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Topological defects as nucleation points of the nematic-isotropic phase transition
in liquid crystal shells
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The transition from a nematic to an isotropic state in a self-closing spherical liquid crystal shell with tangential
alignment is a stimulating phenomenon to investigate, as the topology dictates that the shell exhibits local
isotropic points at all temperatures in the nematic phase range, in the form of topological defects. The defects
may thus be expected to act as nucleation points for the phase transition upon heating beyond the bulk nematic
stability range. Here we study this peculiar transition, theoretically and experimentally, for shells with two
different configurations of four +1/2 defects, finding that the defects act as the primary nucleation points if
they are co-localized in each other’s vicinity. If the defects are instead spread out across the shell, they again act
as nucleation points, albeit not necessarily the primary ones. Beyond adding to our understanding of how the
orientational order-disorder transition can take place in the shell geometry, our results have practical relevance
for, e.g., the use of curved liquid crystals in sensing applications or for liquid crystal elastomer actuators in shell
shape, undergoing a shape change as a result of the nematic-isotropic transition.

DOI: 10.1103/PhysRevE.109.064702

I. INTRODUCTION

The transition between a regular isotropic liquid to a
nematic liquid crystal phase with long-range orientational or-
der is a fascinating case of spontaneous symmetry breaking
which has been studied extensively, especially for bulk liquid
crystals (LCs). There are different kinds of LCs: nematic
liquid crystals (NLCs) with long-range orientational ordering
and locally preferred or distinguished averaged directions of
molecular alignment (commonly known as nematic directors),
smectics (Sm) with layered structures of which smectic-A
(SmA) and smectic-C are widely studied smectic phases, and
cholesteric liquid crystals with twisted helical structures [1].
For the case of strong confinement, the influence of surfaces
and, when present, tortuosity can have a significant impact on
phase transitions in general [2–4]. When topological defects
are induced by the confinement, they may even change the
phase sequence, e.g., inducing a localized nematic state in
a SmA phase subject to normal boundary conditions in a
cylinder [5]. A situation that is even more intriguing is that
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of liquid crystal shells, in which the LC phase is confined in
a thin spherical layer between an internal droplet of immis-
cible isotropic liquid and a continuous phase of immiscible
isotropic liquid [6,7]. While the inner and outer liquids can
have a variety of compositions, they are most commonly water
solutions of a molecule that help to stabilize the interface and
control the alignment of the standard uniaxial LC director. A
fully nematic shell subject to tangential boundary conditions
on both interfaces must, according to the Poincaré-Hopf theo-
rem, exhibit a total topological defect strength of +2 on each
interface, internal and external. While transitions between
different LC phases have been carefully studied in shells,
in particular transitions between nematic and SmA [8–11],
the nematic-isotropic (NI) transition has not been extensively
studied so far, although it is actually a particularly intriguing
transition in this geometry.

The confinement-induced presence of topological defects
constitutes an interesting peculiarity when considering the
nucleation of the transition from nematic to isotropic. While
in a defect-free nematic phase there are no obvious nucleation
points, the fact that the orientational order breaks down locally
within topological defects means that each defect could be
considered a nucleus of the isotropic state from which the
transition might be expected to grow. Particularly interesting
is the common situation in tangential-aligned shells of four
+1/2 disclinations because, in contrast to integer defects,
they persist throughout the shell and form a defect line that
connects the inner and outer interfaces. Most often, shells are
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quite asymmetric in shape due to density mismatch driving
the inner isotropic droplet up or down within the LC, yielding
antipodal points of minimum and maximum thickness within
the shell. This geometry favors the collection of all four +1/2
disclinations near the thinnest point, to minimize the length of
the defects, although it comes at the cost of increased elastic
director field distortion near the defects [12]. By making the
shell very thin on average, however, the asymmetry is reduced
and now the most beneficial configuration is to spread the
defects apart as much as possible to minimize the elastic
distortion, in the ideal case yielding a tetrahedral distribution
of the four +1/2 defects across the shell [13].

In this paper, we analyze theoretically and test experimen-
tally how the nematic-isotropic transition proceeds in a highly
asymmetric and an almost symmetric shell, respectively, both
exhibiting four +1/2 defects in the starting configuration, all
collected near the thinnest point in the former case while
spread out far from each other in the latter case. We find
that the defects indeed act as nucleation points, the transi-
tion clearly starting from the four defects in the asymmetric
shell, with other regions nucleating isotropic domains only
later in the process. In the more symmetric shell, in con-
trast, the transition first nucleates away from any defects, and
only slightly later we see that the isotropic phase grows out
from the defects as well, which thus still serve as nuclei, but
not the first ones. We argue that the difference can be at-
tributed to the greater elastic deformation cost of having all
four defects collected near the thinnest point compared to
distributing the defects, effectively reducing the transition
temperature near the defect collection by an amount that is
large enough to detect experimentally.

The paper is organized as follows. In Sec. II, we give
the essential experimental details of the shell manufacturing
process. In Sec. III, we review the Landau–de Gennes (LdG)
continuum theory, which is widely used in the simulations
of nematic liquid crystals (NLCs) [14,15], and present nu-
merical computations of NLC equilibria on symmetric and
asymmetric shells in the LdG framework, accompanied by
comparisons with experimental data. These numerical com-
putations demonstrate the accumulation of defects near the
thinnest part of asymmetric shells, for stable LdG equilibria.
In Sec. IV, we model the NLC profile on a spherical sur-
face, with tangential conditions, in the simplest Oseen-Frank
(OF) framework. The OF framework is simpler and less de-
tailed than the LdG framework, restricted to uniaxial NLCs
with a single distinguished director and constant degrees of
orientational ordering. The LdG framework can account for
uniaxial and biaxial NLC phases, with multiple directors and
variable degrees of orientational ordering, along with defects
of all dimensionalities. We show that the simple OF model
on a spherical surface can capture the essential structural
details of the more sophisticated LdG equilibria on shells. In
fact, we can compute semiexplicit director profiles in the OF
framework and these profiles contain quantitative information
about defect locations and defect interactions for asymmetric
and symmetric shells, respectively. In Sec. V, we present
experimental results on both heating and cooling transitions
in tangentially anchored NLC-filled shells, both symmetric
and asymmetric. The experimental data support that the clear-
ing temperature (for which the shell is largely isotropic) is

reduced in asymmetric shells compared to their symmetric
counterparts. We adapt mathematical models in [16,17] to
the shell problem in the OF framework and the model repro-
duces the reduced clearing temperatures for asymmetric shells
and the faster growth of the isotropic phase in asymmetric
shells with increasing temperature, compared to their sym-
metric counterparts. We conclude with some remarks about
the strengths and limitations of our work, along with avenues
for further model development in Sec. VI.

