonic contributions that would arise in the Euler–Lagrange
equations are neglected. We record here, in an obvious notation, that
for three simultaneous interacting defects

𝜔 =
𝐼21
2
+
𝐼22
2
+
𝐼23
2
+

2𝐼1𝐼2 cos(𝜒1 − 𝜒2) +
2𝐼1𝐼3 cos(𝜒1 − 𝜒3)
𝑟1 𝑟2 𝑟3 𝑟1𝑟2 𝑟1𝑟3
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+
2𝐼2𝐼3
𝑟2𝑟3

cos(𝜒2 − 𝜒3). (A.19)

The analogue of (A.18) for any two defects can be obtained from (A.19)
by setting the third defect index to zero.

Remark 1. There is an error in [23, Eqn.(4.16)] where the subscripts
1 and 2, corresponding to those in Eq. (A.16), should be interchanged.

Appendix B. Two-particle systems

Consider a two-particle system consisting of particles 𝑃1 and 𝑃2 with
masses 𝑚1 and 𝑚2, respectively. It is known that the centre of mass
of a two-particle system moves as a particle which has mass equal to
the sum of the masses of the two particles and which is acted on by
the sum of the external forces acting on the two particles. We now
follow the notation and definitions in [47] and denote their position
vectors relative to an arbitrary fixed origin 𝐎 be 𝐫1 and 𝐫2, respectively.
Let 𝐅int

1 denote the internal force that acts on 𝑃1 due to 𝑃2 with an
analogous definition for 𝐅int

2 for the force that acts on 𝑃2 due to 𝑃1; as
is well known, from Newton’s third law of motion, the sum of these
internal forces is zero and so 𝐅int

2 = −𝐅int
1 . Let 𝐅ext

1 and 𝐅ext
2 denote

he external forces acting on 𝑃1 and 𝑃2 respectively, due to influences
utside the two-particle system. From Newton’s second law of motion,
he equations of motion for these particles can be written as

1�̈�1 = 𝐅int
1 + 𝐅ext

1 , (B.1)

𝑚2�̈�2 = 𝐅int
2 + 𝐅ext

2 , (B.2)

where a superposed dot represents the derivative with respect to time
𝑡. Adding these two equations clearly gives the equation of motion for
the centre of mass with position vector 𝐑 defined by

𝐑 = 1
𝑚

(

𝑚1𝐫1 + 𝑚2𝐫2
)

, (B.3)

here 𝑚 = 𝑚1 + 𝑚2.
Now set 𝐫 = 𝐫1 − 𝐫𝟐. Then, from Eqs. (B.1) and (B.2),

̈ =
𝐅int
1
𝑚1

−
𝐅int
2
𝑚2

+
𝐅ext
1
𝑚1

−
𝐅ext
2
𝑚2

= 𝑚
𝑚1𝑚2

𝐅int
1 +

𝐅ext
1
𝑚1

−
𝐅ext
2
𝑚2

, (B.4)

which can be written in the form

𝜇�̈� = 𝐅int
1 + 1

𝑚
(

𝑚2𝐅ext
1 − 𝑚1𝐅ext

2
)

, (B.5)

where 𝜇 denotes the reduced mass of the system, defined by

𝜇 =
𝑚1𝑚2
𝑚

. (B.6)

The two-particle system (B.1) and (B.2) can be solved numerically
for general internal and external forces, but a simplification to a system
of two equations of motions for two one-particle systems is possible
under some basic modelling assumptions. This will allow us to gain
insight to the structure of the problem. It can be supposed, for our
purposes, that 𝐅ext

1 and 𝐅ext
2 are drag forces of the forms

𝐅ext
1 = −𝜉1�̇�1, 𝐅ext

2 = −𝜉2�̇�2, (B.7)

where 𝜉1 and 𝜉2 are coefficients with dimensions of mass divided by
time; it is well known that each of these coefficients depends on the
geometric shape of the individual particle and the material parameters
of the system under consideration (cf. [48, Sections 4.9 &4.10]). Under
the approximation

𝑚2𝜉1 = 𝑚1𝜉2, (B.8)

which is effectively a supposed relationship between the coefficients
and the particle masses, Eq. (B.5) becomes

