
Journal of Scheduling

A Hybrid Constraint and Integer Programming Approach to Solve Nurse Rostering
Problems

--Manuscript Draft--

Manuscript Number:

Full Title: A Hybrid Constraint and Integer Programming Approach to Solve Nurse Rostering
Problems

Article Type: S.I. : MISTA 2015

Keywords: Timetabling; Nurse Rostering; Hybrid Algorithm; Integer Programming; Constraint
Programming

Corresponding Author: Erfan Rahimian, MSC
University of Strathclyde
Glasgow, UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Strathclyde

Corresponding Author's Secondary
Institution:

First Author: Erfan Rahimian, MSC

First Author Secondary Information:

Order of Authors: Erfan Rahimian, MSC

Kerem Akartunali, PhD

John Levine, PhD

Order of Authors Secondary Information:

Funding Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Journal of Scheduling manuscript No.
(will be inserted by the editor)

A Hybrid Constraint and Integer Programming Approach to Solve
Nurse Rostering Problems

Erfan Rahimian · Kerem Akartunalı · John Levine

Received: date / Accepted: date

Abstract The Nurse Rostering Problem can be simply de-
fined as assigning a series of shift sequences (schedules) to
several nurses over a planning horizon according to some
constraints and preferences. The inherent benefits of hav-
ing higher-quality and more flexible schedules are a reduc-
tion in outsourcing costs and an increase of job satisfaction
in health organizations. In this paper, we present a novel
hybrid algorithm, which combines Integer Programming
(IP) and Constraint Programming (CP) to efficiently solve
highly-constrained Nurse Rostering Problems. We utilize the
strength of IP in obtaining lower bounds and finding an op-
timal solution with the capability of CP in finding feasible
solutions in a co-operative manner. To improve the perfor-
mance of the algorithm, and therefore obtain high-quality
solutions as well as strong lower bounds during a short time,
we apply some innovative ways to extract useful information
such as the computational difficulty of constraints from differ-
ent steps of the search process. In fact, by employing the CP
solver to facilitate the IP solver and improve its efficiency, we
design some supplementary algorithmic components to fur-
ther enhance the overall performance. We test our algorithm
based on some real-world benchmark instances. Competitive
results are reported compared to the state-of-the-art algo-
rithms from the recent literature as well as pure IP and CP
solvers, showing that the proposed algorithm is able to solve

Erfan Rahimian, Kerem Akartunalı
Dept. of Management Science, University of Strathclyde, Glasgow, G4
0GE, UK
Tel.: +44-141-548-4361
Fax: +44-141-552-6686
E-mail: {erfan.rahimian, kerem.akartunali}@strath.ac.uk

John Levine
Computer And Information Sciences, University of Strathclyde, Glas-
gow, G1 1XH, UK
E-mail: john.levine@strath.ac.uk

a wide variety of real-world instances with different complex
structures.

Keywords Timetabling · Nurse Rostering · Hybrid
Algorithm · Integer Programming · Constraint Programming

1 Introduction

In order to ensure the right staff are on the right duty at the
right time, Nurse Rostering has drawn significant attention
during the last few decades, helping many health organiza-
tions to increase their efficiency and productivity. Creating a
high-quality nurse schedule raises the recruitment and reten-
tion levels of nursing personnel, and maintains a reasonable
overtime budget for nursing staff. In terms of financial is-
sues, it can reduce outsourcing and planning costs due to
hiring fewer bank nurses to compensate gaps in rosters, and
having flexible schedules (M’Hallah and Alkhabbaz, 2013;
Kazahaya, 2005). In terms of human resource issues, it can in-
crease the job satisfaction and diminish the fatigue and stress,
and hence result in improving caring services provided to
patients (Burke et al, 2004; Ozcan, 2005).

The Nurse Rostering Problem (NRP) aims to generate
schedules for several nurses over a predetermined planning
horizon. A schedule consists of a sequence of different types
of shifts (e.g. early, late, vacations) spanning over the whole
planning period. The pattern of shifts is generated according
to a set of requirements such as hospital regulations, and
a number of preferences such as fair distribution of shifts
between nurses. Due to their complex and highly-constrained
structure, most NRPs in real-world situations are computa-
tionally challenging and they can be also classified as NP-
hard (Chuin Lau, 1996; Brucker et al, 2011). The inherent
nature of the problem usually leads us to divide all constraints
to two categories in practice: hard and soft constraints. Hard
constraints must be satisfied to have a feasible roster, whereas

Latex file (tex) Click here to download Manuscript JOS paper-for submission-twocolumn 02.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/josh/download.aspx?id=31625&guid=a1974d78-77d2-4e3b-bd23-5670907091c6&scheme=1
http://www.editorialmanager.com/josh/download.aspx?id=31625&guid=a1974d78-77d2-4e3b-bd23-5670907091c6&scheme=1
http://www.editorialmanager.com/josh/viewRCResults.aspx?pdf=1&docID=2324&rev=0&fileID=31625&msid={C82F267E-CA2E-4210-A285-D46D4CAFA187}

2 Erfan Rahimian et al.

soft constraints may be violated. To evaluate the quality of a
roster, one can minimize the sum of all penalties incurred due
to soft constraint violations. For more information regard-
ing NRPs and generally staff scheduling problems, we refer
interested readers to Burke et al (2004); Ernst et al (2004).

The focus of this paper, which is an extension to our pre-
vious work (Rahimian et al, 2015) is on integrating Integer
Programming (IP) and Constraint Programming (CP) to solve
NRPs, where we exploit the problem-specific information in
order to improve both IP and CP performance. In the liter-
ature, there are two areas of general methods used to solve
these problems: exact and heuristic methods. Exact meth-
ods include IP (M’Hallah and Alkhabbaz, 2013; Glass and
Knight, 2010; Maenhout and Vanhoucke, 2010) and CP (Soto
et al, 2013; Girbea et al, 2011), which are capable of finding
the optimal solution, albeit often resulting in unacceptable
computational times. However, recent research in Operations
Research and Artificial Intelligence communities, combined
with powerful solvers such as IBM CP OPTIMIZER (IBM,
2015) and Gurobi (Gurobi Optimization, 2015), focused on
using these methods in hybrid settings (Stolevik et al, 2011;
Valouxis et al, 2012; Fung et al, 2005). On the other hand,
in order to address the computational limitations of exact
methods, many heuristic methods have been proposed in the
literature. However, these methods sacrifice the guarantee of
an optimal solution (or even any information about the solu-
tion quality) in order to generate good solutions in acceptable
computational times. We note Lu and Hao (2012); Burke
et al (2012); Brucker et al (2010) as some recent examples of
using heuristic methods in the NRP literature.

