
SSI, from Specifications to Protocol? Formally Verify Security!
Christoph H.-J. Braun

braun@kit.edu
Karlsruhe Institute of Technology

Karlsruhe, Germany

Ross Horne
ross.horne@strath.ac.uk
University of Strathclyde
Glasgow, United Kingdom

Tobias Käfer
tobias.kaefer@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Sjouke Mauw
sjouke.mauw@uni.lu

University of Luxembourg
Esch-sur-Alzette, Luxembourg

ABSTRACT
We evaluate a bundle of specifications from the Self-Sovereign Iden-
tity (SSI) paradigm to construct an authentication protocol for the
Web. We demonstrate how relevant standards such as W3C Verifi-
able Credentials (VC), W3C Decentralised Identifiers (DIDs), and
components of the Hyperledger Aries Framework are to be assem-
bled methodologically into a protocol. We make those assumptions
from standard trust models explicit that underlie the derived pro-
tocol, and verify security and privacy properties, notably secrecy,
authentication, and unlinkability. This enables us to formally jus-
tify the additional precision that we urge these specifications to
consider, to ensure that implementors of SSI-based systems do not
neglect security-critical controls.

CCS CONCEPTS
• Security and privacy→Webprotocol security;Authentication;
• Information systems → World Wide Web.

KEYWORDS
Web Standards; Self-Sovereign Identity; Formal Verification

ACM Reference Format:
Christoph H.-J. Braun, Ross Horne, Tobias Käfer, and Sjouke Mauw. 2024.
SSI, from Specifications to Protocol? Formally Verify Security! . In Pro-
ceedings of the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3589334.3645426

1 INTRODUCTION
The Self-Sovereign Identity (SSI) paradigm, popularised in Christo-
pher Allen’s seminal blog post [2], refers to the idea of placing
users, or more generally agents, in control of their digital identity.
That is, agents should be able to create digital identities and use
them on the Web, without involving a third party when identities
are requested, presented or verified. In SSI, security and privacy
are declared paramount to protect the user [2, 16, 41]: users must
be in control, data minimisation should be observed, and privacy

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3645426

Table 1: Layers of common SSI specifications.

Layer Function Most common specification
4 Cryptographic envelopes DIF DIDComm Messaging [16]
3 Message exchange protocols Hyperledger Aries [22, 27, 45]
2 Attribute assertion W3C Verifiable Credentials [41]
1 Agent identification W3C Decentralised Identifiers [39]

preservation measures are desired. SSI systems are being consid-
ered internationally [8, 15, 17, 28, 34] and in various domains, e. g.,
finance [14], healthcare [26], and the public sector [21, 34].

Standards and specifications underlying these SSI systems are
still incomplete, but SSI systems based on these are already being
built today: In 2021, hackers from the Chaos Computer Club (CCC),
Europe’s largest hacker association, demonstrated a flawed appli-
cation of a common SSI standard in the German driver’s license
app ID-Wallet (cf. https://github.com/Fluepke/ssi-poc) showcasing
that authentication of the entity that verifies credentials was not
guaranteed by the protocol derived from SSI specifications [5]. The
app was therefore cancelled just before roll-out on a national scale.
This prominent failure urges us to scrutinise security considera-
tions in the specifications regarding their corresponding level of
completeness.

To realise an identity and access management system, the follow-
ing building blocks are required: agent identification, attributes for
authorisation, and protocols for authentication. In SSI, the specifi-
cations for those building blocks are subject to ongoing and mostly
separate standardisation efforts by the World Wide Web Consor-
tium (W3C), the Decentralised Identity Foundation (DIF), and the
Hyperledger Community. In Tab. 1, we summarise function and
layering of the specifications for W3C Decentralised Identifiers
(DIDs) [39], the W3C Verifiable Credentials (VC) Data Model [41],
Hyperledger Aries protocols [22, 27, 45], and DIF DIDComm [16].

When we examine the individual specifications, we observe
that information on how to implement the standards is scattered
across supplementary material, and without elaborating on the se-
curity implications. What is more, information on how to properly
combine the different standards is also limited: each specification
focuses on their domain of interest with little considerations of
the other layers of Tab. 1, resulting in the fragmentation of specifi-
cations. While this layered thinking is commonplace in software
engineering, problems may arise from a security perspective.

That being said, the specifications including DIDComm [16] and
the W3C VC data model [41] provide tools that indeed can be used
to create secure and privacy-preserving applications, if it’s done

1620

https://orcid.org/0000-0002-5843-0316
https://orcid.org/0000-0003-0162-1901
https://orcid.org/0000-0003-0576-7457
https://orcid.org/0000-0002-2818-4433
https://doi.org/10.1145/3589334.3645426
https://doi.org/10.1145/3589334.3645426
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3589334.3645426
https://github.com/Fluepke/ssi-poc
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645426&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Christoph H.-J. Braun, Ross Horne, Tobias Käfer, and Sjouke Mauw

right. However, when combining these standards, there should be
a methodology for ensuring that mistakes compromising security
are avoided. We thus formulate the following research questions:
(1) Can a formal model of an authentication protocol be derived

from the SSI specifications?
(2) What essential security requirements can be distilled from the

SSI specifications and related documents?
(3) Does the formal model satisfy the desired security properties?
(4) What essential design decisions MUST be made in order to

guarantee security which are not evident from the standards?
To answer these research questions, we apply the following

methodology: First, we review the relevant specifications and stan-
dards (Sec. 3.1, 3.2, 4.1) and provide an illustrating example (Sec. 3.3).
Next, we present an authentication protocol constructed from the
specifications (Sec. 4.2) and provide a formal mapping between the
abstract protocol model and the specifications (Sec. 4.3). Based on
the combined knowledge on specifications and security best prac-
tices, we define necessary trust relations between agents (Sec. 5.1)
and map formal security properties back to the informal desire of
those from the SSI specifications and related documents (Sec. 4.3).
We verify secrecy and authentication properties using the verifica-
tion tool Proverif [6, 7] and privacy properties (unlinkability) using
the tool DeepSec [12] (Sec. 5.2). Finally, we summarize the essential
design decisions required to guarantee the security of SSI protocols
as feedback to the specifications (Sec. 6).

2 SECURITY METHODOLOGIES AND SSI
We review Allen’s SSI principles in the light of established secu-
rity and privacy methodologies. To this end, we first present such
methodologies. We next use them to identify the following prop-
erties as most relevant for SSI: secrecy, authentication, and un-
linkability, which we subsequently introduce. We last validate the
relevance of those properties by linking them to some of Allen’s
SSI principles.

Security properties to be considered can be derived from security
methodologies such as STRIDE. Of the threats in STRIDE, Spoofing
of user identity, Repudiability, and Information disclosure can be
partially addressed by establishing the security properties secrecy
and authentication, as initially articulated by Lowe [33]. Elevation of
privilege is also impacted by authentication, since authentication is
often established in order for access control to function. Tampering
and Denial of service are more perpendicular threats.

Next to those security properties, we consider the privacy prop-
erty of unlinkability, which means that two uses of a system cannot
be linked. A system satisfying unlinkability, c.f. ISO/IEC 15408 secu-
rity standard for information systems (aka. Common Criteria [35]),
offers stronger privacy assurance than one satisfying anonymity.

Secrecy and forward secrecy. Most threats are impacted by the
secrecy of long-term keys during regular execution of the protocol.
Information disclosure within a session is also impacted by the se-
crecy of material specific to a session of the protocol, such as session
keys and nonces. Secrecy holds, if whenever a session involving
honest agents completes, it is impossible that an attacker can obtain
the secrets in that session. Secrecy can also be evaluated in the face
of long-term keys being compromised, e. g. via a data breach, by
checking forward secrecy. Formally, forward secrecy is modelled

as two phases, the first where the protocol runs normally, and the
second where the long-term keys are revealed. We check whether
then the secrets in the first phase remain secret. This ensures that
information shared before a data breach remains secret.

Authentication. Threats such as spoofing of identity and repudi-
ation can be addressed by formal authentication properties, where
agreement is among the strongest. Agreement ensures that, when
one party completes the protocol, we can assume that the other
parties performed all previous actions in the protocol, and, for cor-
responding pairs of send and receive actions, the data was the same.
Agreement is, in addition, said to be injective, if for every session
completed, there are is a unique session for each of the other parties
involved. Injectivity is required to prevent replay attacks.

Unlinkability. is sometimes referred to as non-correlability in
anonymous credential systems. We will explain that, even for cre-
dentials that are not anonymous, unlinkability can be achieved from
the perspective of the issuer. Specifically, after issuing a credential,
the issuer cannot track how it is used with honest verifiers [20].
In this way we formalises data sovereignty, in the sense that the
issuer cannot monitor the usage of a credential after issuance.

Security & privacy for SSI. We reinforce the need for the pre-
sented properties by connecting them to Allen’s SSI principles [2].
Allen’s 2nd SSI principle, control, refers to users being able to
control what information about them is revealed and what is kept
secret. Thus control desires secrecy and authentication, where au-
thentication lends assurance regarding the context in which data
is revealed. Allen’s 3rd SSI principle, access, refers to users being
able to access information about themselves, but at the same time
keeping it secret from others. Allen’s 5th SSI principle, persistence,
stipulates that identities must be long-lived in the sense that iden-
tities may be retained when keys they map to are rotated. Thus
persistence is supported by forward secrecy, which ensures secrecy
in scenarios where key rotation is necessary. Allen’s 9th SSI prin-
ciple, minimisation, desires non-correlatibility, aka. unlinkability,
while acknowledging that it is difficult to fully achieve. This is
consistent with our observation that some but not all unlinkability
properties hold. Allen’s 10th SSI principle, protection, demands
identity authentication to occur independently from potential in-
terference by a third party to ensure the rights of individual users.
While this principle focuses on protecting the rights of users, it hints
at unlinkability from the perspective of issuers, to which we want to
draw attention in this work. It also hints at forward secrecy since
that mitigates against obtaining keys via coercion. Authentication
and hence agreement is explicitly mentioned in this principle.

3 WEB STANDARDS AS BASIC BUILDING
BLOCKS OF AN SSI PROTOCOL

We introduce DIDs and VCs, recommended by the W3C as Layer 1
and 2 of an SSI protocol, and sketch their application using a sim-
plified example protocol, omitting technologies for Layers 3 and 4.