II. EXPERIMENTAL DETAILS

The shells were made from 4’-Octyl-biphenyl-4-
carbonitrile (8CB) purchased from Synthon Chemicals
(Germany) using a nested capillary microfluidic device
constructed in-house (for details, see [7]) and a Fluigent
(France) MFCS pneumatic flow control device. The inner and
outer isotropic phases were both isotropic aqueous solutions
of polyvinylalcohol (PVA), molar mass 13–23 kg/mol,
87–89% hydrolyzed, at 1 wt.% concentration. The shells were
produced with 8CB heated slightly into the isotropic phase,
but the collection bath was at room temperature, leading to
a rapid cooling of the shells into a disordered SmA state.
This was the starting configuration for the further analysis
with a polarizing microscope (Olympus BX-51) equipped
with a Linkam T95-PE hot stage for temperature control and
a Sony FDR-AXP33 camcorder for video recording. The
shell suspension (with the 1 wt.% PVA solution inside and
outside) was collected into a flat capillary for microscopic
investigation.

III. NUMERICAL COMPUTATIONS OF LANDAU–DE
GENNES EQUILIBRIA ON SHELLS AND COMPARISON

TO EXPERIMENTAL RESULTS

We perform the numerical simulations of nematic shells
in the Landau–de Gennes (LdG) framework with the LdG
order parameter Q [1]. The LdG order parameter Q is a
macroscopic order parameter given in terms of a symmetric
traceless 3 × 3 matrix, whose eigenvectors model the nematic
directors (locally preferred directions of molecular alignment)
and the corresponding eigenvalues measure the degree of ori-
entational order about the eigenvectors. A Q tensor is biaxial
if Q has three distinct eigenvalues, uniaxial if Q has a pair
of degenerate nonzero eigenvalues, and isotropic if Q = 0
[1,18]. A biaxial NLC phase has both primary and secondary
nematic directors, and a uniaxial phase only has a primary
nematic director, such that all directions perpendicular to the
uniaxial director are physically equivalent. The simplest form
of the LdG free-energy functional is given by [19]

F (Q) =
∫

�

L1

2
|∇Q|2 + fb(Q) dV, (1)

where the bulk energy density is

fb(Q) := A

2
trQ2 − B

3
trQ3 + C

4
(trQ2)2. (2)

Here, L1 is an elastic constant, A is a temperature-dependent
constant, and B and C are material-dependent constants.
For a given temperature A < B2/24C, the bulk potential fb

064702-2



TOPOLOGICAL DEFECTS AS NUCLEATION POINTS OF … PHYSICAL REVIEW E 109, 064702 (2024)

has a minimizer belonging to the set of ordered uniaxial
nematic states: N := {Q ∈ M3×3 : Qi j = Qji, Qii = 0, Q =
s+(n ⊗ n − I/3)}, where

s+ = B + √
B2 − 24AC

4C
(3)

and n ∈ S2 arbitrary, referred to as the uniaxial director.
The elastic energy density |∇Q|2 penalizes spatial inhomo-
geneities and, in particular, defines the elastic distortion costs
associated with defects and their locations. The physically ob-
servable configurations are modeled by local or global energy
minimizers, subject to the imposed boundary conditions.

The volume of the body under consideration is � and here
the shell domain is denoted by � = B(0, Ro)\B((0, 0, δ), Ri ),
where Ro and Ri are the radii of the outer and inner spherical
interfaces, respectively, satisfying Ri + δ < Ro, and δ is the
eccentricity, i.e., the distance between the inner and outer
spherical centers. The eccentricity δ is an important param-
eter to measure the symmetry of a spherical shell. When
δ = 0, the spherical shell is symmetric. When δ → Ro − Ri,
the spherical shell is super asymmetric, with the thickness of
the thinnest part tending to zero.

By minimizing the energy (refer to nondimensionaliza-
tion, surface energy, initial conditions, and numerical methods
in Appendix B), we obtain a state with four +1/2 defects
[see Figs. 1(a) and 1(b)]. For a symmetric shell, i.e., δ = 0
[Fig. 1(a)], the state has the tetrahedral arrangement of four
defects, as reported in [13,20]. When the shell becomes more
asymmetric, i.e., δ increases, the defect lines move to the
thinnest part of the shell [Fig. 1(b)]. We deduce that when
δ → Ro − Ri, the four +1/2 defects merge together to a +2
defect at the thinnest point of the shell, and we refer to this
prototype state as the limiting state in subsequent discussions.

Figures 1(c)–1(f) show polarizing optical microscopy
(POM) photos of two shells of the liquid crystal material 8CB
in the nematic phase, exhibiting the different defect configura-
tions predicted from simulations. One shell is thick and almost
symmetric, leading to a nearly tetrahedral distribution of the
four defects, three of which are closer to the bottom [Fig. 1(c)]
and one of which is near the top [Fig. 1(d)]. The other shell
is somewhat thicker, leading to a clearly asymmetric shell
thickness. Because the density of 8CB is nearly matched
to that of the internal aqueous phase at a temperature just
above the SmA-N transition, the plane containing the thinnest
and thickest points becomes the horizontal plane [22]; we
can view the shell “from the side” at this temperature and
thus distinguish the asymmetry, as shown in Fig. 1(f), cor-
responding to the simulation shown on the right in Fig. 1(b).
We see one defect in focus and another that can be distin-
guished, albeit somewhat out of focus. When we heat further
through the nematic phase, the density of 8CB becomes lower
than that of the inner aqueous phase, moving the internal
droplet to the bottom, which becomes the thinnest point of
the shell, while the top becomes the thickest point. When
we focus at the bottom at such a temperature [Fig. 1(e)],
we see all four defects simultaneously, as they are collected
near the thinnest point. The configuration is not identical to
the ideal fully equilibrated configuration in the left simulation
image in Fig. 1(b), but qualitatively the asymmetric shell fully

(a)

(f)

(b)

(e))c( )d(

1

0

0.75
0.5

0.25

β

FIG. 1. The numerical and corresponding experimental states
with four +1/2 defects on the (a), (c), (d) symmetric (tetrahedral
defect arrangement) and (b), (e), (f) asymmetric (all defects near
the thinnest point) spherical shells. In the (a), (b) numerical results,
each left image is viewed from the thinnest side (bottom) and each
right image is side viewed. The red pillars represent defect lines.
The white lines represent the director n (eigenvector of Q with the
largest eigenvalue). The coloring represents the biaxiality param-
eter β = 1 − 6 (trQ3 )2

