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While organoelement compounds of lithium, sodium and potassium have been much studied for decades
and consequently have found forests of applications, those of the heavier alkali metals, rubidium and caesium
would barely manage to fill a tree. However, recently the literature has seen some little growth spurts with these
metals, hinting at a possible fertile future in areas such as homogeneous catalysis provided more work is put
into their fundamental development. Here we report the synthesis and crystal structures of lithium, rubidium
and caesium derivatives of the ureaphosphane Ph2PCH2CH2NHC(=O)NHPh, chosen because it offers O, N, P, and
π-coordination sites. Though one may expect such alkali metal compounds to be essentially similar, the caesium
complex has novel features where Cs+ engages in a side-on coordination to the C=O bond and in a weak bond
to the P centre, both of which are absent in the Rb structure. Less surprisingly, the lithium derivative is tetrameric
in contrast to the infinite networks of the rubidium and caesium structures. All alkali metal derivatives were
made with deprotonating the ureaphosphane by a suitable base, including the sodium and potassium
complexes though these two complexes could not be obtained in a crystalline form.
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Introduction

Introduced by Reek and co-workers, the ureaphos-
phane 1-[2-(diphenylphosphanyl)ethyl]-3-phenylurea,
1 (Figure 1),[1] was prepared as the simplest member
and model compound for a family of P, O-bidentate
ligands for exploitation in rhodium-catalysed asym-
metric hydrogenation applications. Since this achiral
pro-ligand (with respect to its lack of metalation)
contains three distinct heteroatoms (N, O, P), two
distinct unsaturated groups (C=O and Ph) with linear
and cyclic π-bonding features respectively, as well as
two acidic N� H bonds, we considered it could be a
good ligand to investigate in metalation reactions to
study comparisons and contrasts in its behaviour
towards, and bonding to, alkali metals.

Recently we have carried out homogeneous cata-
lytic studies including all the non-radioactive alkali

metals (Li� Cs)[2,3] and found that results down the
group can significantly deviate from each other mean-
ing that it is not prudent to treat these alkali metals as
merely generic counterions in such cases as each can
display their own unique reactivity profile. The whole
group of alkali metals are increasingly being included
in synthetic and structural studies,[3–5] most perti-
nently illustrated by the alkali metal ureates where

Supporting information for this article is available on the
WWW under https://doi.org/10.1002/hlca.202400077

Figure 1. (LHS) Ureaphosphane 1 with multiple binding sites
highlighted and (RHS) previous crystallographically character-
ised rhodium ureaphosphane.
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one NH has been deprotonated.[6,7] To the best of our
knowledge pro-ligand 1 has rarely been metalated
where the product has been crystallographically
characterised, though related ureaphosphane com-
pounds, some with known crystal structures, have
been reported.[8–14] A search of the Cambridge
Structural Database[15] (CSD) revealed only one hit,
namely for the rhodium complex [Rh(L1-
к2P,N)(1кP)(CO)][16] (Figure 1) prepared by treatment of
[Rh(acac)(CO)2] with two equivalents of 1. One equiv-
alent of 1 retains its two N� H bonds and binds to the
transition metal only though its P atom, while the
remaining N� H unit forms a hydrogen bond N� H···O
to L1. Such hydrogen bonds are common in structures
where 1 acts as a neutral ligand. Deprotonated at its
Ph2PCH2CH2NH site, the second equivalent of 1 (now
L1) chelates to the Rh centre via its P and N
heteroatoms to close a 5-membered (PCCNRh) ring.

By reporting the crystal structures of 1 and the
synthesis and crystal structures of three distinctly
different alkali metalated derivatives of it, the present
study furthers understanding of the diverse nature of
bonding found within the alkali metal family. This
information can help those researchers endeavouring
to design new alkali metal catalysts/pre-catalysts,
especially in the cases of rubidium and caesium, the
structural chemistry of which remains meagrely
studied in comparison to those of their lighter
congeners.

Results and Discussion

Given the importance of the individuality of each alkali
metal in its organoelement chemistry, we were
interested to examine their coordination chemistry
with the ureaphosphane ligand on account of its
multiple coordination options. Here, there is potential
for O-, N-, P- coordination as well as π-bonding
interactions. We started the study by synthesising and
attempting to grow crystals of the proligand 1. In the
original literature preparation 1[1] was isolated as a
colourless powder, but we were successful in growing
colourless crystals of it suitable for single crystal X-ray
diffraction (SC-XRD) by slow vapour diffusion of n-
hexane into a concentrated THF solution at � 30 °C
(Figure 2).