3.1 W3C Decentralised Identifiers (DID)
Contrary to centrally managed identifiers, a Decentralised Iden-
tifier (a DID) is under control of the agent that it refers to. The
Decentralised Identifiers W3C recommendation [39] specifies how

1621

SSI, from Specifications to Protocol? Formally Verify Security! WWW ’24, May 13–17, 2024, Singapore, Singapore

Credential Graph

2024-09-13T14:34:18Z Credential
165653

expiration
Date

type credential
Subject

2000-01-01birthDate
did:web:issu.example.org

(the Issuer)

issuer

Proof Graph
Signature
165653

Ed25519Signature2018
type

did:web:issu.example.org#key1
 pk(sk_issuer)

sig(
 canonicalise(
 Credential Graph),
 sk_issuer)

verification
Method

proofValue

creator

proof

2023-09-13T14:34:19Z issuance
Date

did:web:issu.example.org
(the Issuer)

did:web:hold.example.org
(the Holder)

type

Presentation Proof Graph
Signature

42Ed25519Signature2018 type

did:web:hold.example.org#key2
pk(sk_holder)

sig(
 canonicalise(
 Credential Graph,
 Proof Graph,
 Presentation Graph
 domai n,
 chal l enge),
 sk_holder)

verification
Method

proofValue

creator

did:web:hold.example.org
(the Holder)

Presentation Graph Presentation
42VerifiablePresentation

type

VerifiableCredential Person

proof

784!37g105domain

challenge

did:web:verif.example.org
(Example Verifier)

verifiableCredential

Figure 1: The graph-based VC data model according to
its JSON-LD context [41]. Notice the signature-relevant at-
tributes of challenge (a nonce) and domain from the presen-
tation proof graph marked with red.

such an agent proves control over a DID. A DID maps to a DID
document that incorporates information about cryptographic public
keys, which may be used by the agent controlling the DID to prove
their control over the DID. The mapping between the DID and
its DID document is defined by a DID method. The DID methods,
which can be defined and registered by anyone [43], define how
to retrieve a DID document from a DID. DID methods typically
involve a form of secure lookup to obtain the DID document, such
as did:web [36], which defines provisioning of DID documents via
TLS, or did:ethr [44] and did:sov [29], which define blockchain-
based DIDs on Ethereum or Hyperledger Indy, respectively. Locally
resolvable DID Methods include did:key [42], where a DID docu-
ment or associated public key is encoded in the DID itself.

For example, in Fig. 1, the DID did:web:issu:example.org
resolves to a DID document containing the public keys of the agent
issuer. Furthermore, the URI did:web:issu:example.org#key1
identifies which of the agent’s keys are employed. We clarify that,
while not explicitly specified, an explicit check is required to ensure
that the given key URI is among those listed in the DID document.

3.2 W3C Verifiable Credential (VC) data model
A Verifiable Credential (VC) according to the W3C recommenda-
tion [41] is a Resource Description Framework (RDF) dataset com-
prised of two RDF graphs: the credential graph containing claims
and attributes, which links to a proof graph containing the cre-
dential’s digital signature and metadata concerning its interpreta-
tion. The claims of the credential graph are the statements about
the credentialSubject that are asserted by the issuer (e.g. the
birthdate in Fig. 1). Claims include metadata such as a DID iden-
tifying the issuer who signs the credential, its expirationDate
and issuanceDate. The proof graph indicates the type of proof

explained generically in a separate Verifiable Credential Data In-
tegrity working draft [40]. The Data Integrity specification permits
multiple types, e.g. Ed25519Signature2018, which define how to
establish a signature’s validity using a specific signature scheme
and algorithm for obtaining a canonical representation of the RDF
graph underlying the credential [3, 23, 30, 31]. Fig. 1 suggests, using
typically notation employed in security (Dolev-Yao style [19]), how
signatures are generated using secret keys (sk) of agents and the
graphs. A term of form sig(𝑀, 𝑠𝑘) denotes a signature on bitstring
𝑀 using a private key 𝑠𝑘 , and pk(𝑠𝑘) denotes the corresponding
public key. This symbolic approach to security abstracts away the
implementation of signature schemes and canonicalise functions.

The VC specification [41] also defines a data model for Verifi-
able Presentations (VPs), which are necessary for the credential
subject, holding the VC, to prevent trivial replay attacks when a
credential is presented to another agent. A VP ties a VC crypto-
graphically to a particular session, by signing the VC along with
session information to certify that the holder has approved that the
VC may be used in the specified session only. The VP is described
in a presentation graph which links to the credential graph of the
relevant VC and the presentation proof graph, which describes a
digital signature on the presentation graph. Fig. 1 shows a VP com-
prised of the four graphs: the presentation graph and presentation
proof graph and the two graphs of the VC, i. e., the credential graph
and credential proof graph. As suggested symbolically in Fig. 1, the
session information signed by the signature in the presentation
proof graph is a serialisation of the presentation graph and optional
attributes in the proof graph, notably the domain and challenge.
This arguably confusing decision, i. e., to place some information
signed (the domain and challenge) outside the presentation graph,
is mandated by the Data Integrity draft [40], and implicitly in the
VC specification’s examples [41].

3.3 An example of authentication using VCs
VCs enable an agent (the holder) to prove to a second agent (the
verifier) that a third agent (the issuer) has asserted and signed some
claims about the holder. In other words, with a presentation of a
VC, an agent proves to a verifying agent that:
• they are in possession of the VC;
• the VC was issued by a particular issuer;
• the VC contains some claims, e. g., attributes of the holder;
• the VC was presented by the holder itself, for the purpose the
verifier intended, e. g., authenticated resource access on the Web.

As example, consider the use case of a student accessing online
teaching material of a guest professor. The student’s university (is-
suer) provides the student (holder) with a digital student credential.
It is signed by the university and asserts that the holder is a student.

A guest professor at the university provides online teaching
material, served from their personal Web server, to the university’s
students. To access the online material, students have to prove that
they are really enrolled at the university by creating a VP asserting
a signature on the VC along with an identifier (DID) for the teacher
and other session-specific information. The professor verifies the
signature on the VC and VP using the public keys of the university
and student respectively, and checks that the claims and session
parameters are as expected.

1622

WWW ’24, May 13–17, 2024, Singapore, Singapore Christoph H.-J. Braun, Ross Horne, Tobias Käfer, and Sjouke Mauw

Students verify that they are really talking to the professor by
looking up a trusted mapping between identifier (e. g. DID) and pub-
lic keys. In the Web-based case at hand, the professor’s homepage
may advertise the professor’s DID. Thereby, the here-described
system relies on the Domain Name System (DNS) and the transport
protocol HTTPS to ensure the integrity of the identifier-agent map-
ping. Other approaches formaintaining such identificationmapping
may include government registries, governed blockchains or smart
contracts. This mapping is commonly (and commonly implicitly)
deemed out-of-scope by SSI authentication protocols as a system-
level governance challenge. We make this assumption explicit in
Sec. 5.1 as the DID document and proof method assumptions.

We note that theW3CWorking GroupNote on VCUse Cases [37]
proposes 30 use cases from 7 domains. Among them, 25 concern
authentication of the holder, similarly to the one described above,
while 5 concern transferability and revocation. Trust assumptions
or protocols are not made explicit, as our paper addresses in Sec. 5.1.

4 CONSTRUCTING AUTHENTICATION
PROTOCOLS FOR SSI

To construct authentication protocols using the presented Web
standards (for Layers 1 and 2), we need to add protocol components
for Layers 3 and 4. We therefore first present potential protocol
components for Layers 3 and 4, which we find in the Hyperledger
Aries protocols and DIDComm. We then present the thus derived
SSI authentication protocol for Web resource access, and map the
protocol in detail to the SSI specifications.

4.1 Potential protocol components
The Hyperledger Aries community is in the process of defining
a framework of protocols for creating, transmitting and storing
verifiable digital credentials. We cover the three protocols intended
for building VC-based authentication protocols. These protocols are
agnostic to the specific data models and formats of the transmitted
payload, e. g., DIDs, VCs and VPs.
The Aries DID Exchange protocol [45] is a protocol for establish-
ing a session between agents using DIDs. It defines three message
types: a request communicating the DID of the requesting agent; a
response completing the exchange from the responding agent; and
a complete message confirming the exchange from the requesting
agent to the responding agent.
The Aries Issue Credential protocol [22] defines two message
types: a request-credential message for a holder to request issuance
of a VC, and an issue-credential message containing the VC.
The Aries Present Proof protocol [27] defines two message
types: a request-presentation message from the verifier requesting a
verifiable presentation, and a presentation message containing a VP
from the holder. These protocols list “attachment registries” linking
to possible data models for messages, including VCs and VPs.
The DIF DIDComm Messaging. The above protocols define only
a message flow and do not consider how messages are encrypted
on the wire – the intention being that the protocols are meant
to be used on top of DIDComm Messaging [16]. Specified by the
Decentralised Identity Foundation (DIF), DIDCommMessaging [16]
is a methodology for encrypting and signing messages, using keys
in the DID documents of communicating agents.

4.2 A thus constructed authentication protocol
From the SSI specifications, we aim to derive an authentication
protocol for Web resource access, and specify it at a level of preci-
sion amenable to symbolic verification. We notice that application-
specific extensions to the message exchange protocols (Layer 3) are
required to construct a functional protocol. The result is a three-
party protocol comprised of two two-party protocols: First, the
issuance of a VC is conducted, such that this VC can be used
in multiple sessions of the provenance of a VC. A recently pro-
posed architecture [9] implements this protocol, without formal
verification of its security properties1.

The protocol is informally illustrated in Fig. 2 as a message se-
quence chart. For the protocol’s complete applied 𝜋-calculus specifi-
cation [1] amenable to formal verification, see Appendix A Tab. 3 - 4.
In keeping with Dolev-Yao style symbolic notation, {𝑀}𝐾 denotes
the encryption of bitstring 𝑀 with a public key 𝐾 . We notate by
proj𝑖𝑀 the 𝑖𝑡ℎ projection of a tuple𝑀 of the form ⟨𝑀1, . . . , 𝑀𝑖 , . . .⟩,
dec(𝑀,𝐾) is the decryption of ciphertext 𝑀 using private key 𝐾 ,
and predicate check(𝑀,𝐾) checks a signature 𝑀 against a public
key 𝐾 . We use the following notation: 𝐼 , 𝑃,𝑉 are the DIDs of Issuer,
holder (aka. Prover), andVerifier, respectively. (𝑠𝑠𝑘𝑋 , 𝑠𝑝𝑘𝑋) is a ses-
sion key pair of agent 𝑋 with 𝑠𝑝𝑘𝑋 = 𝑝𝑘 (𝑠𝑠𝑘𝑋); and the long-lived
key pair (𝑠𝑘𝑋 , 𝑝𝑘𝑋) with 𝑝𝑘𝑋 = 𝑝𝑘 (𝑠𝑘𝑋) correspondingly. 𝑛 are
nonces and 𝑠 are signature values calculated via 𝑠𝑘 = 𝑠𝑖𝑔(𝑚′

𝑘
, 𝑠𝑘𝑋).