(trQ2 )3 . β = 0 if Q is uniaxial. β = 1 corresponds
to the case that biaxiality is maximal. The other parameters are
ρ = 0.8, t = −1.79, ξR = 1/50, ω1 = ω2 = 100, c = 0 (δ = 0) for
symmetric shell and c = 0.08 (δ �= 0) for asymmetric shell (refer to
nondimensionalized parameters and parameters in degenerate planar
surface energy in Appendix B). The (c)–(f) POM images show a (c),
(d) symmetric and (e), (f) asymmetric shell of nematic 8CB, each
with diameter about 200 µm and average thickness about 10 µm. The
polarizers are vertical and horizontal, respectively. The symmetric
shell is imaged along the thickness gradient at T = 37.1 ◦C with
focus, respectively, (c) near the bottom, clearly revealing two of the
tetrahedrally arranged defects, with the third hinted near the lower
part of the image, and (d) near the top, revealing the fourth defect.
The asymmetric shell is viewed along the thickness gradient with fo-
cus (e) near the bottom, revealing all four defects (T = 40.5 ◦C) and
perpendicular to the thickness gradient with focus on the equator in
(f), with two defects visible (T = 34.3 ◦C). The photos are extracted
from the supporting video in the Supplemental Material [21].

resembles the corresponding simulated shell, with all four
defects near the thinnest point.

IV. THE r-AXIS OR η-AXIS INVARIANT
REDUCED PROFILES

Given our shell geometry, which is a shell with inner radius
Ri, outer radius Ro, and the eccentricity, i.e., the distance
between the inner and outer spherical centers, δ, we use the
spherical coordinates (r, θ, φ) to describe the symmetric shell
and bispherical polar coordinates (η, θ, φ) (see Appendix A)
to describe the asymmetric spherical shell. r is the radial
spherical coordinate, η is the corresponding radial bispher-
ical coordinate, θ is the polar angular coordinate, and φ =
arctan(y/x) is the azimuthal angular coordinate. The ranges
of r, η, θ , and φ are r ∈ [Ri, Ro], η ∈ [ηo, ηi], θ ∈ [0, π ], and
φ ∈ [0, 2π ). The thinnest and thickest parts of the shell cor-
respond to θ = π and θ = 0 in our spherical and bispherical
coordinates, respectively.

In what follows, we assume that the average thickness of
the shell (10 µm) is relatively small compared to the radius
(100 µm), the state is r or η independent throughout the shell,
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FIG. 2. The schematic diagram of the location of defects for
the state with four +1/2 defects in Figs. 1(a) and 1(b) when the
eccentricity (a) δ = 0, (b) 0 < δ < Ro − Ri, and for the limiting state
when (c) δ → Ro − Ri.

and the shell asymmetry only affects the defect locations. We
use the predicted defect locations from Sec. III to compute
nonlinear director profiles on a two-dimensional spherical
surface (not shell) with the simpler Oseen-Frank theory [23].
The Oseen-Frank framework is restricted to uniaxial phases
with constant scalar order parameters (or constant degree of
orientational ordering) and the numerical simulations suggest
that the LdG equilibria are uniaxial with constant ordering,
away from the defects, on the shells. These Oseen-Frank
director profiles not only capture the local profile around
defects, but also capture the collective effects of the defect
collections and their interactions. Such semianalytic profiles
can serve as excellent initial conditions for numerical solvers
on three-dimensional thin shells, by extensions in the r or η

direction, and these calculations can be adapted to arbitrary
prescribed sets of defects on spherical surfaces, and are thus of
wider interest beyond the problem considered in this section.

A. The locations of defect lines

According to the numerically computed tetrahedron states
in Figs. 1(a) and 1(b), on both symmetric and asymmetric
shells, the four lines on the shell surface connecting the defect,
north pole and south pole divide the shell surface into four
equal parts. So we assume that the four defects are located on
φ = kπ/2, k = 0, . . . , 3.

For a symmetric shell with δ = 0, the length of the de-
fect lines is equal to Ro − Ri, and does not depend on θ

(from the assumed r or η independence throughout the shell).
Hence, the energy-minimizing locations of defects solely de-
pend on the director field deformation around the defects.
Due to the symmetric arrangement of defects on a symmet-
ric shell in our numerical results in Figs. 1(a) and 1(b), we
assume the location of defects on the φθ plane are p0 =
(π/2, π/2 − b), p1 = (0, π/2 + b), p2 = (π, π/2 + b), and
p3 = (3π/2, π/2 − b). Since the defects are evenly dis-
tributed, the geodesic distance on the spherical surface (the
great circle distance) between p0 and its three adjacent points
p1, p2, p3 is the same. So according to the calculation of the
great circle distance in [24], we have b = arcsin(1/

√
3). The

locations of the defects are illustrated in Fig. 2(a).
For an asymmetric shell, i.e., 0 < δ < Ro − Ri, in the bi-

spherical coordinate system (η, θ, φ) [see (A1)–(A3)], the
length of a +1/2 defect along the η direction is [25]

L = ∫ ηi

ηo

a
(cosh η−cos θ ) dη.

As θ increases to π , the length L decreases. The defect
lines are energetically unfavorable. Hence, in an asymmetric
spherical shell, to reduce the length of the defect lines, the
four defects tend to move to the thinner side of the shell, as
illustrated in Fig. 2(b).

For a super asymmetric shell, i.e., δ → R0 − Ri, the four
defects merge and concentrate at θ = π , as illustrated in
Fig. 2(c).

B. Profiles on r = r∗ or η = η∗

For the numerical results in the LdG framework in
Figs. 1(a) and 1(b), the states with four +1/2 defects are
almost uniaxial and have almost constant orientational order
far from the defects. With the constraints of uniaxiality and
constant orientational order, the LdG model can be reduced
to the Oseen-Frank model, which describes the nematic phase
by a unit-vector field n. Here, n models the uniaxial nematic
director. We can fix the location of defects according to the
heuristic arguments presented in Sec. IV A, and assume r
or η invariance on relatively thin shells so that the study
of physically observable equilibria reduces to the following
Oseen-Frank energy minimization problem: On a surface S
with η = η∗ or r = r∗, the Oseen-Frank energy is given by
[26,27]

E (n) =
∫

S
fel dS = K

2

∫
S

[(∇ · n)2 + |∇ × n|2] dS, (4)

where the first term describes splay deformations, and the
second term describes the twist and bend deformations of n.
K is an elastic constant.