Compound 1 crystallises in the monoclinic P21/n
space group with one molecule in the asymmetric
unit. However, the extended network reveals hydro-
gen bonding between the acyclic urea NH (donor) and
the carbonyl (acceptor) moieties. These are intercon-

nected R1
2(6) motifs that link together to give a one-

dimensional hydrogen bonded chain that propagates
parallel to the crystallographic b axis.[17,18]

With the proligand in hand, we probed the
coordination chemistry of 1 by reacting it with an
equivalent of alkali metal base. In all cases, reactions
proceeded with clean metalation at the N(2) site and
compounds 2–6 [{Ph2PCH2CH2NHC(=O)N(Ph)AM-
M(THF)m}n] (AM=Li (2), Na (3), K (4), Rb (5), Cs (6))
were isolated in good yields (Scheme 1). This was

Figure 2. A) Asymmetric unit of proligand 1 with thermal
ellipsoids drawn at 50% probability level. Hydrogen atoms
other than those on N(1) and N(2) have been omitted for clarity.
Atom colour code also shown. Selected bond lengths (Å) and
angles (°): N(1)-C(15) 1.3535(16), N(2)-C(15) 1.3741(15), C(15)-
O(1) 1.2406(15), N(1)-C(15)-N(2) 113.86(10). B) Hydrogen bond-
ing network of compound 1, graph set notation R1

2(6).

Scheme 1. General synthetic strategy and isolated yields for
alkali metal ureaphosphanes 2–6. Owing to the diverse
structural motifs across 2, 5, and 6, the chemdraw is not
representative of the crystal structures, rather a general
simplified view showing the site of deprotonative metalation.
For this reason, coordinated THFs are also not shown for
simplification purposes.
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initially confirmed by 1H-NMR spectroscopy as loss of
the NHPh resonance at δ 7.71 ppm, and retention of
the NHCH2 resonance in the range δ 4.5-6.5 ppm [Li (2)
4.42 ppm; Na (3) 6.45 ppm; K (4) 6.33 ppm; Rb (5)
5.90 ppm; Cs (6) 5.42 ppm]. Inspection of the 31P{1H}
NMR spectra, revealed a common resonance at δ
� 21 ppm throughout the series 1–6, consistent with a
lack of alkali metal coordination at the phosphane
[P(III)] centre in solution. It is of note that attempts to
dimetalate compound 1 (that is, at both NH sites) in
the presence of excess n-BuLi, LiTMP (TMP=2,2,6,6-
tetramethylpiperidine) or LiHMDS (HMDS=hexameth-
yldisilazide) failed.[19] Whilst the NMR spectra (see the
Supporting Information for 1H,13C, and 31P data) are
similar across the alkali metal series, solid-state studies
reveal structures with notable differences between
them.

Using the same procedure that worked well with 1,
crystals suitable for SC-XRD of 2 were grown by slow
vapour diffusion of n-hexane into a concentrated THF
solution at � 30 °C (Figure 3). This study revealed

compound 2 to be a discrete molecular tetrameric
lithium cage (Figure 3), with the general formula
Li4(L1)4(THF)4 (where L1= the deprotonated ureaphos-
phane ligand 1). In line with NMR observations,
metalation has occurred exclusively at the N(2)
position and the absence of phosphane-lithium coor-
dination persists in the solid state with the alkylphos-
phane arm exo-cyclic to the central Li4 core. Figures 3B
and 3C show the central core of complex 2 and the
coordination of each Li centre, respectively. The cage
is formed via a urea carbonyl unit bridging two Li
centres. Each lithium centre is pseudo-tetrahedral
within an NO3 coordinative environment, as it is
bound to three ureaphosphanes and one THF solvent
molecule which sits exo-cyclic to the central core. Here
both O-, and N-bound coordination modes are
observed with average Li� O (1.926 Å) and Li� N
(2.030 Å) bond lengths in the ballpark of literature
values.[20]

The average carbonyl C� O bond lengths within 2
indicate mainly retention of the double bond [2 1.283
vs. 1 1.2406(15) Å], whilst the average C� N(2) bond
length decreases with respect to that in the starting
proligand in line with metalation at this position [2
1.311 vs. 1.3741(15) Å]. Despite several attempts,
crystals suitable for SC-XRD with Na (3) and K (4) could
not be obtained.