In recent years, some researchers experimented with hy-
bridizations of different methods, e.g. CP and heuristics
(Stolevik et al, 2011), IP and heuristics (Valouxis et al, 2012),
and less well-investigated combination of IP and CP (Fung
et al, 2005), in order to utilize the complementary strengths
of all methods together. In this paper, we propose a new
systematic hybrid algorithm using IP and CP approaches,
which utilizes their capabilities, respectively in finding the
optimal and a feasible solution very efficiently. Due to the
exact nature of the proposed algorithm, it can generate a
good solution as well as a good lower bound in contrast
to heuristic methods. Furthermore, the hybrid algorithm ex-
ploits the problem-specific information to reduce the search
space, to fine tune the search parameters, and to improve the
efficiency of the search process in a novel way. In fact, using
an IP approach as the main solution method, we employ a
CP approach and some other algorithmic aids to improve the
efficiency of the algorithm. During the search process, we
try to identify the computationally expensive constraints, and
predict the performance of the IP solver to make a decision
regarding its inclusion for the remaining steps. Moreover, the
proposed algorithm is designed to obtain the best result in a
pre-defined limited computational time. We model the prob-

lem according to a general comprehensive model reported in
the literature (Burke et al, 2008b), and evaluate it using some
test instances published therein.

The rest of this paper is organized as follows: problem
definition and assumptions are explained in Section 2. The
IP and CP formulations are presented in Sections 3 and 4. In
Section 5, we describe the proposed hybrid algorithm and the
relevant components. Computational results are reported in
Section 6, and some conclusions and potential future research
directions are drawn in Section 7.

2 Problem Definition

NRP is the process of assigning a number of nurses to a
number of work shifts during a planning horizon according
to a set of requirements and constraints. These constraints
are usually categorized as hard and soft constraints. In the
following, we define decision variables and constraints ac-
cording to the conceptual model described in Burke et al
(2008b), which will be used to construct an IP model.

We define our decision variables for each nurse, for each
day, and for each shift type. This way of modeling allows us
to better utilize the problem-specific structure in order to re-
duce the search space, although it is less flexible and contains
more symmetry compared to the pattern-based modelling,
e.g. Burke et al (2012), which generates all possible weekly
shift sequences (patterns), and hence potentially considers
all constraints except coverage constraints. We assume the
current roster is modelled over a specified planning horizon
in an isolated way, i.e. no information (history) from the
previous roster is used to construct the current one. We also
consider a day-off as a shift type for modelling purposes. For
the sake of simplicity, we assume all nurses belong to the
same skill category. In addition, we assume all rosters start
from Monday and are made from a complete week (includes
seven days with a two-day weekend). The constraints of the
model are:

1. Maximum one assignment per shift type per day,
2. Coverage constraints: the number of shift types for each

day must be fulfilled,
3. The minimum and maximum number of:

(a) shift assignments within the scheduling period,
(b) consecutive working days over the planning horizon,
(c) working hours within the scheduling period (and/or

during a week),
(d) shift assignments within a week,
(e) shift assignments at the weekend,
(f) consecutive shift types over the planning period,

4. Minimum number of days-off after a night shift or a
series of night shifts,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Hybrid Constraint and Integer Programming Approach to Solve Nurse Rostering Problems 3

5. Complete weekends: over the weekends, there should
be either an assignment to all days of weekends or no
assignments at all,

6. No night shift before free weekends, where there is no
assignment at all,

7. Maximum number of consecutive worked weekends, where
there is at least one assignment,

8. Requested shifts (days) on or off,
9. Forbidden shift type patterns (e.g. the “ND” pattern,

where the shift type “D” is not allowed to be assigned
right after the shift type “N”).

In the next two sections, i.e. Sections 3 and 4, we formulate
this problem using Integer Programming (IP) and Constraint
Programming (CP). We also note that the above constraints
can be considered hard or soft according to different settings.
For the sake of simplicity, we only provide here a formula-
tion assuming that all constraints are hard. In case any soft
constraints exist in the model, our objective function can be
defined as the weighted sum of all associated slack variables
in the IP model or the relevant reified variables in the CP
model for each soft constraint.

3 IP Formulation

Here, we present our mathematical formulation using Integer
Programming based on the definitions and assumptions pro-
vided in Section 2. The variables, parameters, and constraints
of the IP model are defined as follows:

Decision variables:

xead = 1 if shift type a on day d is assigned to nurse e,
= 0 otherwise.

ped = 1 if nurse e works on day d, = 0 otherwise.
kew = 1 if nurse e is assigned to weekend w, = 0

otherwise.
yea Total number of times that shift type a assigned to

nurse e over the planning period.
zewa Total number of shift type a assigned to nurse e

during week w.

Parameters:

N Set of nurses.
D Set of days.
A Set of shift types.
W Set of weeks.
Ha Set of shift types that cannot be assigned

immediately after shift type a.
PRad Set of pre-assigned nurses to shift type a on

day d.

MLe,MUe Minimum and maximum number of shifts
that can be assigned to nurse e within the
planning period.

WLw,WUw Minimum and maximum number of shifts
that can be assigned to a nurse within week
w.

V Ld ,VUd Minimum and maximum number of shifts
that can be assigned to nurses on day d.

AL,AU Minimum and maximum number of hours
that can be assigned to each nurse during
the planning period.

ELw,EUw Minimum and maximum number of hours
that can be assigned to each nurse during
week w.

NL,NU Minimum and maximum number of
consecutive working days over the planning
period.

HLa,HUa Minimum and maximum number of
consecutive shift type a over the planning
period.

KL,KU Minimum and maximum number of worked
weekends over the planning horizon.

CU Maximum number of consecutive worked
weekends over the planning period.

UTa Total workloads (hours) of shift type a
within the planning period.

UTaw Total workloads (hours) of shift type a
during week w.