Constant attr serves as an attribute to assert, URI is the URI of a
desired Web resource under access control, and RULE is an access
control rule expressing expected claims in a VC.

Both two-party (sub-)protocols consist of two sub-sub-protocols:
A “handshake protocol” and an application-specific “follow-up pro-
tocol”. Both two-party protocols start with the Aries DID Exchange
Protocol as the handshake protocol. Seamlessly, the issuance of a
VC continues with the Aries Issue Credential Protocol as follow-up.
Similarly, the provenance of a VC follows then an extended version
of the Aries Present Proof Protocol.

In particular, the Aries Present Proof protocol is extended with
an additional access-request message that includes the URI of a
resource the holder wishes to access, and also includes an access-
response message communicating an access token if the present
proof protocol succeeds. The application-specific messages wrap
the Aries Present Proof protocol. Similarly, the last message of the
DID Exchange Protocol between two agents – a complete message
– is simultaneously the first message of the follow-up protocol in
in Fig. 2. For the issuance, the complete message is simultaneously
a request-credential message; while for provenance, the complete
message is simultaneously an access-request message.

4.3 Connecting protocol and specifications
Wemap the protocol (cf. Fig. 2) to the specification layers (cf. Tab. 1).
Layer 1: Agent identification
• We interpret (𝑠𝑘𝑋 , 𝑝𝑘 (𝑠𝑘𝑋)) to be the long-lived key pair of an
agent 𝑋 .

• We interpret the long-lived identifiers of an agent, 𝑋 with 𝑋 ∈
(𝐼 , 𝑃,𝑉), to be DIDs, e. g., using did:web [36]. By Sec. 5.1, we

1[9] is all about the interoperability of SSI standards, especially different flavours of VC
and DID, and proposes an architecture that addresses those interoperability challenges.

1623

SSI, from Specifications to Protocol? Formally Verify Security! WWW ’24, May 13–17, 2024, Singapore, Singapore

Issuer (University)
𝑠𝑘𝐼

Holder (Student)
𝑠𝑘𝑃

Verifier (Professor’s Pod)
𝑠𝑘𝑉

new 𝑛𝐼 , 𝑠𝑠𝑘𝐼 new 𝑛𝑃𝐼 , 𝑛𝐻 , 𝑠𝑠𝑘𝑃𝐼

𝑚′
0 := ((𝑛𝑃𝐼 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝐼)){ (𝑚′

0, sig(𝑚′
0, 𝑠𝑠𝑘𝑃𝐼)) }𝑝𝑘𝐼

ifcheck((𝑛𝑃𝐼 , 𝑠𝑝𝑘𝑃𝐼), s0, 𝑠𝑝𝑘𝑃𝐼) then
𝑚′

1 := (𝑛𝑃𝐼 , 𝑛𝐼 , 𝑝𝑘 (𝑠𝑠𝑘𝐼)) { (𝑚′
1, sig(𝑚′

1, 𝑠𝑘𝐼)) }𝑠𝑝𝑘𝑃𝐼

ifcheck((𝑛′
𝑃𝐼
, 𝑛𝐼 , 𝑠𝑝𝑘𝐼), s1, 𝑝𝑘𝐼) then

if𝑛𝑃𝐼 == 𝑛′
𝑃𝐼

then
𝑚′

2 := ((𝑛𝐼 , 𝑃, 𝐼 , 𝑛𝐻), sig((𝑛𝐼 , 𝑃, 𝐼 , 𝑛𝐻), 𝑠𝑘𝑃)){ (𝑚′
2, sig(𝑚′

2, 𝑠𝑠𝑘𝑃𝐼)) }𝑠𝑝𝑘𝐼

ifcheck(((𝑛′
𝑖
, 𝑃 ′, 𝐼 ′, 𝑛𝐻), s𝑃), s2, 𝑠𝑝𝑘𝑃𝐼) then

ifcheck((𝑛′
𝐼
, 𝑃 ′, 𝐼 ′, 𝑛𝐻), s𝑃 , 𝑝𝑘𝑃) then

if (𝑛′
𝐼
, 𝑃 ′, 𝐼 ′) = (𝑛𝐼 , 𝑃, 𝐼) then

claims := (𝑃, attr, 𝐼)
VC := (claims, sig(claims, 𝑠𝑘𝐼))
𝑚′

3 := ((VC, 𝑃, 𝑛𝐻), sig((VC, 𝑃, 𝑛𝐻), 𝑠𝑘𝐼)) { (𝑚′
3, sig(𝑚′

3, 𝑠𝑠𝑘𝐼)) }𝑠𝑝𝑘𝑃𝐼

ifcheck(((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′
𝐻
), 𝑠𝐻), s3, 𝑠𝑝𝑘𝐼) then

ifcheck((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′
𝐻
), s𝐻 , 𝑝𝑘𝐼) then

ifcheck((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if (𝑃 ′, 𝐼 ′, 𝑃 ′′, 𝑛′

𝐻
) = (𝑃, 𝐼, 𝑃, 𝑛𝐻) then

issuance

new 𝑛𝑉 , 𝑛𝐶 , 𝑠𝑠𝑘𝑉 , 𝑡𝑘𝑛new 𝑛𝑃𝑉 , 𝑠𝑠𝑘𝑃𝑉

𝑚′
4 := (𝑛𝑃𝑉 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝑉))

ifcheck((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if (𝑃 ′, 𝐼 ′, 𝑃 ′′, 𝑛′

𝐻
) = (𝑃, 𝐼, 𝑃, 𝑛𝐻) then { (𝑚′

4, sig(𝑚′
4, 𝑠𝑠𝑘𝑃𝑉)) }𝑝𝑘𝑉

ifcheck((𝑛𝑃𝑉 , 𝑠𝑝𝑘𝑃𝑉), s4, 𝑠𝑝𝑘𝑃𝑉) then
𝑚′

5 := (𝑛𝑃𝑉 , 𝑛𝑉 , 𝑝𝑘 (𝑠𝑠𝑘𝑉)){ (𝑚′
5, sig(𝑚′

5, 𝑠𝑘𝑉)) }𝑠𝑝𝑘𝑃𝑉

ifcheck((𝑛′
𝑃𝑉

, 𝑛𝑉 , 𝑠𝑝𝑘𝑉), s5, 𝑝𝑘𝑉) then
if𝑛𝑃𝑉 == 𝑛′

𝑃𝑉
then

𝑚′
6 := (𝑛𝑉 ,URI) { (𝑚′

6, sig(𝑚′
6, 𝑠𝑠𝑘𝑃𝑉)) }𝑠𝑝𝑘𝑉

ifcheck((𝑛′
𝑣,𝑢𝑟𝑖

′), s6, 𝑠𝑝𝑘𝑃𝑉) then
if (𝑛′

𝑉
,URI’) == (𝑛𝑉 ,URI) then

𝑚′
7 := (𝑛𝐶 , RULE){ (𝑚′

7, sig(𝑚′
7, 𝑠𝑠𝑘𝑉)) }𝑠𝑝𝑘𝑃𝑉

ifcheck((𝑛𝑐 , RULE), s7, 𝑠𝑝𝑘𝑉) then
ifclaims = RULE then
VP := ((VC, 𝑛𝑐 ,𝑉), sig((VC, 𝑛𝑐 ,𝑉), 𝑠𝑘𝑃)) {VP, sig(VP, 𝑠𝑠𝑘𝑃𝑉) }𝑠𝑝𝑘𝑉

ifcheck(((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′
𝑐 ,𝑉

′), s𝑃), s8, 𝑠𝑝𝑘𝑃𝑉) then
ifcheck((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′

𝑐 ,𝑉
′), s𝑃 , 𝑝𝑘𝑃) then

ifcheck((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if ((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), 𝑛′

𝐶
,𝑉 ′) = ((𝑃, 𝑎𝑡𝑡𝑟, 𝐼), 𝑛𝐶 ,𝑉) then

𝑚′
9 := (tkn, sig(tkn, 𝑠𝑘𝑉))

{sig(𝑚′
9, 𝑠𝑠𝑘𝑉) }𝑠𝑝𝑘𝑃𝑉

ifcheck((tkn, stkn), s9, 𝑠𝑝𝑘𝑉) then
ifcheck(tkn, stkn, 𝑝𝑘𝑉) then

provenance

Figure 2: An SSI authentication protocol consisting of issuance and provenance sub-protocols.

1624

WWW ’24, May 13–17, 2024, Singapore, Singapore Christoph H.-J. Braun, Ross Horne, Tobias Käfer, and Sjouke Mauw

assume the public key to be obtainable from an agent’s DID;
𝑝𝑘 (𝑠𝑘𝑋) = getPubKey(𝑋).

• We interpret (𝑠𝑠𝑘𝑋 , 𝑝𝑘 (𝑠𝑠𝑘𝑋)) to be a short-lived session key pair
of an agent 𝑋 . We interpret the public key of a session key pair
𝑠𝑝𝑘𝑥 = 𝑝𝑘 (𝑠𝑠𝑘𝑥) to be encoded in a DID, e. g., using did:key [42],
when transmitted in messages.

Layer 2: Attribute assertion
• By Sec. 5.1, we assume the issuer to have verified that the holder
is actually exhibiting the attribute attr to be asserted.

• We interpret claims = (𝑃, 𝑎𝑡𝑡𝑟, 𝐼) according to the W3C VC data
model [41], with 𝑃 being the credentialSubject, attr being
some claim, e. g., birthDate from Fig. 1, and 𝐼 being the issuer.

• We interpret VC = (claims, sig(claims, 𝑠𝑘𝐼)) according to the
W3C VC data model [41], where the claims are RDF triples form-
ing the credential graph and the signature value sig(claims, 𝑠𝑘𝐼)
is the proofValue of the proof graph. The verificationMethod
is 𝑝𝑘 (𝑠𝑘𝐼). For the signature, we assume claims in canonicalised
form (i. e. after canonicalise(Credential Graph) from Fig. 1).

• We interpret VP = ((VC, 𝑛𝐶 ,𝑉), sig((VC, 𝑛𝐶 ,𝑉), 𝑠𝑘𝑃) according
to the W3C VC data model [41], where the VC is linked via
verifiableCredential from the presentation. In the presenta-
tion proof graph, sig((VC, 𝑛𝐶 ,𝑉), 𝑠𝑘𝑃) is the proofValue with
𝑝𝑘 (𝑠𝑘𝑃) the verificationMethod, 𝑛𝐶 the challenge, and 𝑉
the domain. For the signature, we assume (VC, 𝑛𝐶 ,𝑉) in canoni-
calised form (i. e. after canonicalise(Credential Graph, Proof Graph,
Presentation Graph, domain, challenge) from Fig. 1).