Due to the experimentally imposed tangential boundary
condition on the outer and inner surfaces, we assume that
the nematic directors are tangential to an intermediate surface,
r = r∗ or η = η∗, as well, i.e., n is of the form

n = sin α(θ, φ)eθ + cos α(θ, φ)eφ, (5)

where eθ and eφ are an orthonormal basis on a spherical
surface. Subsequently, the elastic energy density of (4) is

fel = K

2
[(∇ · n)2 + |∇ × n|2]r2 sin θ

= K

2

[
(cos θ − ∂φα)2

sin θ
+ (∂θα)2 sin θ

]
. (6)

The energy minimizers are solutions of the corresponding
Euler-Lagrange equation given by

∂2
φα/ sin θ + ∂2

θ α sin θ = 0. (7)

Due to the symmetry of the tetrahedron state in Fig. 2(a),
in the following, we reduce the domain of (φ, θ ) to a quarter
of the domain, i.e., [0, π/2] × [0, π ]. In the symmetric limit
δ = 0, following the discussion in Sec. IV A and Fig. 2(a), we
assume that the defects are located at the points p1 = (0, θ1)
with θ1 = π/2 + arcsin(1/

√
3) and p0 = (π/2, θ2) with θ2 =

π/2 − arcsin(1/
√

3), in the computational domain. After re-
moving a small neighborhood of the defect with core size
ε, the domain is Dφ,θ = [0, π/2] × [0, π ]\{D[(0, θ1), ε] ∪
D[(π/2, θ2), ε]}. The boundary conditions on ∂Dφ,θ are dis-
cussed in Appendix C. The numerical solution of (7) with the
appropriate boundary conditions in (C2)–(C9), corresponding
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θ

Φ
π

3π/4

π/2

π/4

0

π/20
Φ
π/20

FIG. 3. The plot of solution α for symmetric shell (δ = 0) and
asymmetric shell (δ → R0 − Ri). Left: The solution of (7) with
boundary conditions (C2)–(C9) on the domain Dφθ = [0, π/2] ×
[0, π ]\{D[(0, θ1), 0.05] ∪ D[(π/2, θ2), 0.05]}. Right: α = φ in (8),
the solution of (7), with boundary conditions (C10) and (C11) on
the domain Dφθ = [0, π/2] × [0, π − 0.05]. The black dashed line
outlines the area of [0, π/2] × [0, π ].

to the tetrahedral defect arrangement on a symmetric shell,
is shown in Fig. 3 on the left. We can obtain α throughout
the whole domain by means of reflection symmetry, and the
corresponding director n through (5). In this reduced study,
we get a nonlinear solution α in Fig. 3 rather than a sim-
ple α = −φ/2 corresponding to a single +1/2 defect as in
Sec. V. This nonlinear solution captures the collective effects
or interactions of the four defects in the tetrahedron state on
a symmetric shell and provides a relatively simple method
for capturing the qualitative features of the computationally
demanding numerical solutions in Fig. 1. Notably, we only
solve a boundary-value problem for α on a truncated rectan-
gular domain as opposed to a system of five nonlinear partial
differential equations on a three-dimensional shell domain,
subject to weak anchoring conditions in Fig. 1.

Again, following the discussion in Sec. IV A and Fig. 2(c),
in the super asymmetric limit δ → Ro − Ri, the defects con-
centrate near θ = π . We cut the domain near θ = π to study
the domain Dφθ = [0, π/2] × [0, π − ε] with the limiting
version of the boundary conditions in (C10) and (C11). The
corresponding analytic solution in the limit δ → Ro − Ri is

α = φ. (8)

The corresponding numerical solution is shown in Fig. 3 on
the right. There is a +2 point defect at θ = π , which is the
south pole of the shell. This analysis is complementary to our
full numerical results. The full numerical results in Figs. 1(a)
and 1(b) show that as the shell gets increasingly asymmetric
(or thicker), the four +1/2 defects get closer to the thinnest
point. However, we cannot use a numerical method to sim-
ulate the limiting case with δ = Ro − Ri, and get a real +2
defect on a shell, since the thickness of the thinnest part is
zero for this limiting situation.

V. EXPERIMENTAL ANALYSIS AND MODELING
OF THE CLEARING TRANSITION

We now study the clearing transition in the shells, experi-
mentally and numerically. Considering the experimental study
first, Fig. 4 shows the same two shells as in Figs. 1(c)–1(f)
as they go through the nematic-isotropic transition during
heating at 1 K/min. Each frame of this figure shows both

FIG. 4. The same two shells (symmetric on the left, asymmetric
on the right) as in Figs. 1(c)–1(f), as they go through the nematic-
isotropic transition. The focus is near the shell bottoms and the
sample chamber is heated at a constant rate of 1 K/min, the hot
stage reading being 40.5 ◦C in (a)–(g), while in (h) it is 40.6 ◦C.
Time stamps at the bottom right of each frame refer to the time
after the first sign of the transition is detected, in the right shell. The
photos are still frames from the supporting video in the Supplemental
Material [21].

shells at the same time and temperature, revealing that the
transition starts slightly earlier in the asymmetric shell, which
is on the right in each image. In Fig. 4(a), which we consider
to be time 0 s, the transition can be detected for the first time in
the asymmetric shell, at three isotropic nuclei at defects. The
symmetric shell is still fully nematic here. Its first isotropic
nuclei appear outside defects, in Fig. 4(b), whereas its first
isotropic nucleus in a defect is seen in Fig. 4(c). In Fig. 4(d),
we see the isotropic phase nucleate on the thick side of the
asymmetric shell (out of focus), and in Fig. 4(e), the symmet-
ric shell nucleates the transition in its second defect visible
in this picture. In Fig. 4(f), the isotropic domains have started
merging in the asymmetric shell and a color change in the
upper left of the symmetric shell reveals that the transition
has started on the side out of focus. As more and more of the
shell turns isotropic, the nematic boundaries that separated the
first nuclei in the asymmetric shell collect into isolated islands
[Fig. 4(g)], which end up being the last remaining points of the
nematic state before the entire shell goes isotropic [Fig. 4(h)].

We conclude from this experiment that (1) the clearing
transition starts at slightly lower temperature in the asym-
metric shell for which all four defects are collected near the
thinnest point, and (2) the four defects function as the very first
nucleation points for the transition in the asymmetric shell.
In contrast, (3) when the shell is nearly symmetric, the first
isotropic nuclei can appear anywhere, also outside defects,
but each defect still acts as a nucleating point of the transition
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FIG. 5. The same two shells as in Fig. 4 being cooled through
the isotropic-nematic transition. The focus is near the shell bottoms
and the sample chamber is cooled at a constant rate of 1 K/min, the
hot stage reading being (a), (b) 40.5 ◦C, (c) 40.4 ◦C, (d) 40.3 ◦C, (e)
40.2 ◦C, and (f) 39.9 ◦C. Time stamps at the bottom right of each
frame refer to the time after the first sign of the transition is detected
in the right shell, slightly after the transition has started in the left
shell. The photos are still frames from the supporting video in the
Supplemental Material [21].

early in the process, while the shell is mainly in the nematic
phase.