Since generally heavier alkali metals show a greater
preference for π-bonding interactions,[21–31] we were
interested to ascertain if this π-philicity featured here.
Following reaction of one equivalent of the bulky
amides RbHMDS or CsHMDS with 1, crystals suitable
for SC-XRD were again grown by vapour diffusion of n-
hexane into a concentrated THF solution at � 30 °C.
Rubidium complex 5 was found to crystallise in the
P21/c monoclinic space group as an infinite polymeric
network (Figure 4). Matching up with the solution NMR
data, again there is no phosphorus-alkali metal contact
observed within compound 5, with the closest Rb� P
separation distance being 5.63 Å, (for reference the
longest Rb� P bond structurally characterised in the
CSD is 3.840(2) Å,[32] sum of covalent radii=3.21 Å,[33]

and sum of Van der Waals radii=4.83 Å).[34] However,
5 consists of an infinite network containing two Rb
centres in the asymmetric repeating unit, which form
part of a four-membered (RbO)2 ring. The (RbO)2 ring
is nearly planar, with the sum of endocyclic angles
being 358.0° and a dihedral angle of 164.7°. The 3D
infinite network extends out through Rb(1), the N-
bound ureas in which Rb(1) bridges are both deproto-
nated, but interestingly N(2) also partakes in hydrogen
bonding forming a secondary 2D network (Figure 4B).

Figure 3. A) Molecular structure of compound 2 with thermal
ellipsoids drawn at 50% probability level. Solvent molecules
and hydrogen atoms have been omitted for clarity, whilst
coordinated solvent and the ethyldiphosphane unit are de-
picted in wireframe. Atom colour code also shown. B) Central
Li4(urea)4(THF)4 core with coordinated solvent, ethyldiphos-
phane unit and phenyl removed for clarity. C) Lithium
coordination environment.
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Both Rb(1) and Rb(2) are pseudo-trigonal bipyramidal
(Figure 4C) in featuring axial ligands close to 180°
[Ourea-Rb(1)-N 172.0° and OTHF-Rb(2)-Ourea 153.9°] with
an average equatorial ligand angle of 116.6° Rb(1) and
119.2° Rb(2). Rb(1) lies within a N2O2C environment as
it has an η2 π-interaction with the phenyl ring, two N-
bound and two O-bound urea fragments, whilst Rb(2)
is within an O5 environment via coordination to two
O-bound ureas and three THF ligands.

Caesium complex 6 crystallises in the P-1 triclinic
space group as an infinite network (Figure 5), featuring
four ligands and four Cs atoms within the asymmetric
unit. Compound 6 propagates through Cs� N inter-
actions, and also features hydrogen bonding with the
formal graph set notation of R2

2(8), C1
1(6) (see SI for

further information). Whilst the solution studies re-
vealed little change across the alkali metal series, here
in the solid-state structural diversity and binding
preferences across the alkali metals are evident, as
compound 6 uniquely features Cs� P interactions and
side-on urea π-interactions.

The Cs(2)-P(1) distance of 3.895(1) Å and the
notably longer Cs(4)-P(3) distance of 4.1426(8) Å, are in
line with previously reported Cs� P bond distances in
the CSD (average 3.733 Å), and the longest being

4.442(3) Å.[35] Both Cs� P interactions are longer than
the sum of the covalent radii (3.43 Å)[33] implying they
are weak interactions, but they still lie well within the
Van der Waals radii (5.23 Å).[34] This increased prefer-
ence for a Cs� P interaction is reflected in the overall
structure of 6. In 2 and 5 the ethylphosphane unit is
exocyclic to the central LiO or RbO cores with the
average AM� P separation distances of 5.27 Å and
5.78 Å, respectively. Here in compound 6, P,O- coordi-
nation is observed in two of the four ligand environ-
ments [Figure 5 red and yellow coloured ligands, Cs(2)
and Cs(4)], whilst the remaining two ligand environ-
ments feature side-on π-coordination with the urea
unit and η2-coordination to the N-phenyl group (Fig-

Figure 4. A) Solid state structure of compound 5 with thermal
ellipsoids drawn at 50% probability level. Carbon atoms, except
the urea C, hydrogen and phosphorus atoms have been
omitted for clarity. Atom colour code also shown. B) Hydrogen
bonding within 5, graph set notation R1

1(8), C) Coordination
environments at both Rb centres, coordinated solvent drawn in
wireframe.