Constraints:

Next, we present the relevant IP constraints in the same order
as the order of constraints presented in Section 2:

∑
a∈A

xead = 1, ∀e ∈ N,d ∈ D (1)

ped = ∑
a∈A\{r}

xead , ∀e ∈ N,d ∈ D (2)

V Ld ≤ ∑
e∈N

ped ≤VUd , ∀d ∈ D

yea = ∑
d∈D

xead , ∀e ∈ N,a ∈ A (3a)

MLe ≤ ∑
a∈A

yea ≤MUe, ∀e ∈ N

NU+d

∑
g=d

peg ≤ NU, ∀e ∈ N,d ∈ {1... |D|−NU} (3b)

NL−1

∑
i=1

pe(d+i) ≤ ped + pe(d+NL)+NL−2, ∀e ∈ N,d ∈ D

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Erfan Rahimian et al.

AL≤ ∑
a∈A

yeaUTa ≤ AU, ∀e ∈ N (3c)

zewa =
7w

∑
d=7(w−1)+1

xead , ∀e ∈ N,a ∈ A,w ∈W

ELw ≤ ∑
a∈A

zewaUTaw ≤ EUw, ∀e ∈ N,w ∈W

WLw ≤ ∑
a∈A

zewa ≤WUw, ∀e ∈ N,w ∈W (3d)

kew ≤ ped + pe(d+1) ≤ 2kew, (3e)

d = 7w−1,∀e ∈ N,w ∈W

KL≤ ∑
w∈W

kew ≤ KU, ∀e ∈ N

HLa−1

∑
i=1

xea(d+i) ≤ xead + xea(d+HLa)+HLa−2, (3f)

∀e ∈ N,a ∈ A,d ∈ D
HUa+d

∑
g=d

xeag ≤ HUa,

∀e ∈ N,a ∈ A,d ∈ {1... |D|−HUa}

xend ≤ xen(d+1)+1− pe(d+1), (4)

∀e ∈ N,d ∈ {1... |D|−1}
xend− pe(d+1) ≤ 1− pe(d+2),

∀e ∈ N,d ∈ {1... |D|−2}

xerd = xer(d+1), ∀e ∈ N,d ∈ {6,13, ... |D|−1} (5)

xend ≤ pe(d+1)+ pe(d+2), (6)

∀e ∈ N,d ∈ {5,12, ... |D|−2}

CU

∑
i=0

ke(w+i) ≤CU, ∀e ∈ N,w ∈ {1... |W |−CU} (7)

xead = 1, ∀e ∈ PRad ,a ∈ A,d ∈ D (8)

xead + xeh(d+1) ≤ 1, (9)

∀e ∈ N,a ∈ A,h ∈ Ha,d ∈ {1... |D|−1}

xead , ped ,kew ∈ {0,1},yea,zewa ∈ Z,
∀e ∈ N,a ∈ A,d ∈ D,w ∈W

In constraint (4), we assume that there should be two
days-off after a night shift or a series of night shift types.
Furthermore, in constraints (2), (4), (5), and (6), n and r
indicate shift types night and rest, respectively.

4 CP Formulation

Here, we present our CP formulation based on Constraint
Satisfaction Problem (CSP) model using the definitions and
assumptions provided in Section 2. The presented model
is detailed enough for the needs of this paper, however, we
would add other redundant constraints or variables to increase
the efficiency of the CP solver (Smith, 2006). In this section,
first, we concisely explain the two types of global constraints
which we use in the CP model: Cardinality and Stretch global
constraints. For more information about global constraints
in Constraint Programming, we refer the interested reader to
Laburthe and Jussien (2011); van Hoeve and Katriel (2006);
Beldiceanu et al (2005).

Cardinality constraints (aka. GCC or Generalized Car-
dinality) bounds the number of times that variables take a
certain set of domain values. It is written as:

cardinality(x,v, l,u)

where x is a set of variables (x1, . . . ,xn); v is a m-tuple of
domain values of the variables x; l and u are m-tuples of
non-negative integers defining the lower and upper bounds
of the times value v being taken by variable x, respectively.
The constraint defines that, for j = 1, . . . ,m, at least l j and at
most u j of the variables x take value v j.

Stretch constraints bound the sequence of consecutive
variables that take the same value (stretch), i.e. x j−1 6= 1,
x j, . . . ,xk = v,xk+1 6= v. It is expressed as:

stretch(x,v, l,u,P)

where x is a set of variables (x1, . . . ,xn); v is a m-tuple of
possible domain values of x; l and u are m-tuples of lower
and upper bounds for x, respectively. P is a set of patterns,
i.e. pairs of values (v j,vk), requiring that when a stretch of
value v j immediately precedes a stretch of value vk, the pair
(v j,vk) must be in P.

Next, we define the variables, parameters, and constraints
of the model. We use the same parameters as defined in the IP
formulation (Section 3), and we define here only additional
ones.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Hybrid Constraint and Integer Programming Approach to Solve Nurse Rostering Problems 5

Decision variable:

sed Integer variable indicating the shift type assigned
to nurse e on day d.

Parameters:

H̃a Set of shift types that can be assigned immediately
after shift type a.

UT The vector of total workloads (hours) of the shift
types within the planning period.

UTw The vector of total workloads (hours) of the shift
types during week w.

Constraints:

Next, we present the relevant CP constraints based on the
cardinality and stretch global constraints, where the order
of the constraints is preserved the same as the order of the
constraints presented in Section 2:

cardinality

(⋃
e∈N

sed ,A,V Ld ,VUd

)
, ∀d ∈ D (2)

cardinality

(⋃
d∈D

sed ,A,MLe,MUe

)
, ∀e ∈ N (3a)

stretch(sed ,A,NL,NU,P) , (3b)

∀e ∈ N,d ∈ D,P = {(a,r)|a ∈ A}

AL≤ prod(sed ,UT)≤ AU, ∀e ∈ N,d ∈ D (3c)

ELw ≤ prod(sed ,UTw)≤ EUw,

∀e ∈ N,w ∈W,d = 7(w−1)+1

cardinality

 7w⋃
d=7(w−1)+1

sed ,A,WLw,WUw

 , (3d)

∀e ∈ N,w ∈W

cardinality(sed ,r,KL,KU) , (3e)

∀e ∈ N,d ∈ {7w− i|w ∈W,i ∈ {0,1}}

stretch(sed ,a,HLa,HUa,P) , (3f)

∀e ∈ N,d ∈ D,a ∈ A,P = {}

stretch(sed ,n,2,3,P) , ∀e ∈ N,d ∈ D,P = {(n,r)} (4)

sed = se(d+1), ∀e ∈ N,d ∈ {6,13, ... |D|−1} (5)

stretch(sed ,n,2,3,P) , (6)

∀e ∈ N,d ∈ {7w− i|w ∈W, i ∈ {0,1,2}},
P = {(n,r)}

stretch(sed ,r,2(|W |−CU),2 |W | ,P) , (7)

∀e ∈ N,d ∈ {7w− i|w ∈W, i ∈ {0,1}},
P = {(r,r)}

sed = a, ∀e ∈ PRad ,a ∈ A,d ∈ D (8)

stretch(sed ,a,0,2,P) , (9)

∀e ∈ N,d ∈ D,P = {(a, H̃a)|a ∈ A}

sed ∈ A, ∀e ∈ N,d ∈ D

In constraint (4), we assume that there should be two
days-off after a night shift or a series of night shift types.
Furthermore, in the mentioned constraints, n and r indicate a
night shift type and a day-off, respectively. It should be noted
that constraint (1) is already satisfied due to the inherent
structure of the CP model.