Once the shells are entirely isotropic, the sample is cooled
at −1 K/min and we follow the transition back into the ne-
matic phase in Fig. 5. Corresponding to the left shell retaining
a nematic phase to the highest temperature in Fig. 4, it is also
the first shell to nucleate the nematic phase on cooling; in
Fig. 5(a), the first nuclei of this phase have already grown to
respectable size, while we see the very first nematic nuclei in
the right shell. We believe that the subtle difference between
the two shells, consistent between the heating and cooling
experiments, is due to the slightly greater average thickness
in the right asymmetric shell, meaning that it contains slightly
more LC, thus exhibiting a slightly greater latent heat for the
transition for the overall shell.

As the shells have turned entirely nematic [Figs. 5(b) and
5(c)], we first note that neither shell shows any memory of the
defect configuration prevailing prior to the nematic-isotropic
transition on heating. In fact, both shells clearly exhibit more
than the topologically required defects, the symmetric shell
showing one integer defect (strength ±1, four dark brushes)
and two half-integer defects (strength ±1/2, two brushes), and
the asymmetric shell showing one integer defect and five half-
integer defects in focus in Fig. 5(c), with additional defects
most likely being present on the shell side out of focus. Since
the total topological defect strength must still be +2 over the
entire shell surface, we can conclude that some of the defects
are negative signed, as a result of multiple independently
nucleated nematic phase domains merging upon cooling. In
Fig. 5(d), we can see two integer defects (four brushes each)
approaching each other in the right image, clearly attracting
due to their opposite signs. In Fig. 5(e), they have annihilated

and we see only three half-integer defects (most likely +1/2)
moving towards the thinnest side, while the +1 defect is
moving towards the opposite side, being barely visible. Most
likely it is attracted to a half-integer defect of opposite sign on
the side out of focus. In Fig. 5(f), it can no longer be seen and
one may suspect that it has merged with the attractor defect,
leaving only the final stable +1/2 defect that will eventually
move back to the thinnest part of the shell.

The defects on the symmetric shell (on the left) also
move during this process, but the progress towards the
energy-minimizing tetrahedral configuration is slower than
that for the corresponding asymmetric shell on the right. The
asymmetry thus appears to drive a change toward an energy-
minimizing defect configuration faster than in the symmetric
shell. However, the change is not particularly fast in the asym-
metric shell either; 40 s after the cooling transition process is
initiated, the director field has not yet reached the stable con-
figuration with all four defects concentrated near the thinnest
point. While it would be highly interesting to theoretically
model the transition on cooling, it is a very different situation
compared to the transition on heating. This requires an en-
tirely different modeling framework which would necessarily
include complex nonequilibrium dynamic effects and stochas-
tic modeling, with random fields and quenching effects. It is
outside the scope of this paper.

We now turn to the theoretical analysis of the heating
nematic-isotropic (NI) transition for the two shells. A rela-
tively simple model was developed in [16,17] to track the
critical temperature of the NI transition and the growth of the
isotropic phase, as a function of temperature, on the plane,
assuming that the NI interface is a circle. We adapt this model
to a spherical surface or a radially invariant shell geometry, as
shown below.

We consider the region θN � θ � π , assuming only one
interior defect (+2 or +1/2) at the south polar point (θ =
π ). The +2 defect case corresponds to an asymmetric shell,
whereas the +1/2 defect case corresponds to a symmetric
shell (with a regular tetrahedral arrangement of four +1/2
defects). Following the experimental video in the Supplemen-
tal Material [21], θN > π/2 and we take θN to be constant
throughout the manuscript. For fixed r = r∗ or η = η∗, the
free energy on (φ, θ ) ∈ [0, 2π ) × [0, π ] can be written as

F =
∫ 2π

0

∫ π

θNI +δθ/2
fI sin θ r̄2 dθ dφ +

∫ 2π

0
σNI sin θNI r̄ dφ

+
∫ 2π

0

∫ θNI −δθ/2

θN

fN sin θ r̄2 dθ dφ

+ K

2

∫ 2π

0

∫ θNI −δθ/2

θN

(cos θ − ∂φα)2

sin θ

+ (∂θα)2 sin θ dθ dφ, (9)

where θNI is the location of the NI interface and δθ is the width
of the NI interface (see Fig. 6), fI and fN are the entropic free
energy per unit volume of the isotropic and nematic phases,
respectively, σNI is the nematic-isotropic surface free energy
per unit area, K is the Oseen-Frank elastic constant [analogous
to the elastic constant K in (4)], α is the angle of director
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A
B
C

δθ
θNI

θNO

FIG. 6. The simplified picture of a melting shell. Region C: the
inner, isotropic core of the defect θNI + δθ/2 < θ < π ; region B: the
nematic-isotropic (NI) interfacial region θNI − δθ/2 < θ < θNI +
δθ/2; region A: the distorted nematic region θN < θ < θNI − δθ/2.

defined in (5), and r̄ is the radius of the studied spherical
surface with r = r∗ or η = η∗.

We define TNI as the transition temperature for which the
bulk energy of nematic and isotropic phases are the same,
fI (TNI ) = fN (TNI ). To match with the experimental data, we
use TNI = 40.5 ◦C for 8CB [28]. We simplify the quantities fI

and fN close to TNI using a Landau expansion for each phase,

fI (T ) = fI (TNI ) − SI (T − TNI ) + O(T − TNI )2,

fN (T ) = fN (TNI ) − SN (T − TNI ) + O(T − TNI )2,

where SN and SI are the entropy per unit volume per kelvin of
nematic and isotropic phases, respectively.