Figure 5. A) Asymmetric unit of compound 6 with thermal
ellipsoids drawn at 50% probability level. Solvent molecules
and hydrogen atoms have been omitted for clarity, whilst
coordinated solvent is depicted in wireframe. Each of the four
ligands in the asymmetric unit shown in four different colours
to highlight the alternative coordination modes. B) Coordina-
tion environments at the four distinct Cs centres. Atom colour
code also shown.
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ure 5 blue and green coloured ligands, Cs(1) and
Cs(3)).

The differences in the urea coordination modes
(end-on O-coordination vs. side-on π-coordination) are
best observed in Cs(1) or Cs(3) (Figure 5B), whilst the
bond lengths in the urea unit remain similar across the
two ligands the differences lie in the Cs-urea distances
and angles, as highlighted in Table 1. As expected,
end-on O-coordination results in a shorter Cs� O bond
with longer separation distances, whilst side-on π-
coordination features similar Cs� O/C/N distances
across the urea fragment. The Cs(1)� O� C angles of
117.0(2) vs. 76.1(2)° in the red and green ligands,
respectively, support the different coordination modes
with the C=O unit (end-on; red ligand) and perpendic-
ular (side-on π; green ligand) to the Cs atom. This
highlights the diverse binding modes available to Cs
and, by default, across the alkali metal series.

Whilst it is relatively well-known that the heavier
alkali metals prefer aryl π-interactions, to the best of
our knowledge it is the first time that side-on C=O π-
bonding has been crystallographically observed. Ex-
amination of the CSD, revealed four structures where
the Cs� O� C bond angle was less than 100° (See SI for
further information).[36–39] However, on close examina-
tion of the key structural metrics no π-coordination

was observed, rather a slipped side-on O-coordination
noted. Figure 6 highlights the different coordination
modes of C=O to Cs, with side-on π-bonding (type A)
exemplified by a close to 1 ratio of Cs� C:Cs� O bond
lengths (0.98) indicating that Cs is situated at the mid-
point of the C=O bond. The asymmetry in type C
coordination yields a ratio of 0.93, highlighting the
slipped nature and weaker Cs� C interaction (for
reference type B has a ratio of 0.80).

Conclusions

The organoelement chemistries of the heavier alkali
metals rubidium and caesium are underdeveloped in
comparison to those of their lighter alkali metal
congeners. Unlike for salts, studies of the whole group
are relatively rare for organoelement compounds. This
fundamental study reports a conformity in the reac-
tions of selected bases of all non-radioactive group
members with the ureaphosphane Ph2PCH2CH2NHC(=
O)NHPh, where deprotonation occurs selectively at the
N(H) site of the N(H)Ph terminal in good to high yields.
However, the crystal structures of the lithium, rubi-
dium, and caesium products reveal interesting distinc-
tions. The side-on π-coordination of the Cs+ cation to
the C=O group is a standout feature. Moreover,
contrasting structural results for the rubidium and
caesium products show that these heavier alkali
metals should not be classed together as mere
gegenions in organoelement chemistry. Such differ-
ences in structures and bonding, however small, need
to be logged more now that the reaction chemistry of
organoelement rubidium and caesium compounds
especially in homogeneous catalysis is starting to
attract interest. Combined with solution studies, this
knowledge will aid theoreticians in modelling such
compounds employed in catalysis to compute possible
reactions mechanisms.

Experimental Section

Synthetic protocols and characterization of the new
compounds are reported in the electronic supporting
information. CCDC deposition numbers 2351927 to
2351930, contain the supplementary crystallographic
data for this paper. These data are provided free of
charge by the joint Cambridge Crystallographic Data
Centre and Fachinformationszentrum Karlsruhe Access
Structures service www.ccdc.cam.ac.uk/structures.

Table 1. Selected bond lengths (Å) and angles (°) for Cs(1) and
Cs(3) in Compound 6.

Cs(1) Cs(3)
Ligand 1
(Red)

Ligand 2
(Green)

Ligand 3
(Blue)

Ligand 4
(Yellow)

Cs-O 2.990(2) 3.272(3) 3.152(3) 2.925(2)
Cs-C 3.744(3) 3.211(4) 3.287(4) 3.672(3)
Cs-N 3.978(3) 3.327(3) 3.877(3) 4.029(3)
Cs� N(H) 4.897(3) 3.750(3) 3.577(3) 4.729(3)
Cs-ip-
soC

3.422(3) 3.719(4) 4.233(4) 3.704(3)

Cs� O-C 117.0(2) 76.1(2) 84.8(2) 116.6(2)

Figure 6. Different C=O binding modes to Cs. Average bond
lengths and angles for coordination modes A and B are from
compound 6, whilst mode C metrics are average values from
literature.[36–39]
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