Layer 3: Message exchange protocols
• We interpret the first three messages exchanged between any
two agents, 𝑚′

0 -𝑚
′
2 and 𝑚′

4 -𝑚
′
6, according to the Aries DID

Exchange Protocol [45]. We notice that nonce is not required
by the specification. Let 𝑋 ∈ {PI, PV} and 𝑌 ∈ {I,V}:
– 𝑚′

0 and𝑚
′
4 are request messages with 𝑝𝑘 (𝑠𝑠𝑘𝑋) as did and 𝑛𝑋

as nonce.
– 𝑚′

1 and𝑚
′
5 are response messages with 𝑝𝑘 (𝑠𝑠𝑘𝑌) as did and

𝑛𝑌 and 𝑛𝑋 as nonce.
– 𝑚′

2 and𝑚
′
6 are complete messages with 𝑛𝑌 as a nonce.

• In the interaction between Issuer andHolder, we interpret the two
last messages,𝑚′

2 and𝑚
′
3, according to the Aries Issue Credential

Protocol [22]. We notice that domain and challenge are not
required by the specifications.
– 𝑚′

2 is a request-credential message that contains an attachment
of: 𝑛𝐼 as nonce, 𝑛𝐻 as challenge, 𝑃 as holder, 𝐼 as issuer, and
a corresponding signature value as proofValue.
– 𝑚′

3 is a issue-credential message that contains an issued creden-
tial as an attachment: We interpret the attachment to be a VP
according to theW3C VC data model [41]. It includes the freshly
issued VC as verifiableCredential, 𝑛𝐻 as challenge and 𝑃
as domain.

• In the interaction between Holder and Verifier, we interpret the
two messages𝑚′

7 and VP (corresponding to𝑚′
8) according to the

Aries Present Proof Protocol [27]. We notice that domain and
challenge are not required by the specifications.
– 𝑚′

7 is a request-presentation message that contains a Verifi-
able Presentation Request as an attachment. We interpret the
attachment according to some attachment data model defini-
tion, e. g., provided by [9]: It includes 𝑛𝐶 as challenge, 𝑉 as

I ssuer I Ver i f i er V

Hol der H
Ver i f y
a) DI D cont r ol
b) at t r i but e

assume due di l l i gence

l ear ns exi st ence of asser t i on

Figure 3: The trust assumption triangle.

domain and RULE, the definition of the VC to present, e. g., as
requiredCredential.
– VP (i. e.𝑚′

8) is interpreted as a presentationmessage containing
the actual VP as an attachment: We interpret the attachment as
a VP according to the W3C VC data model [41] with the VC as
verifiableCredential, 𝑛𝐶 as challenge and 𝑉 as domain.

• The two messages,𝑚′
6 and𝑚

′
9, are interpreted according to the

mentioned extension of Aries Present Proof.
– 𝑚′

6 is a access-request message that includes URI as target.
– 𝑚′

9 is a access-response message; includes tkn as accessToken.
Layer 4: Cryptographic envelopes
• We interpret𝑚 = {(𝑚′, sig(𝑚′, 𝑠𝑘𝑆))}𝑝𝑘 (𝑠𝑘𝑅) to model a message
𝑚 with payload𝑚′ subject to signature using the sender’s private
key 𝑠𝑘𝑆 and encryption using the receivers’ public key 𝑝𝑘 (𝑠𝑘𝑅),
i. e., authcrypt as defined by DIDComm [16].

• We assume automatic decryption of amessage𝑚 to its payload𝑚′

if possible for an agent. We then interpret check(𝑚′, s, 𝑝𝑘 (𝑠𝑘𝑆))
as explicitly checking the signature value 𝑠 of payload𝑚′ using
the sender’s public key 𝑝𝑘 (𝑠𝑘𝑆), as required by authdecrypt
defined by DIDComm [16].

5 TRUST, SECURITY AND PRIVACY,
FORMALLY VERIFIED

We formally justify the correctness of the constructed protocol.
Firstly, we make explicit the trust assumptions that must be re-
spected for secure functioning of the protocol. We then use stan-
dard tools to verify a comprehensive range of security and privacy
properties. We highlight throughout how trust assumptions and
properties verified are connected to SSI principles and systems.

5.1 Trust assumptions necessary for SSI
In order to reason about security and privacy it is essential to make
explicit the underlying trust assumption against which we verify
the protocol.We declare the following assumptions about the agents
and the underlying infrastructure of identifiers and cryptographic
keys. These assumptions are often not stated by SSI protocols and
specifications, but relied on implicitly.
(1) The Self-Sovereign Identity (SSI) assumption: All agents
can mint and manage key pairs in a self-sovereign manner and
honest agents never intentionally publish their private keys.

(2) The DID document assumption: All agents assume the in-
tegrity of the link between the DID of an honest agent and a
DID document containing public keys of the honest agent. Thus
the infrastructure employed by the honest agents for their DIDs
must be trusted.

1625

SSI, from Specifications to Protocol? Formally Verify Security! WWW ’24, May 13–17, 2024, Singapore, Singapore

(3) The proof method assumption: If the proof graph contains a
URI indicated by proofMethod then the key extracted from the
URI must also appear in the DID document obtained via the DID
of the relevant agent (issuer in a VC or holder in a VP).2

(4) The Verifier-Issuer assumption: An honest verifier assumes
that an honest issuer has conducted due diligencewhen validating
the assertions signed by the issuer, e.g. that the holder is actually
a student (which may be out-of-band).

(5) The well-specified assumption: Honest parties assume that
parties they trust follow the protocol, even during a data breach.
Importantly, honest agents may also engage in sessions with
agents that do not follow the protocol [19, 32], which is reasonable
since attackers assuming roles within the system can co-exist
with honest participants and those attackers may exploit their
position to interfere with sessions between honest agents.
The goal with any SSI authentication protocol is to establish a

trust relationship from the verifier to the holder, transitively via
the issuer by means of asserting and signing claims, as suggested in
Fig. 3. The verifier trusts the issuer to have asserted correct informa-
tion about the holder. The fact that the issuer has some relationship
with the holder, is only revealed by the holder upon presentation of
the credential. Then, transitively, the verifier may trust the holder
to exhibit a certain attribute which has been attest by the issuer.
Inversely, the holder must be willing to present the credential to
the verifier. This case is similar to the holder trusting the issuer
to be the (honest) issuer when revealing private information for
validation of attributes to include in the credential.

5.2 Results of security and privacy analysis
Based on a model reflecting these trust assumption we return to
the security and privacy properties laid down in Sec. 2 to verify
that they hold. Proofs of all properties are summarised in Tab. 2.

Forward secrecy. Relevant secrecy and forward secrecy proper-
ties are formally verified in rows 1-2, respectively, of Tab. 2. Our
formal analysis shows that session secrets in the past are preserved
even if the long-term private keys of all agents are revealed. Some
information may be leaked without compromising other proper-
ties, notably the VC itself and information about the access control
policy is leaked to an attacker posing as a verifier or holder, respec-
tively. The VC is leaked, as the holder may present the credential
to a compromised verifier, and the VP contains the VC (this is not
an attack, since the attacker cannot use the VC). The access control
rule is leaked, as the protocol explains to anyone who asks what
credential is required to access a resource via a URI it controls.

Authentication. There are multiple agreement properties [33] to
check for the protocol. Between two parties we have: if the issuer
completes the protocol, then it injectively agrees with the holder
regarding the first three messages of the protocol. This ensures that
the issuer really issued the credential to the holder it believes it did.
If the holder reaches the fourth message in the protocol, then it
injectively agrees with the first four messages of the issuer. This en-
sures that the holder really received a credential from the intended

2For a clarification of “checked against” we refer to: “Dereferencing a public key URL
reveals information about the controller of the key, which can be checked against the
issuer of the credential.” [41]

issuer. If the holder completes a session with a verifier, then it in-
jectively agrees with all five message exchanges in a session with a
verifier. This ensures that the holder really presented a credential to
the intended verifier. If the verifier completes the protocol, then it
injectively agrees with its first four messages with the holder. This
ensures that the presentation was really received from the agent
concerned. The final property fails if domain is omitted in the VP.
See row 6 of Tab. 2 and further explanation in Appendix A.1.

Since three parties are involved in SSI, additional assurance re-
garding authentication can be achieved if we check a multi-party
agreement property [13], where one agent establishes a belief about
two or more other agents. If the verifier completes the protocol,
then it agrees with all messages of both the holder and issuer (ex-
cluding the final message sent). This ensures that if a credential
was presented by a holder, then that credential originates in a legit-
imate session with an issuer. This property is non-injective, since
a credential may be issued once and used many times, meaning
there is not a one-to-one correspondence between verifier sessions
and issuer sessions. Perhaps surprisingly, the above multi-party
agreement property does not follow from the two-party agreement
properties. Indeed we were able to uncover the presence of an at-
tack on multi-party agreement, which cannot be detected using
two-party agreement if the holder were to neglect to check the
signature on a VC they are issued. Specifically, an attacker may
pose as an issuer and re-issue VCs of an honest issuer. See row 8,
Tab. 2 and also Appendix A.2 for details on multi-party agreement.

All authentication properties above hold even if VPs in previ-
ously completed sessions are leaked (e. g. due to a data breach or a
requirement to reveal logs). This compromise situation is important
to note, since if we mistakenly did not include the challenge in
the VP then all authentication properties from the perspective of
the verifier fail once VPs are revealed. This compromise situation
with the challenge present and missing is presented in respective
rows 3 and 6 of Tab. 2. For a complete picture regarding agreement,
we also check that, even if the holder is compromised, there is a
non-injective agreement between the verifier and the issuer, re-
garding their common data, namely the VC (see row 5 Tab. 2). This
means that credentials from honest issuers cannot be forged.

Unlinkability. We formulate unlinkability of honest holders in
the presence of malicious issuers as an equivalence problem be-
tween (A) a process where honest holders and verifiers exchange
the same VC twice and (B) an idealised process where each session
between honest holders and verifiers involves a fresh VC. In order
to model the issuer as an attacker, the long-term keys of the issuer
are revealed to the attacker. A proof established using the DeepSec
tool supports row 9 Tab. 2. See also Appendix A.3.