With fI (TNI ) = fN (TNI ), we obtain

fI − fN = −(SI − SN )(T − TNI ) + O(T − TNI )2. (10)

Neglecting higher-order terms of T − TNI and δθ (to within
an irrelevant constant),

F (θNI ) = −2π�S(T − TNI )r̄2 cos θNI (11)

+ 2πσNI r̄ sin θNI (12)

+ Kπ

2
[(d − 1)2 ln(1 − cos θNI ) + 2 cos θNI (13)

− (d + 1)2 ln(1 + cos θNI )], (14)

with �S = SI − SN > 0 (the entropy of the isotropic phase is
always higher than the nematic phase) and d = ∂φα (α = φ

and d = 1 for +2 point defect, α = −φ/2 and d = −1/2 for
+1/2 point defect at the south pole; the winding number of
α = dφ near the south pole is calculated in Appendix D).
Since the region under consideration is θN � θ � π , θN >

π/2, and θNI > θN , we have π/2 � θNI � π . Looking at the
first term, if θNI decreases so that the size of the isotropic
region increases, then the energy decreases for T > TNI

and increases for T < TNI , consistent with the fact that the
isotropic phase is energetically preferred for temperatures
T > TNI and energetically unfavorable for T < TNI . The sec-
ond term implies that the presence of a nematic-isotropic
interface leads to an increase in the free energy of the system.
The third term favors a large isotropic area. For a fixed θN ,
as θNI decreases, the elastic energy contained in the nematic
region modeled by θN < θ < θNI decreases.

We set the parameters to be as follows: the aver-
age radius of shell r̄ = 100 µm = 10−4 m; the entropy

FIG. 7. The plots of FNI = 1011

2π
F (θNI ) in (11) for (a) +2 defect

and (b) +1/2 defect, and the local minimizer θ∗
NI of FNI vs T − TNI

for (c) +2 defect and (d) +1/2 defect. As T − TNI increases, the
minimizer θ∗

NI decreases, i.e., the area of isotropic increases.

difference between the isotropic and nematic phases, �S =
2.91 J mol−1 K−1/291.4 g mol−1× 0.985 g cm−3 ≈ 104

J m−3 K−1 (NI entropy difference 2.91 J mol−1 K−1 in Table
2 of Ref. [29], molar mass of 8CB 291.4 g mol−1, density ρ =
0.985 g cm−3 in Table 3 of Ref. [29]), the tension σNI = 10−7

J m−2 in Refs. [30,31], and the elastic constant K = 2 × 10−12

J m−1 [31]. The physically relevant solutions can be found by
analytically minimizing F (θNI ) in (11)–(14).

Before heating, the shell is in nematic phase, i.e., the NI
interface is at θNI = π . As temperature T increases, the NI
interface moves to θNI = θ∗

NI , where θ∗
NI is the local minimizer

of F (θNI ). For the asymmetric shell (+2 defect), as T − TNI

increases from zero to 4 × 10−8 K, θ∗
NI decreases from around

156◦ to around 147◦ in Figs. 7(a) and 7(c). For the symmetric
shell (+1/2 defect), as T − TNI increases from zero to 10−6 K,
θ∗

NI decreases from around 179◦ to around 177◦ in Figs. 7(b)
and 7(d). In both cases, when T − TNI increases further, the
local minimizer θ∗

NI does not exist, and the NI interface jumps
to the edge of the studied region θNI = θN , i.e., the shell is in
an isotropic phase. This critical temperature is the so-called
clearing temperature, above which we speculate that the shell
is totally isotropic.

We deduce from Fig. 7 that the clearing temperature of
an asymmetric shell (+2 defect) is Tc = TNI + O(10−8) K
and the clearing temperature for a symmetric shell (+1/2
defect) is Tc = TNI + O(10−7) K. In Figs. 7(b) and 7(d),
the clearing temperature is above TNI + 1 × 10−6 K and
we find that the solution θ∗

NI does not exist for T = TNI +
1.1 × 10−6 K, and hence, considering the error from the
experimental data and the assumptions of this simple mod-
eling, we deduce that the clearing temperature is of the
order of TNI + O(10−7) K on the symmetric shell. Below
the clearing temperature, the maximum isotropic area for the
asymmetric shell (+2 defect) is between θ ≈ 147◦ and the
south pole, and the maximum isotropic area for the sym-
metric shell (+1/2 defect) is between θ ≈ 177◦ and the
south pole.
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In particular, when there is no defect at the south polar
point, i.e., α = −φ and d = −1, the elastic energy density
in (13) and (14) near θNI = π is much lower and changes
more gently with θNI than the elastic energy density for +2
and +1/2 defects, with d = 1 and d = −1/2, respectively.
As F ′(π ) = −2πσNI r̄ < 0, θNI = π is always a minimizer
of F (θNI ) with d = −1, which means the NI transition
cannot occur unless a perturbation creates or nucleates a
small isotropic domain around θNI = π that triggers the NI
transition.

These numerical and analytic results agree with the ex-
perimental results in the sense that the clearing temperature
is lower for an asymmetric shell, i.e., the clearing transition
starts at slightly lower temperatures in the asymmetric shell,
the maximum isotropic area for the asymmetric shell (+2 de-
fect) is larger than that for the symmetric shell (+1/2 defect)
below the respective clearing temperatures (see Fig. 4), and
defects function as nucleation points for the transition due to
concentration effects of the elastic energy.

VI. CONCLUSIONS AND DISCUSSION

We have demonstrated, experimentally and theoretically,
that topological defects in nematic shells act as nucleation
points for the transition to the isotropic phase upon heating,
as can be expected given that each topological defect acts like
a local region of isotropic phase even at temperatures where
the bulk nematic phase is absolutely stable in the absence of
confinement effects. When all defects are collected close to
each other, as near the thinnest point of an asymmetric shell,
the strong deformation of the director field around the defects
additionally leads to a local reduction of the effective clearing
temperature in this region, ensuring that the defects become
the primary nuclei of the transition as the shell is heated into
the isotropic phase. The effect is small and hence nuclei,
away from defects, are soon seen as the asymmetric shell is
continuously heated in experiments. For a symmetric shell,
the local director field deformation is never strong enough to
induce an experimentally detectable lowering of the effective
clearing temperature, explaining why the isotropic phase nu-
cleates outside topological defects in a symmetric shell.

We propose a simple mathematical model, based on the
arguments in [17,18], to explain the heating transitions and
while our model is not in perfect agreement with experiments,
it captures the fact that the clearing transition proceeds more
quickly in the asymmetric shell and at lower temperatures in
asymmetric shells, compared to the symmetric counterparts,
i.e., the asymmetric shell will relax to an isotropic shell before
the symmetric shell, during the heating transition. The faster
relaxation to the isotropic phase is facilitated by the elastic en-
ergy concentration near the four defects around the south pole
of an asymmetric shell. We propose a simple free energy on
a spherical surface with entropic contributions, a NI-interface
energy, and an elastic distortion energy. The elastic distortion
energy can distinguish between an asymmetric and symmetric
shell, captured by the parameter d in (13) and (14), or the
topological strength of the defect at the south pole. The elastic
distortion energy favors an isotropic phase, with the effect be-
ing more pronounced for an asymmetric shell (with d = +1)
compared to a symmetric shell (with d = −1/2) in (13) and

(14), and is one of the primary drivers of the relatively fast
relaxation process in an asymmetric shell, within the remit of
our simple model.