𝜇�̈� = 𝐅int − 𝜉�̇�, (B.9)
15

1

where 𝐅int
1 is now expressed as a function of 𝐫 and 𝜉 is introduced as

the reduced coefficient, defined here by

𝜉 ≡
𝑚2
𝑚
𝜉1 =

𝑚1
𝑚
𝜉2. (B.10)

Further, a straightforward calculation shows that the equation of mo-
tion for the centre of mass is then described by

�̈� = −𝜆1�̇�, 𝜆1 =
𝜉1
𝑚1
. (B.11)

Consequently, the original two-particle system in Eqs. (B.1) and (B.2)
is equivalent to the system

�̈� = −𝜆1�̇�, (B.12)
𝜇�̈� = 𝐅int

1 − 𝜉�̇�. (B.13)

his transformed system now consists of two equations of motion
or two one-particle systems. Eq. (B.12) is an equation of motion for
he centre of mass under the influence of an external force which
s the same as that acting per unit mass on the particles 𝑃1 and 𝑃2.

Eq. (B.13) describes the motion of a fictitious particle of mass 𝜇 under
the influence of the internal force 𝐅int

1 acting on the particle 𝑃1 with
coefficient 𝜉. Eq. (B.12) is readily solved to find that

𝐑(𝑡) = 𝜆−11
(

1 − 𝑒−𝜆1𝑡
)

�̇�(0) + 𝐑(0), (B.14)

with prescribed initial conditions �̇�(0) and 𝐑(0) which are, of course,
determined by the initial conditions for particles 𝑃1 and 𝑃2. Notice that
if the initial velocities of these particles are zero then the centre of
mass of the two-particle system remains fixed at 𝐑(0). Once Eq. (B.13)
has been solved for 𝐫(𝑡) then the solution to the original system can be
determined from (B.3) (e.g., replace 𝐫1 by 𝐫 + 𝐫2) as

1(𝑡) = 𝐑(𝑡) +
𝑚2
𝑚

𝐫(𝑡), (B.15)

2(𝑡) = 𝐑(𝑡) −
𝑚1
𝑚

𝐫(𝑡), (B.16)

hich provides the positions for the particles 𝑃1 and 𝑃2 relative to the
riginal fixed origin. We also note here that in the absence of drag
orces these equations reduce to the classical forms [47]

�̈� = 𝟎, (B.17)
�̈� = 𝐅int

1 . (B.18)

ppendix C. Interaction energy and force: special case

We give an example here of an exact integral for the interaction
nergy that is available in the special case of two interacting defects
hen 𝑅1 + 𝑟0 ≤ 𝑑 ≤ 𝑅2 −𝑅1, including the consequent explicit function

or the force of interaction. Consider two defects of indexes 𝐼1 and 𝐼2
ith associated regions of influence 𝑅1 and 𝑅2, respectively, and that

the circle 𝑅1 is completely contained within the circle 𝑅2 and has no
overlap with the core defect located at the centre of circle 𝑅2, that is,
we assume that 𝑅1 + 𝑟0 ≤ 𝑑 ≤ 𝑅2 −𝑅1. Let the corresponding defects be
positioned at (𝑥1, 0) and (𝑥2, 0) and set 𝑑 = (𝑥1 − 𝑥2). Relative to a fixed
origin in the 𝑥𝑦-plane we write 𝑥 = 𝑟 cos 𝜃+𝑥1, 𝑦 = 𝑟 sin 𝜃. The regions of
influence are the circles defined by 𝑅2

𝑖 = (𝑥−𝑥𝑖)2+𝑦2, 𝑖 = 1, 2. Using the
definitions in Eqs. (A.17) and (A.18) from Appendix A, the interaction
energy density is

𝜔 =
𝐼21
𝑟21

+
𝐼22
𝑟22

+
2𝐼1𝐼2
𝑟1𝑟2

cos(𝜒1 − 𝜒2), (C.1)

hich can be written as

=
𝐼21
𝑟2

+
𝐼22

𝑟2 + 2𝑟𝑑 cos 𝜃 + 𝑑2
+

2𝐼1𝐼2 cos(𝜒1 − 𝜒2)
𝑟(𝑟2 + 2𝑟𝑑 cos 𝜃 + 𝑑2)1∕2

, (C.2)

here

os(𝜒1 − 𝜒2) =
𝑟21 + 𝑟

2
2 − 𝑑

2

=
(𝑟 + 𝑑 cos 𝜃)

. (C.3)