A stronger property is unlinkability of the holder against col-
luding issuers and verifiers, which further ensures that verifiers
cannot link two uses of the same credential. This property cannot
be achieved for regular VCs, since the identity of the holder ap-
pears in each verifiable presentation (row 10 Tab. 2). However, it is
achieved for anonymous credentials that hide the identity of the
holder using zero-knowledge proofs (row 13 Tab. 2).3

3Related work on cryptographic schemes for anonymous credentials analyses unlinka-
bility in the face of colluding issuers and verifiers using computational cryptographic
methods such as universal composability [10]. Computational methods further check

1626

WWW ’24, May 13–17, 2024, Singapore, Singapore Christoph H.-J. Braun, Ross Horne, Tobias Käfer, and Sjouke Mauw

Table 2: Structure of our code repository for formal verification of security properties for our instance of an SSI authentication
protocol. Paths relative to https://github.com/uvdsl/ssi-protocol-verify/tree/main/. See https://doi.org/10.5281/zenodo.10654423.

Protocol Property No. Relative File Path in Repository OK Attack
Plain VCs Secrecy 1 ssipv.pv#L287
(PlainVCs/DIDComm/) 2 archive/ssipv_forward_secrecy.pv

Agreement 3 ssipv.pv#309
4 ssipv_ok_VP_leaked.pv
5 ssipv_unforgeable_VC.pv
6 ssipv_attack_domain_missing_replay.pv × masquerade as prover
7 ssipv_attack_no_nonce_VP_leaked.pv × replay credential
8 ssipv_attack_VC_reissued.pv × reissue old credential

Unlinkablitiy 9 ssipv_unlinkable.dps
10 ssipv_attack_verifier_unlinkablity.dps × verifier tracks prover

Anon VCs Secrecy 11 ssipv.pv#L297
(AnonVCs/DIDComm/) Agreement 12 ssipv.pv#L319

Unlinkablitiy 13 ssipv_unlinkablity_ok_wrt_verifier.dps

Plain VCs + Diffie Hellmann Secrecy 14 ssipv.pv#L302
(PlainVCs/DIDComm+DH/) Agreement 15 ssipv.pv#L324

Anon VCs + Diffie Hellmann Secrecy 16 ssipv.pv#L312
(AnonVCs/DIDComm+DH/) Agreement 17 ssipv.pv#L334

Further protocols and anonymous credentials. The examined pro-
tocol is, of course, not a unique solution for SSI on the Web. For
example, we have verified variants that open with a Diffie-Hellman
handshake in place of the DIDComm Exchange DID handshake (see
lines 14-17 of Tab. 2). A natural question is why, given privacy is re-
flected in SSI principles, have we mainly discussed non-anonymous
verifiable credentials that reveal the DID of a prover to verifiers,
rather than anonymous credentials. The reason is that the security
properties of anonymous credentials only hold if trust assumptions
are strengthened. In particular, the security of an individual agent
depends on the honesty of the entire group of agents holding the
same credential, (this is reflected in the model employed to verify
rows 11-12 of Tab. 2). Those proofs involve a richer message theory
modelling BBS+ zero-knowledge proofs and a modified protocol
(not shown). Due to this weakened trust assumption, for anony-
mous credentials, Allen’s SSI principle of control is weakened,
that is, control becomes a collective responsibility not entirely ones
own. This explains our focus on cryptographically simpler VCs. To
strengthen trust in order for the security of anonymous credential
systems to function, adequate wallet management measures of a
group of agents must be made explicit, e.g. the issuer should au-
thenticate an attested wallet rather than the holder directly, or all
employees holding an attribute need adequate security training.
On the other hand, anonymous credentials do strengthen unlink-
ability, as explained in Sec. 5.2, and in turn the SSI principle of
minimisation. Thus there is trade-off between trust and privacy
when choosing between anonymous and regular credentials.

6 CONCLUSION
We presented in Sec. 4.3 a mapping between a symbolic model of an
SSI protocol (Fig. 2) and specifications for SSI in Sec. 3 and 4.1. This
has enabled us to use symbolic security tools to verify a range of

that properties of schemes instantiating signature abstractions, 𝑠𝑖𝑔 (. . .) , are robust
against brute-force attacks. Computational proofs therefore complement our symbolic
proofs that concern logical flaws in the usage of schemes in the flow of a protocol [4, 24].
Symbolic methods can also be compositional [25].

security and privacy properties summarised in Table 2. These prop-
erties formally support the argument that the constructed protocol
is indeed in alignment with the principles of SSI. The most impor-
tant insight that we reinforce throughout the paper is that certain
parameters marked as optional in specifications are not optional.
Notably, omitting the domain and challenge in the VP leads to crit-
ical attacks allowing attackers to authenticate themselves using the
credentials of honest agents (rows 6-7 Tab. 2). Trust clarifications
that do not appear explicitly in specifications, notably the proof
method assumption in Sec. 5.1, are critical for all properties. The role
of trust assumptions in ensuring properties verified underscores
the importance of spelling out such trust assumptions and protocol
design decisions to mitigate vulnerabilities in SSI-based systems.

We believe that our methodology, which is to connect elements
of SSI to standard security models, is general enough to be applied
to evaluate protocols tailored to other SSI use cases. In particular,
we have explained that DIDs map to identities, as they typically
appear in security protocols, and their resolution to a public key,
is the typical trust assumption that the honest agents know the
mapping between honest identities and public keys. We have also
explained how elements of VC standards and signatures in proofs
can be represented symbolically in a protocol specification, and
how layers provided by Hyperledger Aries and DIDComm may be
assembled. We acknowledge that different use cases may require a
slightly different assembly of the standards, some of whichwe touch
on in Sec. 4.3. We also explained how such mappings can be used
to provide genuine insight in the compliance with SSI principles
by connecting those principles to standard security properties.

ACKNOWLEDGMENTS
This research was partially funded by the COST (European Coop-
eration in Science and Technology) Action on Distributed Knowl-
edge Graphs (CA19134) and partially supported by the German
federal ministry of education and research (BMBF) in MANDAT
(FKZ 16DTM107B).

1627

https://github.com/uvdsl/ssi-protocol-verify/tree/main/
https://doi.org/10.5281/zenodo.10654423
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv.pv#L287
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/archive/ssipv_forward_secrecy.pv
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv.pv#309
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv_ok_VP_leaked.pv
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv_unforgeable_VC.pv
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv_attack_domain_missing_replay.pv
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv_attack_no_nonce_VP_leaked.pv
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv_attack_VC_reissued.pv
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv_unlinkable.dps
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm/ssipv_attack_verifier_unlinkablity.dps
https://github.com/uvdsl/ssi-protocol-verify/tree/main/AnonVCs/DIDComm/ssipv.pv#L297
https://github.com/uvdsl/ssi-protocol-verify/tree/main/AnonVCs/DIDComm/
https://github.com/uvdsl/ssi-protocol-verify/tree/main/AnonVCs/DIDComm/ssipv.pv#L319
https://github.com/uvdsl/ssi-protocol-verify/tree/main/AnonVCs/DIDComm/ssipv_unlinkablity_ok_wrt_verifier.dps
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm%2BDH/ssipv.pv#L302
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm%2BDH/
https://github.com/uvdsl/ssi-protocol-verify/tree/main/PlainVCs/DIDComm%2BDH/ssipv.pv#L324
https://github.com/uvdsl/ssi-protocol-verify/tree/main/AnonVCs/DIDComm%2BDH/ssipv.pv#L312
https://github.com/uvdsl/ssi-protocol-verify/tree/main/AnonVCs/DIDComm%2BDH/
https://github.com/uvdsl/ssi-protocol-verify/tree/main/AnonVCs/DIDComm%2BDH/ssipv.pv#L334

SSI, from Specifications to Protocol? Formally Verify Security! WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile val-

ues, new names, and secure communication. J. ACM 65(1), 1:1–1:41 (2018).
https://doi.org/10.1145/3127586

[2] Allen, C.: The path to self-sovereign identity (2016), http://www.lifewithalacrity.
com/2016/04/the-path-to-self-soverereign-identity.html

[3] American National Standards Institute: Public key cryptography for the financial
services industry: the Elliptic Curve Digital Signature Algorithm (ECDSA). X9.62,
ANSI (2005)

[4] Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability
and anonymity using the applied pi calculus. In: Proceedings of the 23rd
IEEE Computer Security Foundations Symposium (CSF). pp. 107–121 (2010).
https://doi.org/10.1109/CSF.2010.15

[5] Biselli, A.: Konzeptionell kaputt und ein riesiger Rückschritt (2021), https://
netzpolitik.org/?p=338612

[6] Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW). pp. 82–96 (2001)

[7] Blanchet, B., Cheval, V., Cortier, V.: ProVerif with lemmas, induc-
tion, fast subsumption, and much more. In: Proceedings of the 43rd
IEEE Symposium on Security and Privacy (S&P). pp. 205–222 (2022).
https://doi.org/10.1109/SP46214.2022.9833653

[8] Boysen, A.: Decentralized, self-sovereign, consortium: The future of digital iden-
tity in Canada. Frontiers Blockchain 4, 624258 (2021)

[9] Braun, C.H.J., Papanchev, V., Käfer, T.: SISSI: an architecture for semantic in-
teroperable self-sovereign identity-based access control on the Web. In: Pro-
ceedings of the 32nd Web Conference (WWW). p. 3011–3021. ACM (2023).
https://doi.org/10.1145/3543507.3583409

[10] Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: Definitions and practical constructions. In:
Proceedings of the 21st International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT). pp. 262–288. Springer
(2015). https://doi.org/10.1007/978-3-662-48800-3_11

[11] Chen, J., Paxson, V., Jiang, J.: Composition kills: A case study of email sender
authentication. In: Proceedings of the 29th USENIX Security Symposium (USENIX
Security 20). pp. 2183–2199 (2020)

[12] Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence
properties in security protocols theory and practice. In: Proceedings of the
39th IEEE Symposium on Security and Privacy (S&P). pp. 529–546 (2018).
https://doi.org/10.1109/SP.2018.00033

[13] Cremers, C., Mauw, S.: Operational Semantics and Verification of Secu-
rity Protocols. Information Security and Cryptography, Springer (2012).
https://doi.org/10.1007/978-3-540-78636-8

[14] de Cristo, F.S., Shbair, W.M., Trestioreanu, L., State, R., Malhotra, A.: Self-
Sovereign Identity for the financial sector: A case study of PayString service.
In: Proceedings of the 3rd International Conference on Blockchain. pp. 213–220.
IEEE (2021). https://doi.org/10.1109/Blockchain53845.2021.00036

[15] Cucko, S., Turkanovic, M.: Decentralized and Self-Sovereign Iden-
tity: Systematic mapping study. IEEE Access 9, 139009–139027 (2021).
https://doi.org/10.1109/ACCESS.2021.3117588