5 Integration of CP and IP

For small- to medium-sized problems, IP solvers are often
efficient to find the optimal solution and to generate strong
lower bounds. Similarly, CP solvers are capable of finding
feasible solutions very efficiently. However, using these ap-
proaches on their own for solving large-scale problems, or
even small-scale problems with a highly-constrained struc-
ture often leads to poor performance. For example, solving
most of the NRP instances using the model presented in Sec-
tion 3 with a pure IP approach, we were not able to obtain an
optimal solution (and in some cases even a good-quality so-
lution) in a reasonable amount of time, where some instances
took more than 24 hours to solve (e.g. see the result for in-
stance ORTEC01 in Table 3). Similarly, a pure CP approach
results in poor performance as well, since it often takes a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Erfan Rahimian et al.

long time to achieve an optimal solution. Therefore, it is in-
tuitive to hybridize them in order to utilize their strengths for
efficiently solving NRPs. In this paper, we integrate IP and
CP approaches in a co-operative fashion to solve the problem
and utilize their strengths altogether. Indeed, we combine
the strength of IP in obtaining lower bounds and finding an
optimal solution with the capability of CP in finding feasible
solutions in a novel way. Moreover, according to our prelimi-
nary experiments, IP and CP on their own are quite efficient
in solving some specific problem structures such as network
flow and bin packing problems (Gurobi Optimization, 2015;
IBM, 2015), which further motivates us to combine them
together in order to achieve a better performance in overall.
To improve the efficiency of the hybrid algorithm, we exploit
the problem structure to provide valuable information about
search space, hence improve the efficiency of the proposed
algorithm. In fact, we use a CP approach and some other
algorithmic modules to help the IP approach as our main
solution method.

The algorithm presented in this paper is tested on nine
different instances published in Burke et al (2008b). The
diversity in the structure and complexity of these instances
allows us to test our algorithm thoroughly. Table 1 provides
more information about these instances, where the reported
number of variables and constraints are based on the de-
scribed IP model presented in Section 3. It is noteworthy to
mention that although we try to solve a few instances based
on real-world cases, we develop our solution method without
any fine tuning. Therefore, we believe that our approach can
be easily generalized to solve different instances based on
the presented models.

In the following, we provide a brief description of the per-
formance of the hybrid algorithm, and later we will elaborate
each associated component. After a quick pre-processing in
order to create appropriate data structures for the algorithm,
at first step, we employ an IP pre-solver in order to iden-
tify any valuable information. If any valuable information is
identified, we continue to use the IP solver (rather than a CP
solver) for the next steps, since it has more potential to be
successful in solving the problem, as we have observed in our
preliminary experiments. In the next step, we employ a CP
solver to solve the problem considering only those constraints
which will not make the problem difficult to solve. Identify-
ing difficult constraints is achieved by solving a hierarchy of
different CSPs iteratively. Next, using the information pro-
vided by the CP solver operated on a modified version of the
problem and generated CSPs, we solve the problem by an IP
solver (or the CP solver based on the obtained information
from the IP pre-solver) in the remaining time. We also add
three other components to reinforce the search process us-
ing the exploited problem-specific information: 1) Symmetry
breaker, which tries to remove (or mitigate) the symmetric
structures; 2) Weight balancer, which tries to modify each

constraint’s weight based on a pre-defined threshold in or-
der to tighten the problem formulation; and 3) Decomposer,
which aims to provide a strong lower bound for the IP solver.

It should be noted that the proposed hybrid algorithm runs
in a pre-defined time to solve the problem. In fact, the user
determines the running time of each component by setting
the relevant computational time parameter.

The schematic diagram of the proposed algorithm is de-
picted in Figure 1. Next, we explain each component individ-
ually in more details:

IP Pre-solver: In fact, this component is the first step
in most of the commercial solvers to analyze and simplify
the problem structure, and also identify any specific struc-
tures such as network flow or assignment problems (Gurobi
Optimization, 2015). If the IP solver can identify any par-
ticular structures, it often leads us to a better performance
during the search process. Here, we only call the pre-solve
step of an IP solver from the hybrid algorithm as a black-box.
We use the information obtained from this step to predict
if there are any specific structures, and therefore improv-
ing the performance of the IP solver. Particularly, we use
the obtained lower bound and relaxed objective function
value to predict the existence of any specific structures in
this black-box indirectly. According to our experiments, if
the IP pre-solver component provides a stronger (greater in
our problem settings) lower bound compared to the relaxed
objective function value (which is obtained by relaxing all
integer constraints), the employed IP solver is a better choice
to solve the problem most probably due to the identification
of a specific data structure, otherwise we will use the CP
solver instead. We also switch on the relevant parameter for
the pre-solve step of the IP solver to the highest degree (ag-
gressive mode) in this component (e.g. setting the Presolve
parameter in Gurobi). Moreover, using the reported number
of constraints and variables in this step, if they are more than
a user-defined threshold (psThr), we will change the search
strategy of the IP Solver accordingly. We will explain this
setting in the IP Solver component in more details.