The effect of defects on the clearing temperature, although
small in our setup, could be stronger for other materials or
other geometrical settings. In our theoretical model, the clear-
ing temperature decreases as the entropy difference between
the isotropic and nematic phases �S increases, the tension
σNI decreases, or the elastic constant K increases. The effect
also depends on the difference between TNI and the critical
temperature for the existence of the nematic phase, which
could be larger for some materials.

Our modeling approaches are limited in numerous ways.
For example, in Sec. III, it is perfectly possible that there are
multiple LdG energy minimizers on asymmetric and symmet-
ric shells, with different defect configurations, with tangential
anchoring, and we have simply found one of the energy mini-
mizers. The simple model for the clearing transition in Sec. V
neglects the effects of the shape of the NI interface or the
actual dynamics of the NI interface, which could play a crucial
role in the defect dynamics during heating and cooling transi-
tions. However, these simple models do capture the essential
experimental details.

Throughout the above analysis, we have assumed that
the boundary conditions remain tangential at both interfaces
as the temperature is changed. This generally holds but we
[32,33] and others [34] have shown that a gradual change
from tangential to normal boundary conditions can sometimes
occur upon approaching the clearing point. We recently pro-
posed that this arises as a result of significant entropic steric
repulsion between amphiphilic polymeric stabilizers and the
LC, active at low temperature where the LC has a high degree
of order, but reducing in importance near the clearing point
where the LC order decreases [33]. For polymeric surfactants
such as the Pluronics series, the effect can be strong and occur
over a large temperature range, seen even upon relatively
rapid heating [32,33]. For random copolymers such as the
incompletely hydrolyzed PVA used in this study, we have seen
a significant effect using a quite different LC mixture (chiral
as well as reactive) [33], but with the nonchiral cyanobiphenyl
class of LC used in the present study, Durey et al . demon-
strated that extremely slow heating—hundredfold slower than
the heating rate used in our present study—is required to
observe the phenomenon. Indeed, the polarizing microscopy
textures shown in Figs. 4 and 5 clearly reveal the presence
of topological defects and confirm a fully tangential configu-
ration of the nematic phase during the phase transition. This
means that our analysis is valid for the situation considered
here. In the situations where the boundary conditions change
to normal prior to the transition, or indeed if normal boundary
conditions are imposed throughout, the absence of defects in
the shells would mean that no particular nucleation points
would be expected for the phase transition.

Although the impact of the defects is small in terms of the
shift in practical transition temperature, the fact that the tran-
sition always nucleates in defects (when present), as primary
nuclei when the defects are co-localized, can have practical
implications in contexts where the NI transition in shells is
used for applications. Examples are liquid crystal elastomer
shell actuators [35,36], the strong shape morphing of which
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is driven by the nematic-isotropic phase transition, as well
as liquid crystal based sensors where the analyte induces this
transition [37], or where topological defects otherwise play a
critical role for the detection [38].

An intriguing aspect that we did not address in this pa-
per is that as the isotropic phase grows from a nucleus, it
may be considered to form a topological hole in the shell,
thus connecting the in- and outsides with each other via
the nematic-isotropic boundary and suddenly transforming the
remaining nematic to a single-interface volume. However, the
isotropic phase on the other side of this new interface is not
constant, but changes from the aqueous isotropic phase on
the shell’s in- and outsides to the isotropic phase of the LC
material in the growing isotropic regime. These two differ-
ent bounding phases are likely to impose different boundary
conditions and/or different anchoring strengths, complicat-
ing the application of the Poincaré-Hopf theorem on the
transitional single-interface nematic state. Alternatively, the
isotropic phase might nucleate from the outside or the inside
without reaching all the way through the shell, thus maintain-
ing the overall topology as long as the nematic phase forms
a continuous spherical surface at least at some plane. It is a
stimulating challenge for future investigations to probe the
nature of the phase transition with such resolution that the
actual scenario can be identified.
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APPENDIX A: BISPHERICAL POLAR COORDINATE

We use the geometric conversions between Cartesian and
bispherical coordinates [25],

x = a sin θ cos φ

cosh η − cos θ
, (A1)

y = a sin θ sin φ

cosh η − cos θ
, (A2)

z = a sinh η

cosh η − cos θ
, (A3)

where the radial bispherical coordinate is η, the polar angular
bispherical coordinate is θ , and the azimuthal angular bispher-
ical coordinate is φ = arctan(y/x). The half confocal length
a determines the distance between the bispherical coordinate
poles, which is 2a. When solving problems between eccen-
tric spheres, where one sphere is inside a larger sphere, the

confocal length is

a =
√

R4
i + R4

o + δ4 − 2R2
i R2

o − 2R2
i δ

2 − 2R2
oδ

2

2δ
,

where the eccentricity δ is the distance between the inner and
outer spherical centers having, respectively, radii Ri and Ro.

The ranges of η, θ , and φ are η ∈ [ηo, ηi], θ ∈ [0, π ], and
φ ∈ [0, 2π ), where

ηo = arcsinh

⎛
⎜⎝

√
R4

i + R4
o + δ4 − 2R2

i R2
o − 2R2

i δ
2 − 2R2

oδ
2

2δRo

⎞
⎟⎠,

ηi = arcsinh

⎛
⎜⎝

√
R4

i + R4
o + δ4 − 2R2

i R2
o − 2R2

i δ
2 − 2R2

oδ
2

2δRi

⎞
⎟⎠.

In particular, for the symmetric spherical shell, as the ec-
centricity δ → 0, we have ηo → ∞, ηi → ∞, and a →
∞. Subsequently, the bispherical polar coordinates reduce
to the polar coordinates with r = a

cosh η−cos θ
= a

cosh η
and

limη→∞ sinh η

cosh η
= 1,

x = a

cosh η − cos θ
sin θ cos φ = r sin θ cos φ,

y = a

cosh η − cos θ
sin θ sin φ = r sin θ sin φ,

(
z − a sinh η

cosh η

)
= a

cosh η − cos θ

sinh η

cosh η
cos θ = r cos θ,

where a sinh η

cosh η
is the center of the spherical surface with fixed

η, r = Ri for η = ηi and r = Ro for η = ηo.