[16] Curren, S., Looker, T., Terbu, O.: DIDComm messaging. Editor’s draft, DIF: De-
centralized Identity Foundation (2021), https://identity.foundation/didcomm-
messaging/spec/

[17] Darnell, S.S., Sevilla, J.: 3 stages of a pan-African identity framework for estab-
lishing Self-Sovereign Identity with blockchain. Frontiers Blockchain 4, 631640
(2021)

[18] Dingle, P., Hammann, S., Hardman, D., Winczewski, C., Smith, S.: Al-
ice attempts to abuse a verifiable credential. In: White Papers from
the 9th Workshop on Rebooting the Web of Trust (RWOT) (2019),
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/final-
documents/alice-attempts-abuse-verifiable-credential.pdf

[19] Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on In-
formation Theory 29(2), 198–208 (1983). https://doi.org/10.1109/TIT.1983.1056650

[20] Esposito, C., Horne, R., Robaldo, L., Buelens, B., Goesaert, E.: Assessing the solid
protocol in relation to security and privacy obligations. Inf. 14(7), 411 (2023).
https://doi.org/10.3390/INFO14070411

[21] Freytsis, M., Barclay, I., Radha, S.K., Czajka, A., Siwo, G.H., Taylor, I.J.,
Bucher, S.L.: Development of a mobile, Self-Sovereign Identity approach for
facility birth registration in Kenya. Frontiers Blockchain 4, 631341 (2021).
https://doi.org/10.3389/fbloc.2021.631341

[22] Glastra, T., Aristy, G.: Aries RFC 0453: Issue credential protocol 2.0. RFC,
Hyperledger Aries Community (2021), https://github.com/hyperledger/aries-
rfcs/tree/main/features/0453-issue-credential-v2

[23] Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: Algo-
rithms for leaning and labelling blank nodes. ACM Trans. Web 11(4), 22:1–22:62
(2017). https://doi.org/10.1145/3068333

[24] Horne, R., Mauw, S.: Discovering ePassport vulnerabilities using bisimilarity.
Logical Methods in Computer Science 17 (2021). https://doi.org/10.23638/LMCS-
17(2:24)2021

[25] Horne, R., Mauw, S., Yurkov, S.: Unlinkability of an improved key agree-
ment protocol for EMV 2nd gen payments. In: Proceedings of the 35th
IEEE Computer Security Foundations Symposium (CSF). pp. 364–379 (2022).
https://doi.org/10.1109/CSF54842.2022.9919666

[26] Houtan, B., Hafid, A.S., Makrakis, D.: A survey on blockchain-based Self-
Sovereign patient identity in healthcare. IEEE Access 8, 90478–90494 (2020).
https://doi.org/10.1109/ACCESS.2020.2994090

[27] Khateev, N., Curran, S.: Aries RFC 0454: Present proof protocol 2.0. RFC, Hyper-
ledger Aries Community (2021), https://github.com/hyperledger/aries-rfcs/blob/
main/features/0454-present-proof-v2/README.md

[28] Kudra, A.: Self-sovereign identity (SSI) in Deutschland. Datenschutz und Daten-
sicherheit 46(1), 22–26 (2022)

[29] Lodder, M., Hardman, D.: Sovrin DID method specification. Editor’s
draft (2023), https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-
template.html

[30] Longley, D., Kellogg, G., Yamamoto, D.: RDF dataset canonicalization a standard
RDF dataset canonicalization algorithm. Candidate recommendation draft, W3C
(2023), https://www.w3.org/TR/rdf-canon/

[31] Longley, D., Sporny, M.: RDF dataset canonicalization. Final community group
report, W3C (2022), https://www.w3.org/community/reports/credentials/CG-
FINAL-rdf-dataset-canonicalization-20221009/

[32] Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. Softw. Concepts Tools 17(3), 93–102 (1996). https://doi.org/10.1007/3-540-
61042-1_43

[33] Lowe, G.: A hierarchy of authentication specifications. In: Proceedings of the
10th IEEE Computer Security Foundations Workshop (CSFW). pp. 31–44 (1997).
https://doi.org/10.1109/CSFW.1997.596782

[34] Mahula, S., Tan, E., Crompvoets, J.: With blockchain or not? opportunities and
challenges of Self-Sovereign Identity implementation in public administration:
lessons from the Belgian case. In: Proceedings of the 22nd Annual International
Conference on Digital Government Research (DG.O). pp. 495–504. ACM (2021).
https://doi.org/10.1145/3463677.3463705

[35] National Security Agency: Common Criteria for information technology security
evaluation (CCMB-2017-04-002) (2017), https://www.commoncriteriaportal.org/
files/ccfiles/CCPART2V3.1R5.pdf

[36] Prorock, M., Steele, O., Terbu, O.: did:web method specification. Editor’s draft
(2023), https://w3c-ccg.github.io/did-method-web/

[37] Sambra, A.: Verifiable credentials use cases. Working group note, W3C (2019),
https://www.w3.org/TR/vc-use-cases/

[38] Sambra, A.: Verifiable credentials implementation guidelines 1.0. Editor’s draft,
W3C (2023), https://w3c.github.io/vc-imp-guide/

[39] Sporny, M., Guy, A., Sabadello, M., Reed, D.: Decentralized Identifiers (DIDs).
W3C recommendation, W3C (2022), https://www.w3.org/TR/did-core/

[40] Sporny, M., Longley, D., Prorock, M.: Verifiable credential data integrity 1.0: Secur-
ing the integrity of verifiable credential data. Candidate recommendation snap-
shot, W3C (2023), https://www.w3.org/TR/2023/CR-vc-data-integrity-20231121/

[41] Sporny, M., Noble, G., Longley, D., Burnett, D.C., Zundel, B., Hartog, K.D.:
Verifiable credentials data model v1.1. W3C recommendation, W3C (2022),
https://www.w3.org/TR/vc-data-model/

[42] Sporny, M., Zagidulin, D., Longley, D., Steele, O.: The did:key method v0.7. Unof-
ficial draft (2022), https://w3c-ccg.github.io/did-method-key/

[43] Steele, O., Sporny, M.: DID specification registries. Note, W3C DID Working
Group (2023), https://www.w3.org/TR/did-spec-registries/#did-methods

[44] Veramo core team: ETHR DID method specification. Editor’s draft (2022),
https://github.com/decentralized-identity/ethr-did-resolver/blob/master/doc/
did-method-spec.md

[45] West, R., Bluhm, D., Hailstone, M., Curren, S., Curran, S., Aristy, G.: Aries
RFC 0023: DID exchange protocol 1.0. RFC, Hyperledger Aries Community
(2021), https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-
exchange/README.md

A FORMAL DEFINITION PROTOCOL ROLES,
AND ELABORATION

The applied 𝜋-calculus processes in Table 3 and 4 are formal rep-
resentations of the roles in Figure 2. Notice that once the holder
has been issued a VC, unboundedly many prover sessions using
the VC may be called, as represented by replication operator ‘!’.
These process definitions are used in the Proverif and DeepSec
specifications of secrecy, agreement and unlinkability properties

1628

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://netzpolitik.org/?p=338612
https://netzpolitik.org/?p=338612
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/didcomm-messaging/spec/
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/final-documents/alice-attempts-abuse-verifiable-credential.pdf
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/final-documents/alice-attempts-abuse-verifiable-credential.pdf
https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2
https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2
https://github.com/hyperledger/aries-rfcs/blob/main/features/0454-present-proof-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0454-present-proof-v2/README.md
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://www.w3.org/TR/rdf-canon/
https://www.w3.org/community/reports/credentials/CG-FINAL-rdf-dataset-canonicalization-20221009/
https://www.w3.org/community/reports/credentials/CG-FINAL-rdf-dataset-canonicalization-20221009/
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://w3c-ccg.github.io/did-method-web/
https://www.w3.org/TR/vc-use-cases/
https://w3c.github.io/vc-imp-guide/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/2023/CR-vc-data-integrity-20231121/
https://www.w3.org/TR/vc-data-model/
https://w3c-ccg.github.io/did-method-key/
https://www.w3.org/TR/did-spec-registries/#did-methods
https://github.com/decentralized-identity/ethr-did-resolver/blob/master/doc/did-method-spec.md
https://github.com/decentralized-identity/ethr-did-resolver/blob/master/doc/did-method-spec.md
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange/README.md
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange/README.md

WWW ’24, May 13–17, 2024, Singapore, Singapore Christoph H.-J. Braun, Ross Horne, Tobias Käfer, and Sjouke Mauw

verified. They are assembled in various network configurations, to
investigate the impact of threats described throughout Sec. 5.2.

A.1 Security-critical ambiguities in specs
Information implementing SSI standards is scattered across supple-
mentary material, and without elaborating on the security impli-
cations. For example, the VC Data Model specification [41] does
contain examples that include security-relevant data fields (namely:
domain, challenge), which are required to, e. g., prevent replay at-
tacks. Those fields are in fact defined in a working draft on VC Data
Integrity [40], where they are marked as optional. Neither the VC
Data Integrity draft [40] nor the VC Implementation Guidelines [38]
are sufficient to understand that not using these optional fields can
result in critical authentication vulnerabilities. Elsewhere, both
Aries protocols for credential issuance [22] and presentation [27]
define protocol messages, where the payload of a message is an
“attachment”. Definitions of such attachments also lack security
considerations of the mentioned optional fields, instead building on
the VC recommendation that, as we just explained, is incomplete
in this sense. Thus, security controls are not clarified anywhere in
this bundle of specifications which SSI is intended to rely upon.

While this layered thinking is commonplace in software en-
gineering, problems are known to arise from a security perspec-
tive [11]. For example the DIDComm guide claims there are no pos-
sible interception attacks on DIDComm by a man-in-the-middle4;
but that claim assumes an unrealistic threat model where commu-
nication is always between two honest agents. Yet the Dolev-Yao
threat model is realistic for systems deployed on the Web, where
dishonest or compromised agents may actively assume roles in
an ecosystem [19]. That being said, the specifications including
DIDComm [16] and the W3C VC data model [41] provide tools that
may be assembled securely, as demonstrated in this work.