CP Solver: During the search process, the hybrid algo-
rithm may call the CP solver in two cases: first, as the main
solver if the IP pre-solver does not provide strong enough
lower bound for the problem due to its complex and highly-
constrained structure; second, as an aid for the IP solver to
provide a good-quality initial solution. This solver solves
the problem based on the Constraint Satisfaction Problem
(CSP) model presented in Section 4. In our experiments on
the benchmark instances, CP approach did not provide very
good-quality solutions in a limited computational time (see
Table 3). To address this issue, we implement the follow-
ing procedure: First, we generate a CSP model considering
all constraints that have a weight higher than a user-defined
threshold (cspThr). If the problem is infeasible, we will in-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Hybrid Constraint and Integer Programming Approach to Solve Nurse Rostering Problems 7

Table 1 Benchmark instances and the relevant characteristics

Instance Nurses Shift Types Days Shift Permutations Variables Constraints

GPOST 8 3 28 3136 5680 5504
GPOSTB 8 3 28 3136 5680 5496
ORTEC01 16 5 33 7821 19096 19170
ORTEC02 16 5 33 7821 19101 19175
Valouxis-1 16 4 28 5824 9776 9968
SINTEF 24 6 21 6867 8118 6927
WHPP 30 4 14 5880 6000 5842
MILLAR-1 8 3 14 784 1956 1820
LLR 27 4 7 1323 1139 979

Fig. 1 Schematic diagram of the proposed hybrid algorithm

crease the threshold by one unit. Otherwise, we will generate
a number of solutions based on the modified model accord-
ing to a user-defined parameter (numSols). Therefore, on
each threshold level, there might be several feasible solutions.
This process continues until the quality of the best obtained
solution in the current level is worse than by q percent in
comparison to the best one in the last level. Finally, we report
the best-quality solution in terms of the original model’s ob-
jective function value. Next if the IP solver is a candidate for
solving the problem, the reported solution will be imported
to the IP solver. Otherwise, we continue solving the problem
using the CP solver in the remaining time. We will explain
this setting in the IP solver component in more details. The
pseudo code of this procedure is presented in Algorithm 1,
where p, p’, cspThr, q, and numSols indicate the original
problem, the new generated problem in each threshold level,
the user-defined threshold level, the maximum gap between
the quality of the best obtained solutions in two consecutive
levels, and the user-defined number of solutions needs to be
generated in each threshold level, respectively.

Using the information provided in this procedure by solv-
ing a variety of CSP problems, we can also find out an esti-

mate for the computational difficulty of each constraint. If
the solution time by removing a constraint from a problem
in order to solve a new modified problem is significant, we
will count it as a “difficult constraint”. To our experiments,
10 seconds is sufficient for most of the benchmark instances.
This simple inference helps us later in the Weight Balancer
component to make the formulation of the problem tighter.

IP Solver: In this component, we use a state-of-the-art IP
solver to solve the problem during the remaining time. The
only difference between this component and running a pure
IP solver is the initial solution and parameter settings pro-
vided to the solver supplied from other relevant components.
We use the solution obtained from the CP solver as a warm
start for the IP solver. Moreover, we change some parameters
of the IP solver based on the information provided by the
IP Pre-solver. Indeed, if the IP Pre-solver provides a strong
enough lower bound (elaborated in the IP Pre-solver compo-
nent), we switch off the pre-solve step in this component (e.g.
setting the Presolve parameter in Gurobi). We also change
the search strategy based on the number of constraints and
variables provided by the IP Pre-solver, and a user-specified
threshold, i.e. psThr. If the number of constraints and vari-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Erfan Rahimian et al.

Algorithm 1: The procedure to generate CSPs in CP
Solver component of the algorithm

Solutions = empty;
i = 0;
p
′
i = p;

while true do
p
′
i = generateCSP(p, cspThr);

if p
′
i is feasible then
for j = 1 to numSols do

Solutions.add(solve(p
′
i));

end
else

cspThr++;
end
if (solutionObj(p

′
i) - solutionObj(p

′
i−1)) / solutionObj(p

′
i)

>= q then
break;

end
i++;

end
return [bestObj(Solutions)]

ables of the problem are more than psThr, we set the search
strategy to spend more efforts on obtaining a feasible solution
rather than proving optimality. We do not change the default
search strategy in case a problem is not difficult to solve. In
most of the modern solvers, the user can change the search
strategy by setting a specific parameter defined therein. For
example, in Gurobi solver, the user can tailor the search strat-
egy by setting the MIPFocus parameter. Furthermore, using
the lower bound provided by the Decomposer component, we
enforce it on the IP solver by setting the relevant parameter
accordingly (e.g. setting the Start parameter in Gurobi).

Symmetry Breaker: As we mentioned in Section 2,
modeling the problem using indexed variables can create
symmetry issues. To resolve these issues, we add lexico-
graphic ordering constraints (Beldiceanu et al, 2005; Smith,
2006) to both CP and IP models applied to the main vari-
ables (i.e. xead and sed , respectively), by taking into account
“request on or off” constraints (constraint (9) described in Sec-
tion 2). We then use the new model for both the IP and CP
Solver components. In Section 6, we will mention that break-
ing a symmetric structure in the model is often beneficial for
the solver.

Weight Balancer: In order to improve the efficiency
of the IP solver during the search process, we modify the
weights in the objective function due to the difficulty degree
of constraints, which we obtained from the CP Solver compo-
nent. Based on this degree, if a constraint is not difficult, we
impose it to the IP solver as a hard constraint. Theoretically,
this process may lead to an infeasible problem. In this case,
we undo the relevant change and continue the process for the
rest of the constraints. Finally, we solve the new modified
problem using the IP solver. This technique helps to reduce

the search space, which often results in a better efficiency
during the search process.

Decomposer: One of the design aspect of the proposed
hybrid algorithm is to generate a good lower bound for most
of the benchmark instances. In this component, we decom-
pose the problem to weekly rosters, and then we evaluate all
possible shift patterns according to “forbidden shift pattern”
and “request on or off” constraints (constraints (8) and (9)
described in Section 2). Indeed, we try to find out whether
there is an inevitable conflict in the model, which can be
discovered before solving the problem. When there is an in-
herent conflict in the model according to the current data, we
can calculate the associated penalty based on the objective
function and consider it as a new lower bound. We do this
particular evaluations for all decomposed weekly rosters in a
problem. This process is very similar to the one elaborated
in Glass and Knight (2010), where the authors try to infer a
lower bound for two specific instances. However, here we use
the same technique but for all decomposed weekly rosters,
and not only for particular instances. Apart from this process,
we also solve all decomposed weekly rosters by an IP solver
to discover any further potential lower bounds. Finally, the
best lower bound calculated in this component will be im-
ported to the IP solver by setting the relevant parameter (e.g.
setting the Start parameter in Gurobi).