APPENDIX B: DETAILS OF THE SIMULATIONS
IN THE LANDAU–DE GENNES FRAMEWORK

1. Nondimensionalization

We nondimensionalize the system using the following
rescaling:

x̄ = x/Ro, Q̄ =
√

27C2

2B2
Q, F̄ = 27C3

2B4R3
o

F . (B1)

Dropping all bars for convenience, the dimensionless LdG
functional can be written as

F (Q) =
∫

�

{
ξ 2

R

2
|∇Q|2 + t

2
trQ2 −

√
6trQ3 + 1

2
(trQ2)2

}
dx,

(B2)
with nondimensionalized domain � = B(0, 1)\B(c, ρ),
where ρ = Ri/Ro, c = (0, 0, δ)/Ro = (0, 0, c), satisfying
c > ρ > 0 and c + ρ < 1, the reduced temperature t = 27AC

B2 ,

and ξR =
√

27CL1
B2R2

o
.

2. Surface energy

The planar degenerate or tangential anchoring can be im-
posed by adding the surface energy,

Fs =
∫

∂�k

ω1

2
|Q̃ − Q̃‖|2 + ω2

2
(trQ̃2 − s2

+)2 dA, k = i or o,
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on the inner and outer surfaces of the shell �, ∂�i, and ∂�o,
where

Q̃ = Q + s+I
3

, Q̃‖ = PQ̃P, P = I − v ⊗ v, (B3)

v is the unit normal vector, ω1 is the reduced anchoring
strength that favors the tangential orientation of nematic di-
rector n, i.e., prefers the leading eigenvector of Q, labeled as
the nematic director, to be in the plane of the spherical surface,
and ω2 pushes Q towards the set of nematic or ordered bulk
energy minimizers for a given A < B2

24C . Recall the definition
of s+ from (3).

3. Initial conditions

For the tetrahedron state on a symmetric shell in Fig. 1(a),
we design an initial condition in terms of the director n as
follows:

n = sin(α)eθ + cos(α)eφ, (B4)

in the spherical coordinate with

α =
⎧⎨
⎩

π + φ if θ < π/4
−π/2 − φ if θ > 3π/4
π/2 otherwise,

(B5)

and use

Q = s+(n ⊗ n − I/3) (B6)

as an initial condition for the LdG numerical solver. For the
irregular tetrahedron state on an asymmetric shell in Fig. 1(c),
with four defects concentrated near the south pole, we use
the initial condition for the symmetric shell in terms of the
bispherical polar coordinate in Appendix A, as the corre-
sponding initial condition.

4. Numerical methods

We numerically model the domain � using the bispherical
coordinate system, (η, θ, φ), in Appendix A. We expand the
tensor function Q in terms of real spherical harmonics of
(θ, φ) and Legendre polynomials of ζ [ζ = 2(η − ηo)/(ηi −
ηo) − 1],

qi(ζ , θ, φ) =
L−1∑
l=0

M−1∑
m=1−M

N−1∑
n=|m|

A(i)
lmnZlmn(ζ , θ, φ), (B7)

where N � M � L � 0 specify the truncation limits of the
expanded series, with

Zlmn(ζ , θ, φ) = Pl (ζ )Ymn(θ, φ), (B8)

Ymn = P|m|
n (cos θ )Xm(φ), (B9)

Xm(φ) =
{

cos mφ if m � 0
sin |m|φ if m < 0, (B10)

and Pm
n (x) (m � 0) are the normalized associated Leg-

endre polynomials. Using this series expansion, the LdG
energy of qi, i = 1, . . . , 5, is a function for the 5NML un-
knowns. Substituting into the nondimensionalized free energy
(B2) and surface energy ((B3)) we obtain a free energy

as a function of these unknown tensor order parameter el-
ements, A(i)

lmn. The redefined free-energy function is then
minimized by using a standard optimization method, such
as Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) [39], that treats the independent elements of tensor
A(i)

lmn as variables. The simulation results in Fig. 1 are obtained
by taking (L, M, N ) = (32, 64, 64).

APPENDIX C: THE BOUNDARY CONDITIONS OF Dφ,θ

The θ = 0 and θ = π coordinates are two points on a
spherical surface, but they are two lines in the φθ plane.
How do we define the appropriate boundary conditions for
these antipodal points? Substituting θ = 0 and π into (6) and
ensuring that the energy density does not diverge, we impose
the boundary condition

∂φα = 1 on θ = 0, ∂φα = −1 on θ = π. (C1)

According to the configuration of the tetrahedron state in
Fig. 1, we assume that α is continuous on the boundary of the
domain far from defects, the director is vertical or horizontal
(on the φθ plane) on φ = 0 and φ = π/2, and α jumps ±π/2
when crossing the +1/2 defects on φ = 0 and φ = π/2.

The boundary conditions of Dφ,θ , corresponding to a sym-
metric shell, are given by

α = π/2 if φ = 0 and θ > θ1 + ε, (C2)

α = 0 if φ = 0 and θ < θ1 − ε, (C3)

α = π/2 if φ = π/2 and θ < θ2 − ε, (C4)

α = 0 if φ = π/2 and θ > θ2 + ε, (C5)

α = φ if θ = 0, (C6)

α = π/2 − φ if θ = π, (C7)

α = π/4 − atan

(
θ − θ1

φ

)
/2 on ∂D[(0, θ1), ε], (C8)

α = π/4 − atan

(
θ − θ2

φ − π/2

)
/2 on ∂D[(π/2, θ2), ε]. (C9)

The boundary conditions of Dφ,θ , corresponding to an
asymmetric shell, are given by

α = 0 if φ = 0, α = π/2 if φ = π/2, (C10)

α = φ if θ = 0 and θ = π − ε, (C11)

which are the limiting version of the boundary conditions in
(C2)–(C9) as θ1 → π and θ2 → π , respectively.

APPENDIX D: THE WINDING NUMBER OF α = dφ

NEAR THE SOUTH POLE θ = π IS d + 1

Substituting α = dφ into (5), the corresponding director is

n = sin(α)eθ + cos(α)eφ = sin(dφ)eθ + cos(dφ)eφ. (D1)
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Let us change back to Cartesian coordinates at θ = π with

eθ = − cos(φ)ex − sin(φ)ey, (D2)

eφ = − sin(φ)ex + cos(φ)ey. (D3)

Substituting the above equations into (D1), we have

n = sin(dφ)[− cos(φ)ex − sin(φ)ey] (D4)

+ cos(dφ)[− sin(φ)ex + cos(φ)ey] (D5)

= − sin[(d + 1)φ]ex + cos[(d + 1)φ]ey, (D6)

the winding number of which is d + 1 on the xy plane.
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