A critical threat detectable in a Dolev-Yao threat model is that,
if the domain is omitted in a VP, then SSI protocols are prone to
the replay attacks in Row 6 Tab. 2. The relevance of this threat is
explained next, building on the example in Sec. 3.35. A holder, e. g.,
a student wants to authenticate themselves towards Eve, e. g., for
some student discount at some online shop. During that authenti-
cation session the holder presents to Eve a Verifiable Presentation
(VP) of the student credential. This process may even complete
successfully and the student may even receive their student dis-
count. However, during this authentication process, Eve initiates
a simultaneous authentication session with another verifier, e. g.,
a university to prove that she is the student despite not being the
student. Eve uses information transmitted in messages from the uni-
versity, when communicating with the student in the other session.
Specifically, Eve is able to replay the challenge nonce nc from the
honest verifier (the university) to the honest holder (the student).
Subsequently, this nonce is included in the VP of the student. After
receiving this manipulated VP, Eve replays the VP to the university.
With the matching nonce and the signature of the holder on this
VP, the university believes that they were communicating with
the holder the whole time, except they were communicating with

4https://didcomm.org/book/v2/mitm
5https://github.com/uvdsl/ssi-protocol-verify/blob/main/PlainVCs/doc/msc-mitm-
attack.pdf illustrates the attack vector.

Eve masquerading as the actual holder. This fully compromises the
student’s account, and hence would be a critical vulnerability.

Preliminary work applying related symbolic methods to SSI [18]
analyses a 2-party DID Exchange handshake. That work considers
a weak formulation of agreement and does not fully account for
threats such as dishonest verifiers exploiting honest verifiers, that
are fully accounted for in our Dolev-Yao network threat model.

A.2 Novel attacks on multi-party authentication
Most definitions explored, such as forward secrecy and 2-party (in-
jective) agreement are formulated in a reasonably standard way in
the repository. For agreement, the invariant that must hold in every
trace representing the history of an execution, is: an occurrence of
an event listing messages used by the agent performing the authen-
tication implies the existence of an event listing all the messages
sent by the agent being authenticated, and, furthermore, messages
match pairwise. Forward secrecy is modelled as two phases: phase 1,
before a breach where sessions run as normal, and, phase 2, after
a breach when the private keys of agents are revealed and where
sessions continue to run. Secrecy is only asserted about sessions
that completed during phase 1.

We explain in more detail multi-party agreement. As explained
in Sec. 5.2, a novel insight of this work is that multi-party authen-
tication helps to explain some SSI design decisions that secrecy
and two-party authentication properties miss. In particular, if the
holder does not check the signature of a VC before the holder uses
the VC, then there are reissuing attacks (row 8 Tab. 2). Besides the
ProVerif code defining the threat model under which this attack
exists, the attack vector is illustrated as an MSC in the repository6.

Multi-party agreement properties are modelled by inserting
events in both the authenticator and the other parties being au-
thenticated as follows. When the verifier is the authenticator, event
auth_VerifierCompletesProtocol, appears after the last action
of the verifier, parameterised on𝑚4,𝑚5,𝑚6,𝑚7,𝑚8 in Tab. 4. No-
tice the verifier only makes assertions about the messages that it
sends and receives. Also the message𝑚9 is excluded, since𝑚9 is
sent by the verifier without expecting a response, and hence the
verifier cannot check whether that message was received. The cor-
responding events auth_IssuerSendsLastMessageToHolder and
auth_ProverSendsLastMessageToVerifierInProtocolFull ap-
pear immediately before the last message sent by the issuer and
prover respectively to ensure they occur when a final message is
sent (any subsequent inputs after the last output can be ignored
by the same argument for excluding𝑚9 in the event above). The
event associated with the prover is parameterised on messages
labelled𝑚0,𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6,𝑚7,𝑚8 in Tab. 3 and Tab. 4. The
definition of prover is extended for this property such that messages
𝑚0,𝑚1,𝑚2,𝑚4 are passed as additional parameters to “Prover”, in or-
der to remember the messages that were exchanged by the “Holder”
process during the issuance phase of the protocol, so they may be
asserted in the relevant event. The event associated with the issuer
is parameterised on its messages𝑚0,𝑚1,𝑚2,𝑚3 in Tab. 3.

The authentication query (an invariant that must hold along any
execution path of the protocol) is expressed in Fig. 4. Since the query

6https://github.com/uvdsl/ssi-protocol-verify/blob/main/PlainVCs/doc/msc-
njagreement-attack.pdf illustrates the attack vector.

1629

https://didcomm.org/book/v2/mitm
https://github.com/uvdsl/ssi-protocol-verify/blob/main/PlainVCs/doc/msc-mitm-attack.pdf
https://github.com/uvdsl/ssi-protocol-verify/blob/main/PlainVCs/doc/msc-mitm-attack.pdf
https://github.com/uvdsl/ssi-protocol-verify/blob/main/PlainVCs/doc/msc-njagreement-attack.pdf
https://github.com/uvdsl/ssi-protocol-verify/blob/main/PlainVCs/doc/msc-njagreement-attack.pdf

SSI, from Specifications to Protocol? Formally Verify Security! WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 3: Processes in the 𝜋-calculus for the issuance phase.

Holder (𝑃, 𝑠𝑘𝑃 , 𝐼 , 𝑝𝑘𝐼 ,𝑉 , 𝑝𝑘𝑉) Issuer (𝐼 , 𝑠𝑘𝐼 , 𝑎𝑡𝑡𝑟, 𝑃, 𝑝𝑘𝑃)
new 𝑠𝑠𝑘𝑃𝐼 , 𝑛𝑝 , 𝑛ℎ ;
let𝑚′

0 := (𝑛𝑝 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝐼)) in
let𝑚0 := {(𝑚′

0, sig(𝑚
′
0, 𝑠𝑠𝑘𝑃𝐼))}𝑝𝑘𝐼 in

ch(𝑚0);
ch(𝑚1);
let ((𝑛′𝑝 , 𝑛𝑖 , 𝑠𝑝𝑘𝐼), s1) := adec(𝑚1, 𝑠𝑠𝑘𝑃𝐼) in
if check((𝑛′𝑝 , 𝑛𝑖 , 𝑠𝑝𝑘𝐼), s1, 𝑝𝑘𝐼) then
if 𝑛′𝑝 = 𝑛𝑝 then
let𝑚′

2 := ((𝑛𝑖 , 𝑃, 𝐼 , 𝑛ℎ), sig((𝑛𝑖 , 𝑃, 𝐼 , 𝑛ℎ), 𝑠𝑘𝑃)) in
let𝑚2 := {(𝑚′

2, sig(𝑚
′
2, 𝑠𝑠𝑘𝑃𝐼))}𝑠𝑝𝑘𝐼 in

ch(𝑚2);
ch(𝑚3);
let (((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′ℎ), 𝑠𝐻), s3) := adec(𝑚3, 𝑠𝑠𝑘𝑃𝐼) in
if check(((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′ℎ), 𝑠𝐻)s3, 𝑠𝑝𝑘𝐼) then
if check((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′ℎ), s𝐻 , 𝑠𝑝𝑘𝐼) then
if check((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if (𝑃 ′, 𝐼 ′, 𝑃 ′′𝑛′

ℎ
) = (𝑃, 𝐼, 𝑃, 𝑛ℎ) then

!𝑃𝑟𝑜𝑣𝑒𝑟 (𝑃, 𝑠𝑘𝑃 ,VC,𝑉 , 𝑝𝑘𝑉)

new 𝑠𝑠𝑘𝐼 , 𝑛𝑖 ;
ch(𝑚0);
let ((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝐼), s0) := adec(𝑚0, 𝑠𝑘𝐼) in
if check((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝐼), s0, 𝑠𝑝𝑘𝑃𝐼) then
let𝑚′

1 := (𝑛𝑝 , 𝑛𝑖 , 𝑝𝑘 (𝑠𝑠𝑘𝐼)) in
let𝑚1 := {(𝑚′

1, sig(𝑚
′
1, 𝑠𝑘𝐼))}𝑠𝑝𝑘𝑃𝐼 in

ch(𝑚1);
ch(𝑚2);
let (((𝑛′

𝑖
, 𝑃 ′, 𝐼 ′, 𝑛ℎ), s𝑃), s2) := adec(𝑚2, 𝑠𝑠𝑘𝐼) in

if check(((𝑛′
𝑖
, 𝑃 ′, 𝐼 ′, 𝑛ℎ), s𝑃), s2, 𝑠𝑝𝑘𝑃𝐼) then

if check((𝑛′
𝑖
, 𝑃 ′, 𝐼 ′), s𝑃 , 𝑝𝑘𝑃) then

if (𝑛′
𝑖
, 𝑃 ′, 𝐼 ′) = (𝑛𝑖 , 𝑃, 𝐼) then

let claims := (𝑃, attr, 𝐼) in
let VC := (claims, sig(claims, 𝑠𝑘𝐼)) in
let𝑚′

3 := ((VC, 𝑃, 𝑛𝐻), sig((VC, 𝑃, 𝑛𝐻), 𝑠𝑘𝐼)) in
let𝑚3 := {(𝑚′

3, sig(𝑚
′
3, 𝑠𝑠𝑘𝐼))}𝑠𝑝𝑘𝑃𝐼 in

ch(𝑚3);

Table 4: Processes in the 𝜋-calculus for the provenance phase.

Prover (𝑃, 𝑠𝑘𝑃 ,VC,𝑉 , 𝑝𝑘𝑉) Verifier (𝑉 , 𝑠𝑘𝑉 , RULE, 𝑝𝑘𝑃 , 𝑝𝑘𝐼 ,URI)
new 𝑠𝑠𝑘𝑃𝑉 , 𝑛𝑝 ;
let𝑚′

4 := (𝑛𝑝 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝑉)) in
let𝑚4 := {(𝑚′

4, sig(𝑚
′
4, 𝑠𝑠𝑘𝑃𝑉))}𝑝𝑘𝑉 in

ch(𝑚4);
ch(𝑚5);
let ((𝑛′𝑝 , 𝑛𝑣, 𝑠𝑝𝑘𝑉), s5) := adec(𝑚5, 𝑠𝑠𝑘𝑃𝑉) in
if check((𝑛′𝑝 , 𝑛𝑣, 𝑠𝑝𝑘𝑉), s5, 𝑝𝑘𝑉) then
if 𝑛′𝑝 := 𝑛𝑝 then
let𝑚′