6 Computational Results

To evaluate the proposed hybrid algorithm, we implemented
our algorithm in Java 1.7, and used the IBM ILOG CP solver
1.7 and Gurobi IP solver 5.0 for solving all CSPs and IPs,
respectively. The reason to use the aforementioned solvers is
that we found them easier to implement in terms of modeling,
and also they suit our hybrid framework better than other
software packages. In addition, we note that the benchmarks
reported in Mittelmann (2008) show that Gurobi produces
very similar results for most of the instances comparing to
other state-of-the-art IP solvers such as IBM ILOG Cplex.
We run our experiments on a PC with Intel 3.4 GHz processor
and 4 GB of RAM, and we used the benchmark instances
introduced in Section 5. The variety in benchmark instances
helps us to test and analyze our algorithm in different circum-
stances. To the best of our knowledge, we are one of the few
researchers experimenting with all these instances altogether.
Furthermore, we run all our experiments on one CPU core to
have a fairer and more accurate comparison.

For evaluation purposes, we run the hybrid algorithm for
10 minutes, and distribute 10%, 30%, and 50% of the com-
putational time to IP Pre-solver, CP Solver, and IP Solver
components, respectively. The remaining time is distributed
equally to other components as they require very short times
in comparison. The reasons for benchmarking the proposed

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Hybrid Constraint and Integer Programming Approach to Solve Nurse Rostering Problems 9

Table 2 The hybrid algorithm results for different settings

Instance Default Setting No Symmetry Breaker No Weight Balancer

Obj. LB G(%) Obj. LB G(%) Obj. LB G(%)

GPOST 5 5 0 8 5 37.5 5 5 0
GPOSTB 5 0 100 3 0 100 5 0 100
ORTEC01 380 158 58.42 530 140 73.58 680 140 79.41
ORTEC02 370 150 59.46 570 140 75.44 340 140 58.82
Valouxis-1 20 10 50 20 10 50 20 0 100
WHPP 5 0 100 5 0 100 5 0 100

algorithm in 10 minutes are two-fold: 1) we primarily de-
signed the hybrid algorithm to perform in a short time; 2) the
selected time is in line with the testing times used by most
of the algorithms reported in the literature, including the
time used in the first International Nurse Rostering Competi-
tion (INRC-I) (Haspeslagh et al, 2014), and hence provides
a platform for a fair comparison. Furthermore, we set the
threshold parameters for the IP Pre-solver and CP Solver
components, i.e. psThr and cspThr, to 10000 and 10 respec-
tively. We also set the q and numSols parameters for the CP
Solver component to 5 and 500, respectively. The design of
the algorithm is primarily deterministic, however to address
the minor random behavior due to the intrinsic nature of the
employed solvers, we run it three times per instance for each
experiment and report best values.

We conduct two experiments to test the proposed algo-
rithm: first, we investigate the benefit and efficiency of the
Symmetry Breaker and Weight Balancer components, and
how they affect the performance of the algorithm. Then, we
compare the hybrid algorithm against pure IP and CP solvers
as well as the five most recent best algorithms in the relevant
literature.

The first experiment is designed to investigate the effects
of breaking symmetry and modifying weights on overall
performance of the hybrid algorithm. For each test, the best
objective function value (Obj.), lower bound (LB), and duality
gap which will be described later (G(%)) were recorded. The
results are shown in Table 2. It should be noted that the
algorithm solved instances SINTEF, MILLAR-1, and LLR
in less than 10 seconds, therefore, we only report the results
for the rest of the instances (six instances) in this experiment.

The results of running the hybrid algorithm using all the
components are indicated as default setting in the first part
of Table 2. For the next two parts, we remove the Symmetry
Breaker and Weight Balancer components, respectively. As
it can be seen, having symmetry structures in the problem
worsens the duality gap for three of instances, i.e. GPOST,
ORTEC01, ORTEC02, whereas it does not change the duality
gaps for instances GPOSTB, Valouxis-1, and WHPP. The
reason to obtain the same results is because of the limited
complexity in the structure of these instances. As a result,
the hybrid algorithm solved them easily compared with the

other instances, although they have symmetry issues. There-
fore, Symmetry Breaker component seems to improve the
efficiency of the hybrid algorithm in general, in particular for
problems with a very complex structure.

In the third part, we remove only the Weight Balancer
component. The results show similar duality gaps for all the
instances except two increases for instances ORTEC01 and
Valouxis-1, and a reduction for instance ORTEC02, which
are not significant. Similar to the second part of Table 2,
we obtained the same results for some instances due to the
limited complexity in the structure of those instances. Con-
sequently, we decided to include this component in default
settings of the algorithm.

In order to compare the performance of the hybrid algo-
rithm against the pure IP and CP solvers, we run the algorithm
for 10 min, and report the best obtained solution (Obj.), lower
bound (LB), duality gap (G(%)), and the solution (clock) time
in seconds (T(s)) in Table 3. The duality gap is defined as
the discrepancy between the value of the current feasible
solution (for the primal problem) and the value of the lower
bound (feasible for dual problem). When the duality gap
is zero, the current feasible solution is an optimal solution
(Wolsey, 1998). Column BKS shows the best known solution
for the benchmark instances according to Burke et al (2008b),
which were obtained using column generation and relaxation
techniques with an IP solver or other heuristic methods for a
long runtime. In the remaining parts of Table 3, the results
for running the IP solver for 10 minutes (short runtime) and
maximum 60 minutes (long runtime) as well as the CP solver
for maximum 60 minutes are shown, respectively. It should
be noted that for both IP and CP solvers, we run them in
default settings without any tuning, though for the CP solver,
we have reinforced the CP formulation described in Section 4
by adding some symmetry and redundant constraints, which
have shown promise in our preliminary experiments (Smith,
2006).

Running the IP solver for 10 minutes, one can see that
our algorithm found better solutions in all instances except
instances MILLAR-1 and LLR, which both solvers obtain the
same results due to the lower complexity in these instances.
Furthermore, the algorithm improved the lower bounds for
three instances, which is an evidence for the effectiveness

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Erfan Rahimian et al.