2𝑟1𝑟2 (𝑟2 + 2𝑟𝑑 cos 𝜃 + 𝑑2)1∕2
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w

𝑊

a

𝑊

w
i
a

The total energy is

𝑊 = 1
2
𝐾∫

2𝜋

0 ∫

𝑅1

𝑟0
𝜔𝑟𝑑𝑟𝑑𝜃 ≡ 𝑊1 +𝑊2 +𝑊3, (C.4)

here

1 = 𝜋𝐾𝐼21∫

𝑅1

𝑟0

𝑑𝑟
𝑟

= 𝜋𝐾𝐼21 ln
(

𝑅1
𝑟0

)

, (C.5)

𝑊2 =
1
2
𝐾𝐼22∫

2𝜋

0 ∫

𝑅1

𝑟0

𝑟𝑑𝑟𝑑𝜃
(𝑟2 + 2𝑟𝑑 cos 𝜃 + 𝑑2)

= −1
2
𝐾𝜋𝐼22 ln

(

𝑑2 − 𝑅2
1

𝑑2 − 𝑟20

)

,

(C.6)

nd

3 = 𝐾𝐼1𝐼2 ∫

2𝜋

0 ∫

𝑅1

𝑟0

(𝑟 + 𝑑 cos 𝜃)
(𝑟2 + 2𝑟𝑑 cos 𝜃 + 𝑑2)

𝑑𝑟𝑑𝜃

= 1
2
𝐾𝐼1𝐼2 ∫

2𝜋

0
ln

[

𝑅2
1 + 2𝑅1𝑑 cos 𝜃 + 𝑑2

𝑟20 + 2𝑟0𝑑 cos 𝜃 + 𝑑2

]

𝑑𝜃

= 1
2
𝐾𝐼1𝐼2 ∫

2𝜋

0
ln
[

1 + 2(𝑅1∕𝑑) cos 𝜃 + (𝑅1∕𝑑)2

1 + 2(𝑟0∕𝑑) cos 𝜃 + (𝑟0∕𝑑)2

]

𝑑𝜃. (C.7)

Using the identity [49, 4.224.15]

∫

𝑛𝜋

0
ln(1 − 2𝑎 cos 𝜃 + 𝑎2)𝑑𝜃 =

{

0 if 𝑎2 ≤ 1,
𝑛𝜋 ln 𝑎2 if 𝑎2 > 1,

(C.8)

we find that 𝑊3 = 0 for the range of interest here where 𝑅1 + 𝑟0 ≤ 𝑑 ≤
𝑅2 − 𝑅1. Hence the interaction energy in this special case is (per unit
depth in the 𝑧-direction)

𝑊 = 𝜋𝐾𝐼21 ln
(

𝑅1
𝑟0

)

− 1
2
𝐾𝜋𝐼22 ln

(

𝑑2 − 𝑅2
1

𝑑2 − 𝑟20

)

, (C.9)

hich has been used for a comparison with the numerically derived
nteraction energies in Figs. 7(a) and 9(a) for 𝑅1+𝑟0 ≤ 𝑑 ≤ 𝑅2−𝑅1 and,
nalogously, Figs. 7(c) and 9(c) for 𝑅2 + 𝑟0 ≤ 𝑑 ≤ 𝑅3 −𝑅2, which gives

confidence in the numerical procedure outlined in Section 4. Numerical
evaluations of the integrals are required for values of 𝑑 outside this
range.

Remark 2. Note that if 2𝑟0 < 𝑑 < 𝑅1 + 𝑟0 then, although the region
of integration will change (it will overlap with the 𝐼1 defect core)
𝑊3 ≃ 2𝐾𝜋𝐼1𝐼2 ln(𝑅1∕𝑑) per unit depth in the 𝑧-direction, obtained from
Eqs. (C.7) and (C.8) and this gives rise to a corresponding contributing
force per unit depth of 𝐹 = −d𝑊3∕d𝑑 ≃ 2𝐾𝜋𝐼1𝐼2∕𝑑 which is negative
when 𝐼1 and 𝐼2 have opposite signs. This indicates an attractive force 𝐹
between the defects. This form for 𝐹 coincides with an expression in [4,
p. 173] if 𝐼1 = −𝐼2 ≡ 𝑚 where 𝑚 is the magnitude of their strengths and
𝑅1 is taken to be much larger than 𝑑. See also [15, p. 428].
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