6 := (𝑛𝑣,URI) in
let𝑚6 := {(𝑚′

6, sig(𝑚
′
6, 𝑠𝑠𝑘𝑃𝑉))}𝑠𝑝𝑘𝑉 in

ch(𝑚6)
ch(𝑚7);
let ((𝑛𝑐 , RULE), s7) := adec(𝑚7, 𝑠𝑠𝑘𝑃𝑉) in
if check((𝑛𝑐 , RULE), s7, 𝑠𝑝𝑘𝑉) then
let (claims, s𝐼) := VC in
if claims = RULE then
let VP := ((VC, 𝑛𝑐 ,𝑉), sig((VC, 𝑛𝑐 ,𝑉), 𝑠𝑘𝑃)) in
let𝑚8 := {VP, sig(VP, 𝑠𝑠𝑘𝑃𝑉)}𝑠𝑝𝑘𝑉 in
ch(𝑚8)
ch(𝑚9)
let ((tkn, stkn), s9) := (adec(𝑚9, 𝑠𝑠𝑘), 𝑠𝑝𝑘𝑉) in
if check((tkn, stkn), s9, 𝑠𝑝𝑘𝑉) then
if check(tkn, stkn, 𝑝𝑘𝑉) then

new 𝑠𝑠𝑘𝑉 , 𝑛𝑖 , 𝑛𝑐 , tkn;
ch(𝑚4);
let ((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝑉), s4) := adec(𝑚4, 𝑠𝑘𝑉) in
if check((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝑉), s4, 𝑠𝑝𝑘𝑃𝑉) in
let𝑚′

5 := (𝑛𝑝 , 𝑛𝑣, 𝑝𝑘 (𝑠𝑠𝑘𝑉)) in
let𝑚5 := {(𝑚′

5, sig(𝑚
′
5, 𝑠𝑘𝑉))}𝑠𝑝𝑘𝑃𝑉 in

ch(𝑚5);
ch(𝑚6);
let ((𝑛′𝑣, 𝑢𝑟𝑖′), s6) := adec(𝑚6, 𝑠𝑠𝑘𝑉) in
if check((𝑛′𝑣, 𝑢𝑟𝑖′), s6, 𝑠𝑝𝑘𝑃𝑉) then
if (𝑛′𝑣,URI ′) = (𝑛𝑣,URI) then
let𝑚′

7 := (𝑛𝑐 , RULE) in
let𝑚7 := {(𝑚′

7, sig(𝑚
′
7, 𝑠𝑠𝑘𝑉))}𝑠𝑝𝑘𝑃𝑉 in

ch(𝑚7);
ch(𝑚8);
let (((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′𝑐 ,𝑉 ′), s𝑃), s8) := adec(𝑚8, 𝑠𝑠𝑘𝑉) in
if check(((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′𝑐 ,𝑉 ′), s𝑃), s8, 𝑠𝑝𝑘𝑃𝑉) then
if check((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′𝑐 ,𝑉 ′), s𝑃 , 𝑝𝑘𝑃) then
if check((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if ((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), 𝑛′𝑐 ,𝑉 ′) = ((𝑃, 𝑎𝑡𝑡𝑟, 𝐼), 𝑛𝑐 ,𝑉) then
let𝑚′

9 := (tkn, sig(tkn, 𝑠𝑘𝑉)) in
let𝑚9 := {sig(𝑚′

9, 𝑠𝑠𝑘𝑉)}𝑠𝑝𝑘𝑃𝑉 in
ch(𝑚9);

∀𝑚4,𝑚5,𝑚6,𝑚7,𝑚8 . 𝑒𝑣𝑒𝑛𝑡 (auth_VerifierCompletesProtocol(𝑚4,𝑚5,𝑚6,𝑚7,𝑚8))
⇒ ∃𝑚0,𝑚1,𝑚2,𝑚3 . 𝑒𝑣𝑒𝑛𝑡 (auth_IssuerSendsLastMessageToHolder(𝑚0,𝑚1,𝑚2,𝑚3))

∧ 𝑒𝑣𝑒𝑛𝑡 (auth_ProverSendsLastMessageToVerifierInProtocolFull(𝑚0,𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6,𝑚7,𝑚8))

Figure 4: Invariant expressing multi-party authentication by the verifier of both the prover and issuer.

1630

WWW ’24, May 13–17, 2024, Singapore, Singapore Christoph H.-J. Braun, Ross Horne, Tobias Käfer, and Sjouke Mauw

is about the perspective of the verifier as an authenticator, messages
observed by the verifier are universally quantified, while messages
unknown to the verifier, which are observed by the holder during
issuance interacting with the verifier, are existentially quantified.
Notice that, although there is no interaction between the issuer and
verifier, the query ensures that the VC appearing inside the message
𝑚8 of the verifier matches the VC inside the message 𝑚8 of the
prover, and hence matches the VC inside message𝑚3 of the Holder
preceding the prover and hence matches the VC inside message
𝑚3 of the issuer. Therefore, by transitivity, the verifier and issuer
indirectly agree on a specific VC.

A.3 Formulating unlinkability v.s. the issuer
The novel formulations of unlinkability towards the issuer are also
formal contributions of this paper (lines 9, 10, 13 of Tab. 2). It is
commonplace when symbolically verifying protocols to express
unlinkability as an equivalence problem between a process mod-
elling an idealised system that is trivially unlinkable by definition
and another process modelling more realistic behaviours where the
same identities are used across multiple sessions [4, 10, 24, 25].

To model the unlinkability of an honest prover and verifier in
the presence of a malicious (or overly curious) issuer, our trick in
setting up the trust model is to model only honest verifiers and
provers who interact with each other and also to expose the secret
keys of the issuer. This gives the issuer full power to behave as
a Dolev-Yao attacker, attempting to manipulate sessions between
honest participants. An open variable for the issuer’s private key
models the assumption that the attacker has the private keys of the
issuer.

A rationale for our trust model is that, if the issuer were able to
exploit the protocol to determinewhether an honest prover has used
the same VC that the attacker issues in two provenance sessions
with honest verifiers, then the issuer would be able to exploit its
position in the network to track the prover. Onemay place a counter
argument that an issuer will likely be “honest but curious” and can
be modelled with less capabilities than a full Dolev-Yao attacker;
yet, this argument is irrelevant since proofs go through and hence,
no matter how devious the issuer is, they will be unable to track
participants in honest sessions of the provenance phase (with the
exception of sessions in which a malicious issuer poses as a verifier
in the session themselves, of course). Perhaps counter-intuitively,
this formal property is advantageous to the issuer: If accused of
abusing their knowledge to track the VCs they issue, that claim
may be countered by the issuer arguing that the protocol makes
such tracking impossible even if a sophisticated devious attacker
were to assist the issuer.

In contrast to the secrecy and unlinkability problems, which
reason over infinitely many session, we restrict this analysis to two
sessions, so that the formulation of the problem is amenable to
the bounded equivalence checker DeepSec. An applied 𝜋-calculus
processes modelling the idealised and real-world scenarios that
should be equivalent appears in the relevant DeepSec files in the
repository. Both the idealised process and real-world process begin
with a preamble defining the secret keys of the honest provers
and verifiers as follows, and releasing the public keys (or DIDs

containing a public key) to the network.
new 𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1, 𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2, 𝑠𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟 ;
let 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1 = 𝑝𝑘 (𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1) in 𝑘𝑒𝑦 (𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1);
let 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2 = 𝑝𝑘 (𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2) in 𝑘𝑒𝑦 (𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2);
let 𝑝𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟 = 𝑝𝑘 (𝑠𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟) in 𝑘𝑒𝑦 (𝑝𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟);

The processes initiated consist of three parallel threads. In both the
specification and real-world scenarios, there are two parallel honest
verifiers, who are prepared to engage in a session with one of two
honest provers which correspond to the public keys advertised
above. These verifiers are parameterised as follows.

𝑉𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟 (𝐷𝐼𝐷_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟, 𝑠𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟, 𝑎𝑡𝑡𝑟,
𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1, 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2, 𝑝𝑘_𝑖𝑠𝑠𝑢𝑒𝑟,𝑈𝑅𝐼)

The above is a mild variant of the verifier processes defined in Tab. 4,
where the public keys of two provers 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1 and 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2
are both accepted by the verifier when checking the signature on
the VP. Parameters such as𝑈𝑅𝐼 and 𝑎𝑡𝑡𝑟 are open variables, thus
may be publicly known (and even manipulated by the attacker).

The system and real-world processes differ in how the honest
holder is modified. Both begin as specified by the “Holder” process
in Tab. 3, parameterised on a private key of the holder, 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1,
and a public key based on the secret key of the issuer known to the
attacker, 𝑝𝑘 (𝑠𝑘_𝑖𝑠𝑠𝑢𝑒𝑟). The holder is therefore prepared to receive
a VC issued by an attacker and interact with an honest verifier.

In the real world, once the VC is issued, the holder continues
much as in Tab. 3 by starting two prover sessions loaded with
the VC that has just been issued and the public keys of the honest
verifier. This models the holder using the same VC twice in different
sessions, i. e. an expected usage pattern. In contrast, in the idealised
process, the holder is modified such that, after having being issued
a VC it is prepared to engage in two prover sessions that employ
two different fresh VCs with the relevant attributes, as if issued by
the attacker, rather than the VC that was just issued to the holder.
If the attacker cannot distinguish this setup from the above real-
world usage pattern, then not only can the attacker not tell whether
or not the same credential was used twice, but it also cannot tell
whether a particular credential was used at all. The presence of a
fresh prover further verifies that the identity of any prover involved
in a provenance session is also not revealed to the attacker.

In order to strengthen the threat model in the setting of anony-
mous credentials, the verifier is dropped from the process modelling
the real and idealised worlds, and the variable 𝑠𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟 is turned
into an open free variable, indicating that the attacker may know
that variable (and also manipulate it, e.g., by correlating the secret
key of the issuer and verifier). This strengthens the threat model
by assuming that the verifier may also be an attacker, and further-
more the issuer and verifier may attempt to collude to trace the
holder of a credential. Our verification of that model in DeepSec
shows that anonymous credentials are not vulnerable to attacks on
unlinkability in the face of this threat.

The above explanations and discussions highlight that this paper
makes a novel contribution to the symbolic verification of security
and privacy properties of protocols, as well as applying appropriate
established methodologies to evaluate the security and privacy of
VC protocols.

1631

	Abstract
	1 Introduction
	2 Security methodologies and SSI
	3 Web standards as basic building blocks of an SSI protocol
	3.1 W3C Decentralised Identifiers (DID)
	3.2 W3C Verifiable Credential (VC) data model
	3.3 An example of authentication using VCs

	4 Constructing authentication protocols for SSI
	4.1 Potential protocol components
	4.2 A thus constructed authentication protocol
	4.3 Connecting protocol and specifications

	5 Trust, security and privacy, formally verified
	5.1 Trust assumptions necessary for SSI
	5.2 Results of security and privacy analysis

	6 Conclusion
	Acknowledgments
	References
	A Formal definition protocol roles, and elaboration
	A.1 Security-critical ambiguities in specs
	A.2 Novel attacks on multi-party authentication
	A.3 Formulating unlinkability v.s. the issuer