Table 3 Benchmark results for the hybrid algorithm versus pure IP and CP solvers

Instance BKS Hybrid Algorithm IP (10 min) IP (60 min) CP (60 min)

Obj. LB G(%) T(s) Obj. LB G(%) T(s) Obj. LB G(%) T(s) Obj. T(s)

GPOST 5 5 5 0.00 323 9 5 44.44 600 5 5 0.00 701 11 3600
GPOSTB 3 5 0 100.00 600 7 0 100.00 600 5 0 100.00 3600 8 3600
ORTEC01 270 380 158 58.42 600 1970 140 92.89 600 720 210 70.83 3600 – 3600
ORTEC02 270 370 150 59.46 600 15415 140 99.09 600 700 210 70.00 3600 830 3600
Valouxis-1 20 20 10 50.00 600 1090 0 100.00 600 90 0 100.00 3600 180 3600
SINTEF 0 0 0 0.00 6 8 0 100.00 600 0 0 0.00 694 0 1931
MILLAR-1 0 0 0 0.00 1 0 0 0.00 112 0 0 0.00 112 0 877
WHPP 5 5 0 100.00 600 24061 0 100.00 600 1004 0 100.00 3600 67050 3600
LLR 301 301 301 0.00 8 301 301 0.00 241 301 301 0.00 241 301 574

of Decomposer component. For instances MILLAR-1 and
LLR, the hybrid algorithm found the optimal solution in a
significantly shorter time in comparison to the IP solver.

To have a better and fairer comparison, we run the IP
solver for a longer time, i.e. 60 minutes. It can be seen that
the IP solver improves the duality gap only for three instances,
i.e. GPOST, GPOSTB, SINTEF, in comparison to when it
is run in a shorter time. Moreover, it improves the lower
bounds for instances ORTEC01 and ORTEC02 considerably,
but without making any changes for instance Valouxis-1.
However, in overall, the hybrid algorithm achieves better
duality gaps in five and three instances for short and long
runtime, respectively, in comparison to the IP solver. It should
be noted that for some instances such as ORTEC01, we do
not obtain any optimal solution even after running the pure
IP solver for more than 24 hours.

Similarly, running the CP solver with a long time limit
of 60 minutes, we obtained the optimal solution for three
instances and could not even reach to any feasible solution
for instance ORTEC01. Therefore, the hybrid algorithm with
10 minutes time limit outperformed the CP solver in six in-
stances. We note that we do not report the results for running
the CP solver in 10 minutes since in most of the instances, it
obtains very poor solutions.

To compare the performance of the current algorithm
against the stat-of-the-art algorithms reported in the litera-
ture, Table 4 shows the best-published results from: a hybrid
Variable Neighborhood Search (Burke et al, 2008a), denoted
as VNS-1, a Memetic Algorithm (Burke et al, 2001), de-
noted as MA, a Variable Depth Search (Burke et al, 2013),
denoted as VDS, a Harmony Search Algorithm (Hadwan
et al, 2013), denoted as HSA, a Scatter Search (Burke et al,
2010), denoted as SS, and another hybrid Variable Neigh-
borhood Search (Metivier et al, 2009), denoted as VNS-2.
Unfortunately, to the best of our knowledge, we are not aware
of any exact approaches tested on the studied instances and
hence we did not include any in our benchmarking. We report
the best results and their computational times (in seconds,
except for VNS-1 which is in hour) in columns Best and T,

respectively. Although we run all experiments only for 10
minutes, we report the computational times because for some
instances the hybrid algorithm could find an optimal solution
sooner.

As we can see, our proposed hybrid algorithm is able to
outperform other algorithms for six instances, and obtained
competitive results for instances ORTEC01 and ORTEC02.
For instance WHPP, we could not find out any reported result
in the literature other than the best known solution mentioned
in Burke et al (2008b). Furthermore, for instances GPOST,
SINTEF, MILLAR-1, and LLR, the hybrid algorithm ob-
tained the optimal solution in a very short time compared
to other algorithms. Comparing the results of our algorithm
with the Scatter Search, for instances GPOSTB, MILAAR-
1, and LLR, we obtained the same results, but in a shorter
computational time. For instances GPOST, Valouxis-1, and
SINTEF, the hybrid algorithm found the best solutions, which
are significantly better than the others.

It is worth noting that the proposed algorithm found the
solutions reported in Table 4, while our aim of designing
the hybrid algorithm was not only to find a good feasible
solution, but also to achieve a better duality gap for ensuring
solution quality. In fact, due to the heuristic nature of the
benchmarked algorithms, none of them are able to identify a
lower bound for the obtained solution.

7 Summary and Conclusion

This paper proposed a new hybrid algorithm combining IP
and CP to solve real-world Nurse Rostering Problems. The
algorithm utilized the strengths of CP to aid the IP solver to
achieve better solutions. Concentrated on the problem struc-
ture, we developed some components to provide valuable
problem-specific information such as the computational diffi-
culty of constraints for both IP and CP solvers so that better
performance can be achieved in solving highly-constrained
problem instances. In contrast to heuristic methods reported
in the literature, we attempted to design a hybrid method to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Hybrid Constraint and Integer Programming Approach to Solve Nurse Rostering Problems 11

Table 4 Benchmark results for the hybrid algorithm versus other state-of-the-art algorithms reported in the literature: VNS-1 (Burke et al, 2008a),
MA (Burke et al, 2001), VDS (Burke et al, 2013), HSA (Hadwan et al, 2013), SS (Burke et al, 2010), and VNS-2 (Metivier et al, 2009)

Instance BKS Hybrid Algorithm VNS-1 MA VDS HSA SS VNS-2

Best T(s) Best T(h) Best T(s) Best T(s) Best T(s) Best T(s) Best T(s)

GPOST 5 5 323 915 121 9 861 8 234
GPOSTB 3 5 600 789 95 5 791
ORTEC01 270 380 600 541 12 535 1516 360 300 310 412 365 680
ORTEC02 270 370 600 330 446
Valouxis-1 20 20 600 560 593 100 800 160 3780
SINTEF 0 0 6 8 175 4 821
MILLAR-1 0 0 1 100 8 0 182 0 1
WHPP 5 5 600
LLR 301 301 8 305 38 301 423 314 79

generate a high-quality solution as well as a strong lower
bound in order to guarantee the solution quality. Moreover,
we provided both CP and IP models of the problem.

We tested our algorithm on a diverse test bed of nine real-
world instances from the literature. We conducted two exper-
iments to evaluate the effectiveness of different components
of the proposed algorithm, and its performance compared to
some state-of-the-art algorithms as well as pure IP and CP
solvers. The results show that proposed algorithm is capable
of obtaining competitive results.

Our future work will investigate different formulations
for the Nurse Rostering Problems compared with the classical
model consisting of indexed variables. We will also try to
add a heuristic component to the proposed hybrid algorithm
to improve its performance. Exploiting the problem-specific
information, we will attempt to design a more sophisticated
framework involving various heuristics and novel automation
approaches, to accommodate different characteristic of the
problem. Finally, we are going to extend our algorithm to
other scheduling problems, and implement our techniques in
a real hospital environment.

References

Beldiceanu N, Carlsson M, Rampon J (2005) Global con-
straint catalog. URL http://eprints.sics.se/2366

Brucker P, Burke EK, Curtois T, Qu R, Berghe GV (2010) A
shift sequence based approach for nurse scheduling and a
new benchmark dataset. Journal of Heuristics 16(4):559–
573

Brucker P, Qu R, Burke E (2011) Personnel scheduling: Mod-
els and complexity. European Journal of Operational Re-
search 210(3):467–473

Burke E, Cowling P, De Causmaecker P, Berghe GV (2001) A
memetic approach to the nurse rostering problem. Applied
Intelligence 15(3):199–214

Burke EK, De Causmaecker P, Berghe GV, Van Landeghem
H (2004) The state of the art of nurse rostering. Journal of
Scheduling 7(6):441–449

Burke EK, Curtois T, Post G, Qu R, Veltman B (2008a)
A hybrid heuristic ordering and variable neighbourhood
search for the nurse rostering problem. European Journal
of Operational Research 188(2):330–341

Burke EK, Curtois T, Qu R, Berghe GV (2008b) Problem
model for nurse rostering benchmark instances. Tech. rep.,
http://www.cs.nott.ac.uk/˜tec/NRP/papers/ANROM.pdf

Burke EK, Curtois T, Qu R, Vanden Berghe G (2010) A
scatter search methodology for the nurse rostering problem.
Journal of the Operational Research Society 61(11):1667–
1679

Burke EK, Li J, Qu R (2012) A Pareto-based search method-
ology for multi-objective nurse scheduling. Annals of Op-
erations Research 196(1):91–109

Burke EK, Curtois T, Qu R, Vanden Berghe G (2013) A
time predefined variable depth search for nurse rostering.
Tech. Rep. 3, School of Computer Science and Information
Technology, University of Nottingham

Chuin Lau H (1996) On the complexity of manpower shift
scheduling. Computers & Operations Research 23(1):93–
102

Ernst AT, Jiang H, Krishnamoorthy M, Sier D (2004) Staff
scheduling and rostering: A review of applications, meth-
ods and models. European Journal of Operational Research
153(1):3–27

Fung SKL, Leung HF, Lee JHM (2005) Guided complete
search for nurse rostering problems. In: Proceedings - Inter-
national Conference on Tools with Artificial Intelligence,
ICTAI, vol 2005, pp 706–707

Girbea a, Suciu C, Sisak F (2011) Design and implemen-
tation of a fully automated planner-scheduler constraint
satisfaction problem. SACI 2011 - 6th IEEE International
Symposium on Applied Computational Intelligence and
Informatics, Proceedings pp 477–482

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Erfan Rahimian et al.

Glass Ca, Knight Ra (2010) The nurse rostering problem:
A critical appraisal of the problem structure. European
Journal of Operational Research 202(2):379–389

Gurobi Optimization I (2015) Gurobi. URL http://www.
gurobi.com

Hadwan M, Ayob M, Sabar NR, Qu R (2013) A harmony
search algorithm for nurse rostering problems. Information
Sciences 233(0):126–140

Haspeslagh S, De Causmaecker P, Schaerf A, Stolevik M
(2014) The first international nurse rostering competition
2010

van Hoeve W, Katriel I (2006) Global constraints. Handbook
of constraint programming

IBM (2015) IBM ILOG CPLEX CP Optimizer. URL
http://www.ibm.com/software/integration/
optimization/cplex-cp-optimizer/

Kazahaya G (2005) Harnessing technology to redesign labor
cost management reports. Healthcare financial manage-
ment : journal of the Healthcare Financial Management
Association 59(4):94–100

Laburthe F, Jussien N (2011) CHOCO solver - Documenta-
tion. URL http://choco.mines-nantes.fr/

Lu Z, Hao JK (2012) Adaptive neighborhood search for
nurse rostering. European Journal of Operational Research
218(3):865–876

Maenhout B, Vanhoucke M (2010) Branching strategies in a
branch-and-price approach for a multiple objective nurse
scheduling problem. Journal of Scheduling 13(1):77–93

Metivier JP, Boizumault P, Loudni S (2009) Solving nurse
rostering problems using soft global constraints. In: Gent
I (ed) Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol 5732 LNCS, Springer Berlin
Heidelberg, chap 9, pp 73–87

M’Hallah R, Alkhabbaz A (2013) Scheduling of nurses: A
case study of a Kuwaiti health care unit. Operations Re-
search for Health Care 2(1-2):1–19

Mittelmann HD (2008) Decison Tree for Optimization Soft-
ware. Tech. rep.

Ozcan Y (2005) Quantitative methods in health care manage-
ment: techniques and applications, vol 4. John Wiley &
Sons

Rahimian E, Akartunali K, Levine J (2015) A Hybrid Con-
straint Integer Programming Approach to Solve Nurse
Scheduling Problems. In: Proceedings of the Multidisci-
plinary International Conference on Scheduling: Theory
and Applications, MISTA 2015

Smith B (2006) Modelling for Constraint Programming. In:
Rossi F, Van Beek P, Walsh T (eds) Handbook of constraint
programming, 2006th edn, Elsevier, chap 11, pp 377–406

Soto R, Crawford B, Bertrand R, Monfroy E (2013) Modeling
NRPs with Soft and Reified Constraints. AASRI Procedia
4(0):202–205

Stolevik M, Nordlander TE, Riise A, Froyseth H (2011) A
hybrid approach for solving real-world nurse rostering
problems. In: Lee J (ed) Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol 6876
LNCS, Springer Berlin Heidelberg, chap 9, pp 85–99

Valouxis C, Gogos C, Goulas G, Alefragis P, Housos E (2012)
A systematic two phase approach for the nurse roster-
ing problem. European Journal of Operational Research
219(2):425–433

Wolsey LA (1998) Integer programming. Wiley

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure (png) Click here to download Figure Flowchart2.png

http://www.editorialmanager.com/josh/download.aspx?id=31622&guid=0b483a3c-1177-4e8c-bedb-5fc01598ca50&scheme=1
http://www.editorialmanager.com/josh/download.aspx?id=31622&guid=0b483a3c-1177-4e8c-bedb-5fc01598ca50&scheme=1

